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Abstract
Background Genome-wide association studies have detected a large number of single-nucleotide polymorphisms 
(SNPs) associated with complex traits in diverse ancestral groups. However, the trans-ethnic similarity and diversity of 
genetic architecture is not well understood currently.

Results By leveraging summary statistics of 37 traits from East Asian (Nmax=254,373) or European (Nmax=693,529) 
populations, we first evaluated the trans-ethnic genetic correlation (ρg) and found substantial evidence of shared 
genetic overlap underlying these traits between the two populations, with ρ̂g  ranging from 0.53 (se = 0.11) for 
adult-onset asthma to 0.98 (se = 0.17) for hemoglobin A1c. However, 88.9% of the genetic correlation estimates were 
significantly less than one, indicating potential heterogeneity in genetic effect across populations. We next identified 
common associated SNPs using the conjunction conditional false discovery rate method and observed 21.7% of trait-
associated SNPs can be identified simultaneously in both populations. Among these shared associated SNPs, 20.8% 
showed heterogeneous influence on traits between the two ancestral populations. Moreover, we demonstrated that 
population-common associated SNPs often exhibited more consistent linkage disequilibrium and allele frequency 
pattern across ancestral groups compared to population-specific or null ones. We also revealed population-specific 
associated SNPs were much likely to undergo natural selection compared to population-common associated SNPs.

Conclusions Our study provides an in-depth understanding of similarity and diversity regarding genetic architecture 
for complex traits across diverse populations, and can assist in trans-ethnic association analysis, genetic risk prediction, 
and causal variant fine mapping.

Keywords Trans-ethnic analysis, Genetic similarity and diversity, Summary statistics, Genome-wide association study, 
Conditional false discovery rate
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Background
Over the past few years, large-scale genome-wide asso-
ciation studies (GWASs) have convincingly detected a 
large number of genetic loci associated with a series of 
complex traits by casting single-nucleotide polymor-
phisms (SNPs) across the entire genome [1], generating 
novel biological knowledge and renovating diagnostic 
and treatment tools for diseases [2, 3]. However, exist-
ing GWASs have been heavily biased towards European 
(EUR) individuals, with 66.4% (= 7,377/11,113, until 
2023-4-25) of studies conducted in EUR but only a few in 
other populations [4]. As medical genomics studies have 
become increasingly large and diverse, acquiring insights 
into similarity and diversity of trait-associated SNPs 
among distinct populations and consequently the trans-
ferability of disease genetic risk is imperative in clinical 
translation [5].

It has been revealed that many trait-associated SNPs 
identified in GWASs of EUR ancestry can be replicated 
in other ethnic groups [2, 6–10], in the sense that they 
show significant association with consistent direction of 
genetic effects in non-EUR individuals, indicating com-
plex traits enjoy common genetic components across 
diverse continental populations. For example, the trans-
ethnic genetic correlation is 0.79 (se = 0.04) for ulcer-
ative colitis and 0.76 (se = 0.04) for Crohn’s disease [11], 
0.46 (se = 0.06) for rheumatoid arthritis (RA) [12], 0.33 
(se = 0.03) for major depressive disorder [13], and 0.39 
(se = 0.15) for attention-deficit hyperactivity disorder 
between the EUR and East Asian (EAS) populations. 
However, these estimated trans-ethnic genetic correla-
tion are in general significantly less than one in spite of 
being larger than zero [12, 14], which meanwhile suggests 
ancestral diversity.

Indeed, ancestry-relevant heterogeneity regarding 
varying allele frequency and linkage disequilibrium 
(LD) patterns is observed for some causal variants such 
that a significant association detected in one popula-
tion is not readily identified in others [5, 15, 16]. Notable 
examples include a nonsense variant in TBC1D4, which 
confers muscle insulin resistance and increases risk for 
type 2 diabetes (T2D) and is common in Greenland but 
rare or absent in other populations [17], several com-
mon EAS-specific coding variants that influence blood 
lipids by exerting a protective effect against alcoholism 
[18, 19], and two loci associated with major depression 
that are more common in the Chinese population than 
EUR (i.e., 45% vs. 2% for rs12415800, and 28% vs. 6% 
for rs35936514) [20, 21]. As another example, multiple 
associated loci located within PCSK9, APOA, APOC, 
and ABCA1 all play key roles in lipid genetics in both 
the EUR and African (AFR) Americans, yet the precise 
alleles within each locus differ substantially between 
the two populations, supporting the perspective that 

lipid-associated SNPs are largely shared across ancestral 
groups, but the allelic structure within a locus may be 
shaped by population history and thus exhibits consider-
able heterogeneity [22, 23].

Prior work has investigated the replicability of GWAS 
discoveries for some particular traits, displaying the simi-
larity and diversity of associated SNPs across ancestral 
groups [7, 12, 24, 25]. However, those studies primarily 
focused on limited traits or a small set of significant loci 
[7, 24]; it is unknown whether their conclusions can be 
generalized to other traits or to genome-wide SNPs given 
the polygenic nature of many complex phenotypes. In 
addition, some of previous studies focused mainly on the 
trans-ethnic genetic correlation [12, 25, 26], which how-
ever only quantifies an overall genetic similarity across 
the whole genome and cannot characterize detailed asso-
ciation pattern for individual SNPs. A comprehensive 
genome-wide assessment of trans-ethnic similarity and 
diversity of genetic components for traits is challenging 
because our knowledge of genetic architecture within 
each population is not fully understood.

To fill in this critical knowledge gap mentioned above, 
here we obtained GWAS summary statistics of 37 com-
plex traits from the EAS and EUR populations to perform 
a complete comparison of genetic similarity and diver-
sity across the two populations. We first evaluated the 
trans-ethnic genetic correlation to quantify the extent of 
common genetic basis to which these traits shared [12]. 
Then, we identified population-specific and population-
common trait-associated SNPs [27, 28]. Afterwards, we 
conducted the marginal genetic correlation analysis and 
heterogeneity test for these associated SNPs [25]. Finally, 
we evaluated how the LD and minor allele frequency 
(MAF) patterns varied among various types of SNPs 
and studied whether the genetic differentiation between 
ancestry groups can be explained via natural selection [7, 
24]. We also assessed the genetic influence of associated 
SNPs on traits across populations by calculating a genetic 
risk score (GRS) [24, 29].

Results
Overview of the used statistical methods
We here give a brief overview of some important statisti-
cal methods employed in our analyses and showed more 
methodological descriptions in the Materials and Meth-
ods Section. Technical details of all used methods could 
be found in respective original papers. We here analyzed 
a total of 37 complex traits (10 binary and 27 continu-
ous) using summary statistics obtained from EAS-only or 
EUR-only GWASs (Table 1).

We first employed linkage disequilibrium score regres-
sion (LDSC) to estimate SNP-based heritability for every 
trait in each population [30]. Next, to evaluate genetic 
similarity and diversity of these traits across populations, 
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we calculated the global trans-ethnic genetic correlation 
(ρg) via popcorn [12]. We identified common trait-associ-
ated SNPs via the conditional false discovery rate (cFDR) 
and conjunction conditional false discovery rate (ccFDR) 
methods in the two populations [27, 28].

Relying on cFDR and ccFDR, for each trait we divided 
all analyzed SNPs into four incompatible groups. For 
every trait we estimated the marginal genetic correlation 
(rm) of SNP effect sizes in each of the four groups using 
MAGIC [25]. For common trait-associated SNPs, we 
examined the heterogeneity in genetic effect on the trait 
across EAS and EUR populations via Cochran’s Q test.

Then, we obtained the two LD scores and MAF for 
every SNP in the four groups based on genotypes avail-
able from EAS or EUR individuals in the 1000 Genomes 
Project, and calculated their coefficient of variation of 
LD scores (LDCV) and coefficient of variation of MAF 
(MAFCV) across the populations to investigate whether 
there exist different patterns of LD and MAF for trait-
associated SNPs compared to those null ones.

Finally, to further demonstrate the direction of genetic 
differentiation, for each trait we conducted a GRS analy-
sis [29]. We also investigated whether the sample size 
difference could influence our findings with regards to 
genetic similarity and diversity of traits between the EAS 
and EUR populations.

Heritability and trans-ethnic genetic correlation
Estimated heritability
We first present the estimated SNP-based heritability 
( ĥ2) of these traits. It was shown some traits (e.g., height 
and schizophrenia [SCZ]) were more heritable, with a 
large heritability estimate; but other (e.g., ischemic stroke 
[IS] and atopic dermatitis [AD]) exhibited low heritabil-
ity (Table 1). Although the estimates of heritability were 
highly correlated between the EAS and EUR populations 
(Pearson’s correlation = 0.738, P = 1.83 × 10− 7), there still 
existed an obvious trans-ethnic distinction in heritabil-
ity. For example, platelet count (PLT) showed the maxi-
mal difference in estimated heritability, with ĥ2=1.1% 
(se = 1.4%) in EAS but 20.1% (se = 1.8%) in the EUR pop-
ulation; in contrast, the heritability of atrial fibrillation 
(AF) was much larger in the EAS population compared 
to that in the EUR population (9.5% (se = 2.7%) vs. 2.0% 
(se = 0.3%)). By carrying out an approximate normal test, 
we observed that 70.3% (= 26/37) of heritability esti-
mates were significantly different across the two popula-
tions (FDR < 0.05) (Table 1), largely reflecting diversity in 
polygenic genetic architecture across traits and ancestral 
groups.

We did not find a substantial correlation between 
sample size and heritability in both populations (Pear-
son’s correlation = 0.112 with P = 0.508 in the EAS popu-
lation, and Pearson’s correlation=-0.025 with P = 0.884 in 

the EUR population). However, as expected, we indeed 
discovered suggestive evidence that larger sample size 
can lead to more accurate estimate of heritability, with 
Pearson’s correlation=-0.266 in the EAS population and 
− 0.102 in the EUR population between sample size and 
standard error of heritability. We further used the coef-
ficient of variation of sample sizes (NCV) to measure 
the difference of sample sizes, but did not observe a sig-
nificant correlation between NCV and the coefficient of 
variation of heritability (Pearson’s correlation = 0.029, 
P = 0.867).

Estimated trans-ethnic genetic correlation
The trans-ethnic genetic correlation estimates of six 
traits (i.e., AF, AD, breast cancer [BRC], high-density 
lipoprotein cholesterol [HDL], age at menarche [AAM], 
and triglyceride [TG]) were larger than one and thus 
not included in the following descriptions. All the traits 
exhibited positive trans-ethnic genetic correlation 
between the EAS and EUR populations (Table  1), with 
ρ̂g  ranging from 0.53 (se = 0.11) for adult-onset asthma 
(AOA) to 0.98 (se = 0.17) for hemoglobin A1c (HbA1c).

All the trans-ethnic genetic correlation estimates 
were significantly larger than zero (H0: ρg = 0), but 61.3% 
(= 19/31) were less than one (H0: ρg = 1) (FDR < 0.05), indi-
cating potential heterogeneity in genetic effects across 
populations. The average of ρ̂g  across traits was 0.79, 
and the average of ρ̂g  for binary phenotypes was 0.74 
(se = 0.15), which was slightly (although not significantly, 
P = 0.217, possibly due to limited number of binary phe-
notypes under analysis) smaller than that for continuous 
ones (the average of ρ̂g =0.81 (se = 0.09)).

Comparison for trans-ethnic genetic correlation, cross-trait 
trans-ethnic genetic correlation, and cross-trait genetic 
correlation
Furthermore, as an empirical comparison, we calculated 
cross-trait trans-ethnic genetic correlation and antici-
pated that the cross-trait correlation should be on aver-
age much smaller than that for the same traits in the two 
populations because of greatly distinct genetic founda-
tions. As expected, it was found the same traits generally 
showed much greater genetic similarity compared to dis-
tinct traits although some of them, such as three lipids 
including low-density lipoprotein cholesterol [LDL], total 
cholesterol [TC], and TG, as well as three blood pres-
sures including diastolic blood pressure [DBP], systolic 
blood pressure [SBP], and pulse pressure [PP], also exhib-
ited relatively high cross-trait trans-ethnic genetic corre-
lation (Fig. 1A and Table S1). For instance, the cross-trait 
trans-ethnic genetic correlation ranged from − 0.62 to 
0.79, approximately 47.0% were negative, with an average 
of only 0.02 (Fig. 1B).
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We also included the cross-trait genetic correlation in 
the same population as a reference. Totally, it was seen 
that the cross-trait genetic correlations in the same pop-
ulation were comparable to the cross-trait trans-ethnic 
genetic correlations across different populations but were 
much lower than the trans-ethnic genetic correlation of 
the same trait in diverse populations (Fig. 1B and Table 
S2).

We did not discover a substantial connection between 
NCV and ρ̂g  (Pearson’s correlation=-0.148, P = 0.426), 
implying that the imbalanced sample sizes would not 

significantly affect the estimate of trans-ethnic genetic 
correlation. However, we observed that the difference 
of sample sizes in a pair of traits could affect the signifi-
cance of ρ̂g . More specifically, ρ̂g  trended to be statisti-
cally different from one if larger imbalance of sample 
sizes was present (NCV = 0.43 (se = 0.25) for the 17 non-
significant traits vs. 0.69 (se = 0.27) for the 14 significant 
ones, P = 0.010 in terms of the approximate normal test).

Table 1 Summary information of complex traits analyzed in the present study
trait ĥ2

1 (se1) ĥ2
2 (se2) P∆h2 ρ̂g  (se, Pρ) trait ĥ2

1 (se1) ĥ2
2 (se2) P∆h2 ρ̂g  (se, Pρ)

SCZ 0.360 (0.020) 0.364 (0.015) 8.73 × 10− 1 0.74 (0.10, 
1.33 × 10− 2)

TG 0.117 (0.037) 0.209 (0.045) 1.14 × 10− 1 -

RA 0.143 (0.034) 0.115 (0.016) 4.56 × 10− 1 0.70 (0.14, 
2.65 × 10− 2)

HbA1c 0.073 (0.014) 0.039 (0.006) 2.56 × 10− 2 0.98 (0.17, 9.25 × 10− 1)

AF 0.095 (0.027) 0.020 (0.003) 5.77 × 10− 3 - eGFR 0.071 (0.007) 0.058 (0.004) 1.07 × 10− 1 0.83 (0.05, 
4.42 × 10− 4)

T2D 0.066 (0.004) 0.041 (0.002) 2.27 × 10− 8 0.93 (0.04, 
5.89 × 10− 2)

AAM 0.081 (0.008) 0.125 (0.006) 1.08 × 10− 5 -

COA 0.015 (0.003) 0.043 (0.006) 3.00 × 10− 5 0.57 (0.09, 
1.66 × 10− 6)

ANM 0.082 (0.013) 0.132 (0.013) 6.54 × 10− 3 0.66 (0.09, 
2.34 × 10− 4)

AOA 0.015 (0.003) 0.030 (0.003) 4.07 × 10− 4 0.53 (0.11, 
1.21 × 10− 5)

PLT 0.011 (0.014) 0.201 (0.018) 7.95 × 10− 17 0.84 (0.07, 
2.51 × 10− 2)

AD 0.008 (0.002) 0.040 (0.015) 3.45 × 10− 2 - RBC 0.085 (0.010) 0.151 (0.017) 8.19 × 10− 4 0.92 (0.06, 1.39 × 10− 1)

BRC 0.053 (0.030) 0.106 (0.010) 9.38 × 10− 2 - MCV 0.132 (0.018) 0.227 (0.032) 9.67 × 10− 3 0.87 (0.07, 7.48 × 10− 2)

IS 0.010 (0.002) 0.008 (0.001) 3.71 × 10− 1 0.89 (0.20, 
5.69 × 10− 1)

HCT 0.052 (0.006) 0.104 (0.010) 8.24 × 10− 6 0.88 (0.08, 1.38 × 10− 1)

PCA 0.038 (0.007) 0.055 (0.007) 8.59 × 10− 2 0.83 (0.14, 
2.13 × 10− 1)

MCH 0.114 (0.017) 0.224 (0.036) 5.73 × 10− 3 0.87 (0.12, 2.52 × 10− 1)

TL 0.075 (0.023) 0.062 (0.014) 6.29 × 10− 1 0.61 (0.20, 
4.63 × 10− 2)

MCHC 0.040 (0.007) 0.083 (0.014) 6.01 × 10− 3 0.84 (0.15, 2.75 × 10− 1)

BMI 0.141 (0.008) 0.181 (0.007) 1.68 × 10− 4 0.84 (0.04, 
1.53 × 10− 5)

HGB 0.050 (0.006) 0.111 (0.013) 2.04 × 10− 5 0.79 (0.10, 
3.70 × 10− 2)

height 0.327 (0.018) 0.286 (0.015) 8.01 × 10− 2 0.86 (0.04, 
2.57 × 10− 4)

MONO 0.059 (0.010) 0.163 (0.019) 1.27 × 10− 6 0.80 (0.09, 
2.99 × 10− 2)

DBP 0.046 (0.005) 0.106 (0.005) 2.16 × 10− 17 0.73 (0.06, 
6.70 × 10− 6)

NEUT 0.087 (0.011) 0.026 (0.005) 4.46 × 10− 7 0.77 (0.06, 
2.42 × 10− 4)

SBP 0.056 (0.006) 0.109 (0.004) 1.99 × 10− 13 0.71 (0.05, 
5.62 × 10− 9)

EO 0.055 (0.011) 0.130 (0.013) 1.06 × 10− 5 0.76 (0.09, 
5.98 × 10− 3)

PP 0.037 (0.004) 0.094 (0.004) 7.07 × 10− 24 0.73 (0.07, 
8.80 × 10− 5)

BASO 0.039 (0.014) 0.058 (0.007) 2.25 × 10− 1 0.63 (0.12, 
2.07 × 10− 3)

HDL 0.154 (0.033) 0.241 (0.061) 2.10 × 10− 1 - LYMPH 0.057 (0.010) 0.144 (0.011) 4.85 × 10− 9 0.84 (0.10, 8.26 × 10− 2)

LDL 0.058 (0.012) 0.171 (0.029) 3.18 × 10− 4 0.77 (0.18, 
1.97 × 10− 1)

WBC 0.070 (0.008) 0.139 (0.013) 6.17 × 10− 6 0.75 (0.06, 
3.85 × 10− 5)

TC 0.054 (0.009) 0.183 (0.026) 2.75 × 10− 6 0.92 (0.11, 
4.79 × 10− 1)

Note: the first ten traits are binary, and the remaining 27 traits are continuous; ĥ2
1  and ĥ2

2  are the estimated heritability of the trait in EAS and EUR GWASs using 
LDSC; se1 and se2 are the standard error of the trait in EAS and EUR GWASs. P∆h2  denotes the P values available from an approximate normal test for examining 
the difference between ĥ2

1  and ĥ2
2 , with the significant difference after multiple-comparison correction showing in bold (FDR < 0.05). The significant trans-ethnic 

genetic correlations (i.e., ρ̂g ) compared with one are also displayed in bold. SCZ: schizophrenia; AF: atrial fibrillation; T2D: type 2 diabetes; COA: childhood-onset 
asthma; AOA: adult-onset asthma; AD: atopic dermatitis; BRC: breast cancer; IS: ischemic stroke; PCA: prostate cancer; RA: rheumatoid arthritis; BMI: body mass index; 
DBP: diastolic blood pressure; SBP: systolic blood pressure; PP: pulse pressure; HDL: high-density lipoprotein cholesterol; LDL: low-density lipoprotein cholesterol; 
TC: total cholesterol; TG: triglyceride; HbA1c: hemoglobin A1c; eGFR: estimated glomerular filtration rate; AAM: age at menarche, ANM: age at natural (non-surgical) 
menopause; PLT: platelet count; RBC: red blood cell count; MVC: mean corpuscular volume; HCT: hematocrit; MCH: mean corpuscular hemoglobin; MCHC: mean 
corpuscular hemoglobin concentration; HGB: hemoglobin concentration; MONO: monocyte count; NEUT: neutrophil count; EO: eosinophil count; BASO: basophil 
count; LYMPH: lymphocyte count; WBC: white blood cell count; TL: telomere length
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Associated SNPs for each trait in the EAS or EUR population
To discover trait-associated SNPs shared across the EAS 
and EUR populations, we carried out the cFDR analysis 
using a set of distinct SNPs [27, 28], with the number of 
significant associations displayed in Table  2. In general, 
more associated SNPs (cFDR < 0.05) were discovered 
for most of the analyzed traits (94.6%=35/37, except for 
telomere length [TL] and HbA1c) in the EUR popula-
tion (denoted by f01 + f11 in Table  2) compared to the 
EAS population (denoted by f10 + f11 in Table 2). This is a 
direct consequence of higher power due to larger sample 
sizes of EUR traits (Fig. 2A-B) and implies that additional 

trait-associated loci would be detected if increasing 
samples especially in the EAS population. Only a few of 
SNPs were detected for some traits such as AD and IS, 
but much more associated SNPs were identified for oth-
ers (e.g., BMI and height), partly indicating the polygenic 
nature of these traits [3, 31].

Shared associated SNPs of traits between the EAS and EUR 
populations
Furthermore, we identified many significant SNPs shared 
across the EAS and EUR populations (ccFDR < 0.05, 
denoted by f11 in Table  2). On average, 21.7% of 

Fig. 2 (A) Relationship between n1 and f11 + f10; (B) Relationship between n2 and f11 + f01. Here, f10 and f01 are the number of identified associated SNPs 
for the trait in the EAS or EUR population, respectively, and f11 is the number of shared trait-associated SNPs; n1 and n2 stand for the effective sample size 
for traits in the EAS or EUR population; r stands for the Pearson’s correlation, with P the corresponding P value; k on the x-axis means 1,000 for identified 
trait-associated SNPs and 10k on the y-axis means 10,000 for sample size of traits

 

Fig. 1 (A) Estimated trans-ethnic genetic correlation of 37 traits between the EAS and EUR populations. Elements in the diagonal represent the trans-
ethnic genetic correlation for the same traits in the two populations, while elements in the off-diagonal represent the trans-ethnic genetic correlation for 
two different traits in the two populations. (B) Comparison of the estimated genetic correlation for the trait in the same population, two different traits in 
the same population, and two different traits in the EAS and EUR populations
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associated SNPs were discovered simultaneously for the 
same traits in both populations. The LRT implemented 
under the four-group model framework also offered con-
siderably strong evidence supporting common genetic 
foundation underlying each trait between the two popu-
lation. The proportion of shared associated SNPs varied 
substantially across these traits, ranging from only 3.0% 
for BRC and 3.3% for DBP to 49.4% for IS and 51.8% for 
TL (Table 2).

On average, approximately 67.1% of trait-associated 
SNPs in the EUR population were also detected to be 
significant in the EAS population, but only 26.8% of 
trait-associated SNPs in the EAS population were rep-
licated to be significant in the EUR population. Among 
these shared significant SNPs, 44.1% and 77.0% showed 
genome-wide significance (P < 5 × 10− 8) in the EAS or 
EUR population (Table S3). We observed that the number 
of population-common associated loci (i.e., f11) was nega-
tively correlated with NCV (Pearson’s correlation=-0.095, 
with a marginally significant P value of 0.057), indicating 
that smaller difference of sample sizes in a pair of traits 
(e.g., increasing the sample size of traits in the EAS popu-
lation) might lead to more discoveries of shared SNPs.

Characteristics of shared associated SNPs
Similarity and heterogeneity of associated SNPs across 
populations
It needs to highlight that we can divide all analyzed SNPs 
into four groups based on the associations identified 
above: (i) null SNPs; (ii) EAS-specific associated SNPs; 
(iii) EUR-specific associated SNPs; (iv) population-com-
mon associated SNPs. For these SNPs, it is shown that 
population-common associated SNPs often exhibited 
a maximal positive correlation in effect sizes compared 
to population-specific associated SNPs and null ones 
(Fig. 3A and Table S4). For example, the marginal genetic 
correlation of effect sizes for shared trait-associated SNPs 
was 0.92 (se = 0.04) for TL, followed by 0.81 (se = 0.02) 
for white blood cell count (WBC) and 0.80 (se = 0.03) for 

NEUT, with an average estimate of 0.61 (se = 0.04) across 
these traits, which was much higher than that for EAS-
specific (r̂m =0.29 (se = 0.05)) or EUR-specific (r̂m =0.33 
(se = 0.05)) trait-associated SNPs or null SNPs (r̂m =0.09 
(se = 0.02)).

We found that the effect size slopes of population-
common associated SNPs of eight traits (i.e., AF, AD, 
BRC, TL, SBP, PP, age at natural non-surgical menopause 
[ANM], and basophil count [BASO]) were not signifi-
cantly different from one (FDR > 0.05) (Supplement File 
and Figure S1), suggesting that effect sizes of shared asso-
ciated SNPs are considerably consistent in magnitude for 
these traits; whereas great deviations of the estimated 
slopes from one were observed for the remaining 29 
traits (FDR < 0.05) (e.g., HbA1c, T2D, estimated glomeru-
lar filtration rate (eGFR), SCZ and AAM), indicating sub-
stantial trans-ethnic diversity of SNP effect sizes for these 
traits. In addition, we did not detect substantial evidence 
supporting the influence of imbalanced sample sizes (i.e., 
NCV) on the estimated slope (P = 0.053).

We next performed a heterogeneity test using 
Cochran’s Q test and again focused only on population-
common associated SNPs because the population-spe-
cific associated SNPs can be naturally considered to be 
heterogeneous (i.e., theoretically, their SNP effect sizes 
were non-zero in one population but zero in another 
population). On average, approximately 20.8% of the 
common trait-associated SNPs, ranging from 7.1% for 
TL to 52.9% for AAM, showed heterogeneous genetic 
effect on traits between the two ancestral populations 
after Bonferroni’s correction for multiple comparisons 
(Table S5). We here used Bonferroni’s method to take 
the LD among local SNPs into account as it was much 
more stringent compared to FDR. The high heterogene-
ity in SNP effect sizes for AAM was in agreement with 
a prior finding that AAM-associated SNPs often exhib-
ited distinct effect sizes across populations [32]. It can 
be expected that greater proportion of shared trait-asso-
ciated SNPs having heterogeneous effects would lead to 

Fig. 3 (A) Estimated marginal genetic correlation of effect sizes for SNPs in the four incompatible groups; (B) Relationship between proportions of 
genetic effect heterogeneity of shared associated SNPs and the cross-population marginal genetic correlations of SNP effect sizes; × means the median
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weaker trans-ethic marginal genetic correlation (Pear-
son’s correlation=-0.48, P = 2.98 × 10− 3) (Fig.  3B). How-
ever, we found little evidence supporting the influence of 
the sample size difference in a pair of traits (i.e., NCV) 
on the proportion of population-common SNPs with het-
erogeneous effects (P = 0.771).

Difference in LD, MAF, and Fst for trait-associated SNPs 
across populations
First, we observed that, except for three lipid traits (i.e., 
TL, HDL, and LDL), all the remaining traits showed 
substantial different variations in LD for SNPs in vari-
ous groups between the EAS and EUR populations 
(FDR < 0.05) (Fig. 4A and Figure S2). The average coeffi-
cient of variation of LD scores (LDCV) for population-
common SNPs was smaller compared to that for null 
SNPs (0.22 (se = 0.02) vs. 0.30 (se = 0.02), P = 1.04 × 10− 17), 
for these population-specific loci in EAS (0.22 (se = 0.02) 
vs. 0.28 (se = 0.04), P = 1.82 × 10− 9) or EUR (0.22 (se = 0.02) 
vs. 0.28 (se = 0.03), P = 1.52 × 10− 12).

On the other hand, we observed that, except for three 
traits (i.e., HDL, TG, and ANM), all the remaining 
traits showed substantially different MAFCV for SNPs 
in distinct groups between the EAS and EUR popula-
tions (FDR < 0.05) (Fig.  4B and Figure S3). On average, 
the MAFCV for population-common loci were much 
smaller compared to that for null SNPs (0.33 (se = 0.07 
vs. 0.46 (se = 0.10), P = 1.54 × 10− 12), for these population-
specific loci in EAS (0.33 (se = 0.07) vs. 0.43 (se = 0.11), 
P = 7.30 × 10− 8) or EUR (0.33 (se = 0.07) vs. 0.40 (se = 0.07), 
P = 2.22 × 10− 8).

We found that SNPs suffered from natural selection 
for more than half of traits (62.2%=23/37) (FDR < 0.05) 
(Figure S4). For all analyzed traits, we observed that 
population-common loci tended to have a smaller 
mean Fst compared with population-specific associ-
ated SNPs in EAS (0.056 (se = 0.01) vs. 0.062 (se = 0.02), 
P = 0.032) or EUR (0.056 (se = 0.01) vs. 0.063 (se = 0.006), 
P = 6.77 × 10− 4), and they also showed a lower mean Fst 
relative to null ones (0.056 (se = 0.01) vs. 0.060 (se = 0.001), 

with a marginally significant P = 0.086) (Fig. 4C). Further-
more, we did not observe significant correlation between 
Fst and LDCV (P = 0.781) as well as between Fst and 
MAFCV (P = 0.602) (Figure S5), indicating the between-
population diversity of LD and MAF patterns is not pos-
sibly confounded by the differentiation in Fst.

Overall and partial GRS of trait-associated SNPs
First, we considered the GRS calculated from all associ-
ated SNPs (i.e., f10 + f11 for EAS or f01 + f11 for EUR) as an 
overall measurement of genetic effect on a given trait in 
each population. Among these, most of the traits had a 
substantially different GRS between the two populations 
(Figure S6). For example, six traits (i.e., RA, T2D, child-
hood-onset asthma [COA], AOA, BRC and prostate can-
cer [PCA]) showed a higher overall genetic effect on EAS, 
while some (i.e., SCZ, AF, AD and IS) displayed a larger 
overall genetic effect on EUR.

We further generated the GRS computed with only 
population-common associated SNPs (i.e., f11) or only 
population-specific associated SNPs (i.e., f10 for EAS or 
f01 for EUR), respectively. We viewed these new GRSs to 
quantify a measurement of partial genetic effect because 
only part of associated SNPs is employed. Interest-
ingly, 16 traits (i.e., RA, T2D, AD, PCA, DBP, SBP, LDL, 
TC, TG, eGFR, ANM, mean corpuscular hemoglobin 
[MCV], hematocrit [HCT], monocyte count [MONO], 
eosinophil count [EO] and WBC) had consistent par-
tial genetic effect compared to the overall one. Specifi-
cally, 15 traits (e.g., AF, COA, AOA, BRC, BMI, height, 
PP, HDL, HbA1c, RBC, mean corpuscular hemoglobin 
[MCH], mean corpuscular hemoglobin concentration 
[MCHC], hemoglobin concentration [HGB], NEUT, and 
BASO) showed consistent partial genetic effect in terms 
of GRS calculated with EAS- or EUR-specific associated 
SNPs, whereas only 4 traits (i.e., SCZ, AAM, PLT, and 
lymphocyte count [LYMPH]) exhibited consistent par-
tial genetic effect in terms of GRS calculated with shared 
associated SNPs. Particularly, IS and TL exhibited a 
completely opposite partial genetic effect in terms of the 

Fig. 4 (A) Distribution for the average LDCV across all analyzed traits in the four groups of SNPs; (B) Distribution for the average MAFCV across all analyzed 
traits in the four groups of SNPs; (C) Distribution for the average Fst across all analyzed traits in the four groups of SNPs; × means the median
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EAS/EUR-specific associated SNPs or population-com-
mon associated SNPs compared with the overall genetic 
impact measured with all trait-associated SNPs.

Discussion
Summary of results in the present study
The present study has analyzed a total of 37 complex 
traits and sought to compare shared and distinct genetic 
components underlying them between the EAS and EUR 
populations. We discovered there existed pervasive con-
sistence in heritability and trans-ethnic genetic correla-
tion for these traits. Additionally, it needs to highlight 
that the trans-ethnic genetic correlation of continuous 
traits was on average higher compared to those binary 
traits, which may be due to the loss of information when 
converting some continuous phenotypes into binary ones 
(e.g., using HbA1c to define T2D) or in part reflects the 
discrepancy of classification and diagnosis of diseases in 
distinct populations.

Using cFDR [27, 28] we detected a great number of 
population-common association signals as well as many 
population-specific associated SNPs. A further explora-
tion demonstrated these shared trait-associated SNPs 
generally showed the maximal positive correlation 
in effect sizes compared to population-specific trait-
associated SNPs and null ones [7, 25]. Interestingly, 
we observed that even the shared association signals 
also exhibited a considerable degree of heterogeneity 
in genetic influence on traits across the EAS and EUR 
populations.

Furthermore, we revealed that population-specific 
associated SNPs were often more possible to suffer from 
natural selection compared with population-common 
associations, whereas population-common associated 
SNPs often displayed more consistent patterns in LD and 
MAF across continental populations.

Especially, the GRS analysis showed that population-
common and population-specific associated SNPs have 
potentially different genetic influence on phenotypic 
variation and that the genetic differentiation from associ-
ated SNPs may at least partly explain the observed phe-
notypic variation across diverse ancestral groups. For 
example, the average GRS of SCZ in the EUR popula-
tion was on average higher than that in the EAS popula-
tion, partly contributing to the observation that SCZ was 
more prevalent in individuals of EUR ancestry than those 
of EAS ancestry [33]. The mean GRS of T2D was higher 
in the EAS population than that in the EUR population, 
supported by the observed incidence difference between 
the populations [34, 35]. It was reported that the absolute 
risk of T2D tended to be higher among Asians compared 
with Caucasians for any given level of body mass index 
[BMI] and waist-hip ratio [34]. As another example, for 
PCA higher mean GRS was observed in EAS compared 

to EUR, in line with a previous study which indicated that 
more than half of SNPs showed larger effect sizes in EAS 
than EUR [36].

However, we also observed patterns that seemed to 
be opposite against prior findings. For example, it was 
shown the mean GRS of AD in EUR was higher than that 
in EAS, in contrast to previous observation that Asians 
and Pacific Islanders were seven-fold more likely than 
whites to be diagnosed with AD because stronger Th17/
Th22 polarization and mutations in immune-related 
genes such as DEFB1 [37–39]. These inconsistent results 
can be expected because of the complicated nature of 
these traits, and can be explained by gene-gene/gene-
environment interaction, ethnic difference and genetic 
factors that are largely underappreciated in our current 
study.

Comparison our discoveries to prior studies
Like the findings obtained from prior studies that how-
ever often focused only on a single trait [11, 40, 41], our 
work, which considered much more traits and diseases, 
further confirmed extensive genetic overlap and identi-
fied a large number of common associated genetic loci 
across different populations. From a biological perspec-
tive, there is no doubt about the widespread existence of 
population-shared risk variants because the risk variants 
targeted by GWASs are often common genetic loci that 
are believed to be of ancient origin and largely shared 
among different populations.

As revealed in our study, while some of associated 
SNPs vary substantially across populations, common 
associated SNPs in the EAS and EUR populations nev-
ertheless often show much more similar effect sizes and 
effect directions; therefore, at least part of trait-asso-
ciated SNP mapping results discovered in one popula-
tion can be transferred to the other populations [42]. It 
needs to highlight that we may underestimate the degree 
of genetic sharing between various ancestry groups 
because the much smaller number of individuals in the 
EAS GWASs reduces power to detect homogeneity of 
effect compared to the EUR GWASs. These findings 
are largely consistent with some recent discoveries that 
most common causal SNPs were shared across the EAS 
and EUR populations, high-posterior SNPs identified by 
fine-mapping often showed highly correlated effects, and 
population-specific genetic regions likely harbored com-
mon trait-associated SNPs which however failed to be 
detected in the other GWASs due to differences in LD, 
MAF, and/or sample size [43].

On the other hand, despite highly shared genetic archi-
tecture, we indeed found evidence of heterogeneity at 
trait-associated variants, which meanwhile challenges in 
assessing the transferability of risk variants across differ-
ent ethnic populations based on associations discovered 
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in EUR GWASs [44, 45]. For example, although the trans-
ethnic marginal genetic correlation for population-com-
mon associated SNPs of HbA1c between EAS and EUR 
was as high as 0.63, heterogeneity was detected at 37.7% 
shared associated loci. This diversity may point to the dif-
ference in clinical definitions and phenotype measure-
ments [46]; and it can be in part explained by interaction 
between gene-gene and gene-environment [47].

The genetic difference may also underlie the well-
known trans-ethnic dissimilarities in prevalence or char-
acteristics of the traits [48–52]. In our analysis, these 
population-specific association signals largely indicate 
the significant trans-ethnic difference, which exist in 
distinct LD and allele frequency [7, 53–55]. In addition, 
many studies have revealed that, unlike in most European 
ancestry populations, the population genetic history of 
non-European ancestry groups has undergone selective 
pressure due to the effects of malaria and other infectious 
diseases on erythrocytes [40, 56]. Another possible factor 
for the genetic inconsistency of complex traits between 
ancestry groups may be due to sample size difference and 
thus different statistical power between EAS and EUR 
studies.

Important scientific implications of our findings
Our findings regarding the degree of common or diverse 
genetic components of the traits across ancestral groups 
have important implication in practice. For example, 
theoretically, genetic correlation offers the maximal 
boundary of trans-ethnic genetic prediction power [5, 
12]; however, both overall trans-ethnic correlation and 
marginal trans-ethnic correlation imply low accuracy 
when implementing genetic prediction in one population 
of interest on the basis of associated loci discovered in 
other populations [25], indicating the need to carry out 
GWASs with more ancestral groups.

In addition, it is helpful for aggregating multiple study 
cohorts across ethnicities to conduct trans-ethnic GWAS 
analysis [57–60], developing trans-ethnic genetic risk 
prediction [25, 61], and fine-mapping causal genetic vari-
ants in minority populations [62, 63]. It also holds the 
key to benefit more ethnic groups from current medical 
genomics researches [64–66]. All of these offer promising 
avenues in post-GWAS era by integrating trans-ethnic 
information.

Potential limitations
The present study is not without limitation. First, as 
mentioned before, the studies in EAS are in gener-
ally underpowered due to much smaller sample size 
compared to that in EUR and hence our results may be 
affected by power issues. The small sample size may also 
lead to unstable effect estimation for these SNPs. More-
over, as shown before, we cannot completely rule out 

the possibility that the imbalanced sample sizes can also 
partly interpret the observed trans-ethnic genetic differ-
ence in traits. For example, we found that sample size 
was significantly positively correlated with the number 
of trait-associated loci in both populations, and that the 
estimated trans-ethnic genetic correlation would become 
less significantly different from one when the difference 
of sample sizes in a pair of traits reduced. Thus, the exter-
nal validation of our results with larger sample size espe-
cially for EAS GWASs is warranted.

Second, besides the difference in sample sizes, other 
discrepancies in study designs such as phenotypic defini-
tion, statistical methods, and covariate adjustment can be 
also contributable to the observed trans-ethnic genetic 
similarity and diversity. Examining and quantifying the 
relative contributions are imperative for understanding 
genetic heterogeneity across populations. However, com-
pared to the difference in sample sizes which are already 
reported in summary statistics, the design discrepancies 
in GWAS are difficult to handle with only summary sta-
tistics. It needs large-scale individual-level data of phe-
notypes and genotypes, and is thus challenged by privacy 
concerns when sharing data [67].

Third, individuals of EAS and EUR ancestries are to 
a great extent genetically similar, whereas more major 
genetic differences are expected to be found between 
AFR and non-AFR populations [68]. Therefore, it is not 
clear whether our findings can be generalized to compar-
ison in other populations such as EUR and AFR. Unfor-
tunately, the number of GWASs performed in individuals 
of AFR descent is still too limited to enable comparative 
studies.

Fourth, our analysis only considered common SNPs 
(MAF > 0.01) and ignored rare variants, which usually 
have a recent origin compared with common ones from 
ancient origin. Theoretically, rare risk variants might 
be more likely to be population-specific and could pos-
sibly carry a greater risk effect, which probably leads 
us to underestimate the genetic heterogeneity across 
populations.

Fifth, to our knowledge, this is the first time that the 
cFDR method has been employed in detecting trans-
ethnic genetic overlap for a large range of complex traits. 
However, it implements association mapping at a fixed 
FDR level rather than the standard error measure such 
as family-wise error rate (FWER) or type I error rate 
which is more widely-used in a typical GWAS. FDR is 
more liberal compared to FWER; thus, we can discover 
a much larger number of trait-associated SNPs. Although 
the cFDR method has been well-established under the 
context of pleiotropy-informed association mapping in 
ancestry-matched populations [27, 28] and also dem-
onstrated to be well-calibrated in our study (Figures S7-
S8), its ability of controlling FWER is less understood. 



Page 11 of 16Zhang et al. BMC Genomics          (2023) 24:314 

Consequently, we just considered cFDR as a powerful 
tool for discovering evidence of trans-ethnic genetic 
overlap in our application, and by no means attempted 
to replace the standard GWAS analysis strategy with 
cFDR nor the cFDR level (e.g., 0.05 used here) with the 
genome-wide significance level (e.g., 5 × 10− 8).

Conclusions
Our work provides an in-depth understanding of similar-
ity and diversity regarding genetic architecture for com-
plex traits across diverse populations, and can assist in 
trans-ethnic association analysis, genetic risk prediction, 
and causal variant fine mapping.

Materials and methods
Summary statistics of 37 complex traits
We obtained summary statistics (e.g., marginal effect size 
and standard error) of 37 complex traits (10 binary and 
27 continuous) analyzed on EAS-only or EUR-only indi-
viduals (Table 1 and Tables S6-S7). These traits included 
lipids (e.g., TG), blood cell phenotypes (e.g., neutrophil 
[NEUT] and MONO), diseases (e.g., BRC, T2D, and 
prostate cancer [PCA]), and anthropometric phenotypes 
(e.g., BMI and height).

For each analyzed trait, we carried out stringent qual-
ity control in both populations by following previous 
work [12, 30, 69]: (i) filtered out SNPs without rs label; 
(ii) deleted non-biallelic SNPs and those with strand-
ambiguous alleles; (iii) removed SNPs whose alleles did 
not match with those in the 1000 Genomes Project; (iv) 
excluded duplicated SNPs; (v) filtered out palindromic 
SNPs containing the same bases; (vi) kept only common 
SNPs (MAF > 0.01 in each population) which were also 
included within the 1000 Genomes Project and shared 
between the EAS and EUR GWASs.

Here, MAF was calculated with genotypes of EAS 
(N = 504) or EUR (N = 503) individuals in the 1000 
Genomes Project if missing in the original summary 
statistics data; the threshold value of 0.01 for MAF was 
selected as it was widely used in summary statistics-
based studies [12, 30, 69]. We further aligned the effect 
allele of all remaining SNPs for each trait between the 
two populations.

Estimation of heritability and cross-trait genetic 
correlation in the same population
We first employed LDSC to estimate SNP-based heri-
tability for each trait separately in the two populations 
[30]. The LDSC software (version v1.0.1) was down-
loaded from https://github.com/bulik/ldsc and the 
analysis was conducted with default parameter settings. 
The LD score was calculated with genotypes of SNPs 
(MAF > 0.01 and the P value of Hardy Weinberg equilib-
rium test > 1.0 × 10− 5) with a 10  Mb window on EAS or 

EUR individuals in the 1000 Genomes Project. Then, the 
LD score of SNP was regressed on the square of Z-statis-
tic of the analyzed trait, with the regression slope offer-
ing an unbiased estimate for heritability. Besides quality 
control procedures described above, we here further 
removed SNPs located within the major histocompatibil-
ity complex region (chr6: 28.5 ~ 33.5  Mb) because of its 
complicated structure which was often difficult to esti-
mate accurately from an external reference panel [30, 70]. 
Relying only on summary statistics and LD scores, LDSC 
can be also applied to calculate the cross-trait genetic 
correlation in the same population [69].

Estimation of trans-ethnic genetic correlation across 
populations
To evaluate genetic similarity and diversity for these traits 
across populations, we calculate the global trans-ethnic 
genetic correlation (ρg) via popcorn [12]. Conceptually, 
ρg is defined as the correlation between SNP effect sizes 
of the trait in various ancestral groups to measure the 
extent to which the same SNP exhibits the same or simi-
lar impact on phenotypic variation [12, 25, 26]. Meth-
odologically, popcorn was proposed from the Bayesian 
perspective by assuming effect sizes of SNPs following an 
infinitesimal model [71], and can be considered as a natu-
ral trans-ethnic extension of LDSC. The trans-ethnic LD 
score of each SNP was downloaded from https://github.
com/brielin/popcorn, which was calculated with geno-
types of EAS or EUR individuals in the 1000 Genomes 
Project between the focal SNP and all the flanking ones 
within a 10  Mb window. To obtain an unbiased esti-
mate of trans-ethnic genetic correlation, we implement 
an unbounded estimation algorithm in popcorn, which 
likely leads to an estimate less than − 1 or greater than 1.

Identification of associated SNPs and shared genetic 
overlap across populations
Conditional false discovery rate and conjunction conditional 
false discovery rate
From the statistical perspective, we find that the discov-
ery of trans-ethnic genetic overlap can be viewed as the 
similar principle of detecting pleiotropic associations for 
genetically correlated traits in one population. Over the 
past few years, many novel methods have been developed 
to identify pleiotropy [72–74]. Among those, cFDR is a 
novel method that utilizes pleiotropy to identify genetic 
overlap and can be considered as an innovative expan-
sion of the classical FDR for a single trait in one popu-
lation to the same trait in trans-ethnic cases [27, 28]. By 
integrating association results from multiple traits, cFDR 
can offer important sights into trans-ethnic genetic over-
lap and increase power to identify less significant associa-
tion signals.

https://github.com/bulik/ldsc
https://github.com/brielin/popcorn
https://github.com/brielin/popcorn
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In our application context, the null hypothesis of FDR 
is no association between a SNP and the trait under 
investigation in one population. Following the definition 
and principle of FDR, cFDR can be logically described 
as the likelihood that a SNP is null for the trait in one 
population based on posterior probability, given that 
the observed P values for the trait are below a pre-
determined threshold in both populations. Formally, 
with two sets of P values as input, cFDR is calculated as 
cFDR1|2=Prob(H (1)

0 | P1 < p1, P2 < p2), where p1 and p2 are 
the observed P values of a particular SNP for the trait in 
the two populations, respectively; and H (1)

0  denotes the 
null hypothesis indicating there does not exist an associa-
tion between the SNP and the trait in the first population. 
cFDR is efficiently estimated with an empirical Bayesian 
manner that was applicable for computing the local FDR 
[75].

As the principal and conditional positions for the trait 
in cFDR described above are exchangeable between 
the populations, cFDR2|1 is defined in a similar way. 
Therefore, ccFDR for identifying shared SNPs is simply 
expressed as ccFDR1|2=max(cFDR1|2, cFDR2|1), which is 
defined as the probability that a particular SNP has a false 
positive association with the trait in the two populations 
given the observed P values. Finally, SNPs with ccFDR 
less than a given significance threshold can be prioritized 
to be population-common SNPs. Although the tradi-
tional meta-analysis is also often applied in trans-ethic 
association studies [76–81]; however, the association dis-
covered by meta-analysis cannot certainly suggest trans-
ethic genetic overlap because such association might be 
only present in one special population.

Because cFDR and ccFDR are constructed for relatively 
independent SNPs, to generate uncorrelated SNPs, fol-
lowing prior work [82] we applied the LD pruning (the 
width of SNP window = 50 and r2 = 0.1) in PLINK with 
genotypes of EAS or EUR individuals separately in the 
1000 Genomes Project as the reference panel for LD cal-
culation, and then combined the two sets of SNPs avail-
able from both populations (Table S6). In addition, based 
on findings observed in other studies [73, 74], genetic/
phenotypic correlation between traits can result in 
inflated test statistics. Therefore, to minimize false dis-
covery in our cFDR analysis, we further generated uncor-
related Z-statistics for every trait across populations by 
multiplying them by the inverse of a correlation matrix, 
which can be easily calculated in terms of the two statis-
tics of null SNPs (e.g., SNPs with P > 10− 4) [72, 83]. This 
decorrelation strategy maximizes the transformed test 
statistics and the original ones [84]; therefore, it has the 
minimal influence on association identification. These 
uncorrelated Z-statistics were ultimately transformed 
into two-sided P values for the cFDR analysis based on 
normal approximation.

Our simulation studies already demonstrated that the 
cFDR method could maintain well-calibrated control of 
FDR at the given level and behaved better when identify-
ing population-common trait-associated SNPs compared 
to the naïve minimum P-value method (Supplement 
notes and Figures S7-S8).

Various types of SNPs and four-group model
Relying on cFDR and ccFDR, for each trait we could 
divide all the analyzed SNPs into four incompatible 
groups: (i) not associated with the trait in neither popula-
tion (i.e., null SNPs); (ii) only associated with the trait in 
the EAS population but not in the EUR population (i.e., 
EAS-specific associated SNPs); (iii) only associated with 
the trait in the EUR population but not in the EAS popu-
lation (i.e., EUR-specific associated SNPs); (iv) associated 
with the trait in both the two populations (i.e., popula-
tion-common associated SNPs).

To measure the degree of genetic components shared 
by the same trait across the populations, we further 
applied the four-group model [85] which examined SNPs 
in the four groups mentioned above. This model aims 
to estimate the proportions of SNPs in each group, and 
employs the LRT method to assess the statistical sig-
nificance for overall trans-ethnic genetic overlap. Sta-
tistically, the four-group model assumes that P values of 
null SNPs (not associated with the trait in neither popu-
lations) follow the uniform distribution and P values of 
non-null SNPs (associated with the trait at least in one 
population) follow the Beta distribution.

Genetic correlation and heterogeneity of SNPs between 
the two populations
Marginal genetic correlation across populations
For every trait we calculated the marginal genetic corre-
lation (rm) of SNP effect sizes in each of the four groups 
using a recently proposed method called MAGIC [25]. 
Compared to the traditional Pearson’s correlation, which 
often underestimates the marginal genetic correla-
tion thus leads to the so-called correlation attenuation 
because of failing to take the estimation error of effect 
sizes into account [25, 86], MAGIC has the advantage of 
generating unbiased correlation estimation by account-
ing for the uncertainty under the framework of measure-
ment error model [87].

Linear regression for SNP effect sizes
We also carried out a simple linear model without the 
intercept term for only population-common associated 
SNPs of each trait by regressing effect sizes of SNPs in 
one population on those in another population. The 
slope of the linear regression model provides an indica-
tor for the relative magnitude of effect sizes for shared 
trait-associated SNPs between the two populations. For 
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common associated SNPs, we examined the heterogene-
ity in genetic effect of SNPs on the trait across EAS and 
EUR populations via Cochran’s Q test in the R metafor 
package.

Characteristics of associated SNPs between EAS and EUR 
populations
Patterns for LD, MAF, and Wright’s fixation index
After detecting common associations, we wondered 
whether there exist different patterns of LD and MAF 
for trait-associated SNPs compared to those null ones. 
To this aim, we first obtained the two LD scores for every 
SNP in the four groups based on genotypes available 
from EAS or EUR individuals in the 1000 Genomes Proj-
ect, and then calculated their LDCV across the popula-
tions. Here, coefficient of variation, rather than variance, 
was utilized because SNPs with higher LD scores tended 
to have greater variation between populations [7, 24]. 
In a similar way, we calculated MAFCV for each SNP 
between the two populations to evaluate how MAF varies 
between populations.

We further evaluated whether an identified trait-asso-
ciated SNP had been under natural selection. If this was 
the case, then a substantial between-population differen-
tiation would be observed in the allele frequency [24, 88]. 
To this aim, we applied the Wright’s fixation index (Fst) to 
evaluate such an allele frequency diversity across popula-
tions under natural selection [24, 88, 89], and calculated 
Fst of each SNP in the four groups for every trait with 
genotypes available from EAS and EUR individuals in the 
1000 Genomes Project using PLINK.

To examine LDCV, MAFCV, and Fst in the four groups, 
we carried out the Kruskal test for each trait, with the 
resulting P values being FDR corrected to account for 
multiple testing using the Benjamini-Hochberg proce-
dure. We also performed a paired test to compare the 
average of LDCV, MAFCV, and Fst across the traits while 
simply ignoring the uncertainty of the estimated average 
in each group.

Partial and overall genetic risk score analysis
To further demonstrate the direction of genetic differen-
tiation, for each trait we conducted a GRS analysis [29]. 
The calculated GRS in part measures the stratification of 
the whole population based on estimates of individual’s 
genetic susceptibility. In our analysis the GRS of a given 
individual was simply computed as GRS=

∑J
j Gjβ̂j/J

, where J was the number of SNPs used and G rep-
resented the genotype (coded as 0, 1, or 2) available 
from the EAS or EUR individuals in the 1000 Genomes 
Project. For binary phenotypes, β̂  was the original 
marginal SNP effect size; whereas, for the compat-
ibility across populations, for continuous phenotypes 

we re-scaled β̂  based on Z-statistic [90]; that is, 
β̂new = Z/

√
2 × MAF × (1 − MAF) × samplesize + Z2 .

For each pair of traits under analysis, three types of 
GRS were generated using three distinct sets of SNPs 
(Table 2), including population-specific loci (J = f10 or f01), 
population-common loci (J = f11) and population-asso-
ciated loci (J = f10 + f11 or f01 + f11). For the convenience of 
description, we referred to the first two GRSs as partial 
GRS, while the third one as overall GRS.

Exploring the influence of sample size difference
We finally attempted to investigate whether the sample 
size difference could influence our findings with regards 
to genetic similarity and diversity of traits between the 
EAS and EUR populations. First, after obtaining the heri-
tability estimate and its standard error for a given trait in 
the two populations (denoted by ĥ2

1 and ĥ2
2,, se1 and se2, 

respectively), we studied the influence of sample sizes of 
traits on the estimated heritability and its standard error.

Second, to assess the impact of sample size on the 
trans-ethnic diversity of estimated heritability, we 
employed NCV to measure the difference of sample sizes, 
and examined its relation with the coefficient of variation 
of heritability, the estimated slope of effect sizes for pop-
ulation-common SNPs and the proportion of population-
common SNPs with heterogeneous effects.

Third, we implemented an approximation normal test 
to examine the significance of the difference in the esti-
mated heritability between the two populations by cal-
culating u=(ĥ2

1 − ĥ2
2)/(se2

1+se2
2)

−1/2. We obtained the P 
value of u using the standard normal distribution as the 
null distribution, with the issue of multiple testing cor-
rected via by the Benjamini-Hochberg method. By doing 
this, we explicitly took the difference of sample sizes in 
traits into account by modeling its standard error when 
comparing heritability.
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