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Abstract 

Background Systematic description of library quality and sequencing performance of single-cell RNA sequencing 
(scRNA-seq) data is imperative for subsequent downstream modules, including re-pooling libraries. While several 
packages have been developed to visualise quality control (QC) metrics for scRNA-seq data, they do not include 
expression-based QC to discriminate between true variation and background noise.

Results We present scQCEA (acronym of the single-cell RNA sequencing Quality Control and Enrichment Analysis), 
an R package to generate reports of process optimisation metrics for comparing sets of samples and visual evalu-
ation of quality scores. scQCEA can import data from 10X or other single-cell platforms and includes functions 
for generating an interactive report of QC metrics for multi-omics data. In addition, scQCEA provides automated cell 
type annotation on scRNA-seq data using differential gene expression patterns for expression-based quality control. 
We provide a repository of reference gene sets, including 2348 marker genes, which are exclusively expressed in 95 
human and mouse cell types.

Using scRNA-seq data from 56 gene expressions and V(D)J T cell replicates, we show how scQCEA can be applied 
for the visual evaluation of quality scores for sets of samples. In addition, we use the summary of QC measures 
from 342 human and mouse shallow-sequenced gene expression profiles to specify optimal sequencing require-
ments to run a cell-type enrichment analysis function.

Conclusions The open-source R tool will allow examining biases and outliers over biological and technical meas-
ures, and objective selection of optimal cluster numbers before downstream analysis. scQCEA is available at https:// 
isarn assiri. github. io/ scQCEA/ as an R package. Full documentation, including an example, is provided on the package 
website.
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Background
Quality control is a critical step to identify biases during 
sequencing or alignment for single-cell RNA sequencing 
data (scRNA-seq) and can be a tedious task to evaluate 
multiple samples separately [1]. We present the scQCEA 
tool for generating interactive reports of process opti-
misation metrics and visual evaluation of quality scores 
for sets of samples. In addition, expression-based quality 
control using cell-type enrichment analysis is integrated 
into the scQCEA workflow. These are done in a single R 
software environment and easy to use for those who pos-
sess little or no programming language skills. A step-by-
step workflow vignette demonstrates the detailed use of 
scQCEA (https:// isarn assiri. github. io/ scQCEA/).

The scQCEA workflow assumes that raw count data, 
a summary of the alignment and assignment of reads 
to cells and genes have been created by a tool for data 
pre-processing, such as CellRanger [2]. The steps in the 
workflow include (1) generating a description of the com-
putational experiment per application (CITE, GEX, VDJ, 
HTO-CMO, mxATAC, ATAC), (2) visualisation of meta-
data document including information about the batches 
for data loads, (3) visualisation of quality control meas-
ures, separated by samples, (4) visualisation of cell type 
annotation on scRNA-seq profiles for expression-based 

quality control evaluation (Fig.  1). To demonstrate the 
utility of scQCEA, we apply the workflow to the sixteen 
gene expression profiles of eight patients with meta-
static melanoma, prepared from pre- and post-treatment 
experimental batches [3].

Implementation
scQCEA (acronym of the single-cell RNA sequencing 
Quality Control and Enrichment Analysis) is written in 
R, combining Shiny and Markdown. scQCEA creates an 
interactive QC report in one HTML file, which includes 
four sections: experimental workflow, data processing 
workflow, samples information and QC metrics, data 
analysis and quality control (Fig. 1). “Experimental work-
flow” describes the scRNA-seq transcriptome processing 
and sequencing platform. “Data processing workflow” 
presents an analysis pipeline to process data, includ-
ing aligning reads, generating feature-barcode matrices 
and other secondary analyses. The content of the “Data 
processing workflow” section is automatically adjusted 
based on the type of application(s) and the “Library 
Type” column in the metadata. The “Samples informa-
tion and QC metrics” section provides tables of vari-
ous process optimisation metrics for comparing sets of 
samples per application. The “Data analysis and quality 

Fig. 1 The outline of scQCEA. The scQCEA workflow is developed in R and can import datasets generated from pre-processing tools. The workflow 
incorporates various packages to perform cell-type enrichment analysis from gene sets and generates an interactive QC report to compare multiple 
sample sets over QC metrics. See text for details

https://isarnassiri.github.io/scQCEA/
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control” section presents a projection of transcription-
ally and functionally distinct clusters, highlighted by cell 
type group, including UMAP and t-SNE plots. Diagnos-
tic plots provide technical features, such as inflection 
or knee points in the distribution of non-duplicate read 
counts inside the cell barcodes. Cells under the threshold 
provided by the Cell Ranger selection algorithm [4] are 
flagged and filtered out as empty droplets, and cells above 
the threshold do not enrich with any reference gene set 
to introduce as background noise. In addition, the cells 
introduced as noise by expression-based quality control 
(cell-type enrichment analysis) are projected onto quan-
tification and UMAP plots.

The easiest way to generate an interactive summary QC 
report is to run a function from the RStudio called Gen-
erateInteractiveQCReport(), which utilises application-
specific templates to generate an HTML report with the 
visualisations of QC metrics (Fig. 2). The required inputs 
are a gene-cell count matrix, feature-barcode matrices, 
and tSNE and UMAP projections from 10X CellRanger 
count. By running the function, all dependency pack-
ages automatically will be downloaded from CRAN-like 
repositories and installed. An interactive QC report 
automatically will be generated in one HTML file. Full 
documentation, including an example, is provided on the 
package website (https:// isarn assiri. github. io/ scQCEA/).

Cell type enrichment analysis from gene sets
Cell type annotation on scRNA-seq data is a pre-step 
for generating an interactive QC report with scQCEA. 
This step requires some bioinformatics efforts, but scQ-
CEA provides a function called CellTypeEnrichment() 

function, for automatic cell type identification and visu-
alisation on the gene-by-cell count matrix.

We use the AUCell algorithm to enrich expressed 
genes for each cell individually, and gene sets exclusively 
expressed in each cell type [5]. It applies the area under 
the curve (AUC) and bimodal distribution to separate the 
distributions and evaluate the strength of enrichment of 
each reference cell with genes in an indicated cell. The 
AUC scores across all the cells represent the relative 
expression of the signature, therefore, we do not nor-
malise the data before enrichment analysis. We refer the 
reader to [5] for evaluation of performance.

The outputs of the CellTypeEnrichment() function 
include the visualisation of transcriptionally and func-
tionally distinct clusters, highlighted by cell type group 
using Uniform Manifold Approximation and Projection 
(UMAP) and t-stochastic neighbour embedding (t-SNE) 
plots. UMAP, compared to t-SNE, constructs a high-
dimensional graph representation of the data, includ-
ing clusters that are as structurally similar as possible. 
In addition, the CellTypeEnrichment() function gener-
ates Heatmap, Quantification Summary Statistics, and 
Barcode Rank plots. Heatmap plot visualises cells show-
ing enriched expressed genes in each cell type group. 
The Quantification Summary Statistics plot presents 
the distribution of total UMI versus the total number of 
detected genes. The Barcode Rank plot shows the distri-
bution of non-duplicate reads, with a mapping quality of 
at least 30 per barcode associated with cells. The refined 
barcode rank plots are also created to visualise the 
selected cells using cell-type specific enrichment analysis 
to discriminate between true variation and background 
noise (Fig. 3).

Fig. 2 Generation of interactive HTML report for visual evaluation and comparison of multiple sample sets, over comprehensive technical 
and biological QC metrics using functions available in the scQCEA package. The InteractiveQCReport() function applies generated data 
by the CellTypeEnrichment() and other QC tools to create an interactive HTML report. The report contains figures visualising tSNE, UMAP, heatmap, 
quantification summary statistics, knee plots, and tables for sample sets. Examples of different sections of the report are shown

https://isarnassiri.github.io/scQCEA/
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The required inputs are a gene-cell count matrix, fea-
ture-barcode matrices, tSNE and UMAP projections 
in the format provided by 10X CellRanger count, and a 
repository of reference gene sets. We used the Human 
Protein Atlas database (version 22.0) to generate a 
repository of reference gene sets, which are exclusively 
expressed in each cell type [6]. The repository includes 
95 pre-defined reference gene sets, and 2348 marker 
genes, and is available at https:// github. com/ isarn assiri/ 
scQCEA/ tree/ Repos itory- of- Cell- Type- Speci fic- Gene- 
Sets. The repository of reference genes covers human and 
mouse genes, with the possibility of expansion to other 
species. Alternatively, users can apply gene sets associ-
ated with a biological process of interest (e.g., poorly 
differentiated cancer cells and stem cells) and perform 
enrichment analysis. The existing methods for the prepa-
ration of reference gene sets for rare or undergoing devel-
opment cell types can be broadly categorised into two 
groups:

(1) Knowledge-based method, that marker gene set 
is obtained from manual literature search or data-
bases [7]. For instance, induced pluripotent stem 
cells (iPSCs) has four main sub-cell types (HIC2 + , 
ATF2 + , BRF2 + and CEBPG +). The transcrip-
tion factors with high relative activities specific to 
iPSCs subtypes (e.g., HMGB2, NR3C1, ATF2 for 
ATF2 + subtype) can be used as a reference gene set 
for the CellTypeEnrichment() function.

(2) The second method involves three steps. First, we 
extract modules of co-expressed genes and tran-
scription factors (TFs). Next, a transcription factor 
motif enrichment analysis is applied to prune each 
module and retain genes that contain sequence 
motifs related to TFs in the modules [5]. Lastly, the 
set of respective TFs and related co-expressed genes 
are used as back-end data (reference gene set) for a 
cell type enrichment tool (e.g., CellTypeEnrichment 
function).
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Fig. 3 Discriminate between cells and background noise using cell-type enrichment analysis. a The knee plot is used for thresholding and selecting 
high-quality cells located on the left-hand side of the plot. In the barcode rank standard knee plot (SKP), the y-axis shows the value used to call 
cells, and the x-axis is the number of barcodes below that value. In the barcode rank expression-based plot (EB), cell-type specific enrichment 
analysis was applied to discriminate between true variation and background noise. As a result, we found 1760 cells enriched with different cell 
types. b, c Knee, quantification, and UMAP plots show the location of cells in relative complement (SKP-EB) of cells in SKP with respect to EB. To 
ensure that background red-coloured cells appear on top, we separate the points into different layers and plot the red points after the blue points. 
d Correlation analysis of the number of cells per sample and number of detected cells as background noise (SKP-EB) using cell-type enrichment 
analysis
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Results
We used the scRNA-seq profile of eight patients with 
metastatic melanoma, which includes a total of 48,768 
cells in 48 replicates from the same set of cells, pre-
pared from treatment with immune checkpoint blockade 
experimental batches [3]. Each batch had 24 replicates 
and aggregated into sixteen single feature-barcode matri-
ces (8 pre- and 8 post-treatment). Supplementary File 
S1 is the output generated by scQCEA. In total, 33,325 
cells passed quality control (Supplementary File S2). The 
interactive report of quality control metrics and image 
QC of profiles allowed visual evaluation and comparison 
of comprehensive QC metrics. The performance of the 
cell type annotation function was evaluated with existing 
labels for T cells and monocytes [3]. In the original paper, 
sub-setting was performed to select T cells expressing 
CD8A, CD8B, and CD3D, and monocytes expressing 
CD14. Further sub-setting excluded CD14 cells express-
ing CD3D and CD3E, CD3G, CD8E and CD19, and T 
cells expressing CD14 and CD19 [3]. The results suggest 
that the cell type enrichment analysis captures the main 
clusters across cells, and samples share similar cellular 
compositions in agreement with existing labels.

In the next step, we used a sample whose knee plot 
was smooth with no cliff or knee, likely due to a large 
amount of ambient RNA in the background and poor 
wetting failure (Fig.  3a). The cell-type specific enrich-
ment analysis was applied to discriminate between true 
variation and background noise. As a result, we found 
that 62 cells did not enrich with any cell type (Fig.  3b). 
The location of detected non-relevant cells on the knee 
plot showed aggregation after inflection point. It means 

filtering out non-relevant cells can improve the accuracy 
of cell calling, especially for samples with wetting failure. 
We observed ambient RNA profiles detected by enrich-
ment analysis, mainly enriched in the bottom-left corner 
of the quantification plot (Fig. 3c). UMAP projection plot 
did not show an accumulation of ambient RNA profiles 
for specific clusters or regions (Fig.  3c). We compared 
the expression profile of these 62 cells versus the ambi-
ent RNA profile estimated using small barcodes by  the 
EmptyDrops algorithm which did not flag them as empty 
droplets [8]. Scran package was applied to detect dou-
blets/multiplets, and 29 cells scored as potential doublets 
(score > 1.5 marked as doublets) [9]. Therefore, the 62 
cells cannot be some novel cell types, and by removing 
them, we do not lose potential novel biological findings. 
Further exploration using 286 single-cell gene expression 
profiles from humans and mice similarly did not show a 
significant association between the number of cells per 
sample and the number of detected cells as background 
noise using cell-type enrichment analysis (Supplemen-
tary File S1) (Fig.  3d). These findings confirm that con-
founding variables, such as cell detection rate, do not 
affect the application of cell-type specific enrichment 
analysis to discriminate between cells and expression 
activity associated with ambient RNA.

We use the summary of QC measures from 342 shal-
low sequenced gene expression profiles from humans 
and mice to specify the optimal sequencing saturation 
required to run the CellTypeEnrichment() function 
(Fig. 4a). The results showed that sequencing saturation 
may influence the ability of cell type enrichment analysis 
using scQCEA, and the estimated minimum sequencing 

Fig. 4 a QC metrics generated by the Cell Ranger tool for 342 human and mouse gene expression profiles. The CellTypeEnrichment() function 
could successfully generate results for samples with 11.3% sequencing saturation (b) and 15.5% fraction reads in cells (c)
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saturation and a fraction of reads in cells required for 
this tool to function are 11.3% and 15.5%, respectively 
(Fig. 4b-c). The recommended number of cells per sample 
and reads per cell for standard pooled scRNA-seq work-
flows would provide optimal input for the CellTypeEn-
richment() function (50,000 reads per cell to have about 
1,200 to 4,000 genes per cell).

Comparison to other tools
Several other tools that can perform quality control have 
been introduced. While many formats are available to 
store the results of scRNA-seq analysis (e.g., h5ad), we 
use CSV as a generic data transfer format for required 
inputs to run scQCEA. Although other packages can gen-
erate interactive reports, including general QC metrics, 
scQCEA includes visualisation of different approaches 
(e.g., CITE-SEQ, VDJ, mxATAC). Furthermore, no other 
toolkits currently use cell-type enrichment analysis to 
allow expression-based quality control of sets of samples 
(Table 1). scQCEA can be applied to analyse and report 
both single cell 3’ and 5’ gene expression libraries, as 
the two assays are similar but capture different ends of 
transcripts. scQCEA generates a section in the interac-
tive report, called GML (Grouped Multiple Libraries per 
sample), to present the aggregated QC measures for sev-
eral sequencing runs of the same library (e.g., increase 
read depth by resequencing the same library).scQCEA 
visualises QC metrics in standardised HTML reports and 
stores result in zip format, which facilitates archiving the 
reports and keeping track of experimental and computa-
tional experiments. For a large data set including 56 gene 
expressions and 16 VDJ profiles, the run time of generat-
ing an interactive QC report using the GenerateInterac-
tiveQCReport() function is 21.03 s.

We compare the run time of the CellTypeEnrichment() 
function with the ScType tool, as currently the fastest 
unsupervised method for cell-type enrichment analy-
sis [7]. For this comparison, we used a dataset of 2,700 
single cells from Peripheral Blood Mononuclear Cells 
(PBMCs) available from the ScType package website [7]. 
The results of the run test showed 27.57 and 27.47 s for 
scQCEA and ScType, respectively (2.6 GHz 6-Core Intel 
Core i7, 16 GB RAM, MacOS).

Discussion
scRNA-seq is increasingly used to study transcriptom-
ics at high resolution, and the evaluation of QC metrics 
for large-scale projects is not a straightforward process. 
Here, we present an R package, scQCEA, that provides 
a convenient workflow to present QC measures in the 
form of interactive tables and graphical plots for differ-
ent scRNA-seq experiments. scQCEA facilitates vis-
ual evaluation of base quality, capture-efficiency, and 

expression-based quality metrics. In addition, the inter-
active QC report is particularly useful to share or store 
the documented history of experiments and a summary 
of QC, which will improve the reproducibility of analysis.

Although other packages like scRNABatchQC [14] and 
SCTK-QC [10] have been introduced to simplify the pro-
cess of generating and visualising varieties of QC metrics, 
scQCEA provides a convenient workflow to generate an 
interactive report for different scRNA-seq experiments 
and visual evaluation of sets of samples. In addition, scQ-
CEA facilitates the objective optimal cluster numbers 
selection using the enrichment of highly expressed gene 
sets in each cell. A general approach for cluster annota-
tion consists of a gene set enrichment analysis by using 
the marker genes defining each cluster [21]. For example, 
SCSA [22] uses reference lists of markers from multiple 
sources to annotate and interpret scRNA-seq data. In 
contrast, reference-based tools such as ScType [7] anno-
tate cells by comparing new data with existing training/
reference collection of cell types. These methods success-
fully project cells onto cell types and compare multiple 
QC metrics, which gives valuable hints about technical 
and biological features. However, these cell annotation 
methods aggregate whole transcriptome gene expression 
data and introduce technical variability, which decreases 
the power to find cell–cell differences [21]. On the other 
hand, estimating the optimal and biologically meaningful 
number of clusters from the data depends on the user’s 
subjective choice [23]. Problems such as inconsistency 
among reference or training data sets still exist in clas-
sification methods for cell-type identification [22]. To 
address these issues, scQCEA by evaluating cells individ-
ually to score active cell type signature (set of genes with 
exclusive elevated expression in an indicated cell type) 
increases the power to find enrichments, independent of 
the clustering method and training dataset [5]. In addi-
tion, we applied cell-type specific enrichment analysis 
to discriminate between true variation and background 
noise. This approach is especially useful for experiments 
in which the knee plot works poorly due to a lack of clear 
knee points for thresholding high-quality cells (e.g., wet-
ting failure) [24, 25].

Conclusions
In summary, the scQCEA package, with two functions 
for cell-type enrichment analysis and generating an 
interactive QC report, provides infrastructure for differ-
ent applications, including the delivery of high-quality 
genomic services.

Abbreviations
ATAC-seq  Assay for transposase-accessible chromatin using sequencing
CITE-seq  Cellular indexing of transcriptomes and epitopes by sequencing



Page 8 of 9Nassiri et al. BMC Genomics          (2023) 24:381 

EB  Barcode rank expression-based plot
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