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Abstract 

Background  Intramuscular fat (IMF) is closely related to the tenderness, marbling, juiciness, and flavor of meat. We 
used a combined transcriptome and metabolome analysis to investigate the molecular mechanisms underlying phe-
notypic variation among Qinchuan cattle.

Results  The IMF content was relatively high in the meat of Qinchuan cattle bulls and differed among muscle loca-
tions, namely the high rib (15.86%), ribeye (14%), striploin (10.44%), and tenderloin (8.67%). CCDC80 and the HOX gene 
cluster may regulate intramuscular adipose tissue deposition. Moreover, erucic acid (EA) was found to be the main 
metabolite in Qinchuan beef cattle, with a high concentration in IMF. The deposition of IMF could be regulated by 
the metabolic pathway for unsaturated fatty acids involving EA and the ACOX3, HACD2, and SCD5 genes. In addition, 
differentially expressed genes and metabolites were enriched in three major KEGG pathways: purine metabolism, 
pyrimidine metabolism, and the metabolism of glycine, serine, and threonine.

Conclusions  We identified a significant metabolite, EA, with variation in IMF. Its closely related genes, ACOX3, HACD2, 
and SCD5, co-regulate the metabolism of unsaturated fatty acids, ultimately affecting the accumulation of intra-
muscular adipose tissue in Qinchuan cattle. Consequently, Qinchuan cattle are an elite cultivar for high-quality beef 
production and have great potential for breeding.
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Background
Cattle provide high-quality protein and therefore play a 
vital role in food and nutrition security. There is demand 
for high-quality beef, irrespective of price, and the intra-
muscular fat (IMF) content is one of the prominent indi-
cators of meat quality [1]. Recent research has shown 

that the IMF content is strongly correlated with fatty 
acid types and contents [2]. IMF is a polygenic trait. Joint 
multi-omics analyses of the phenome, transcriptome, 
and metabolome have recently been utilized to explore 
the molecular mechanisms underlying complex traits [3]. 
Myristic acid, margaric acid, and trans-monounsaturated 
fatty acid, for example, are associated with IMF levels [4]. 
Hexanal and 1-octen-3-ol were identified as the major 
metabolites of volatile organic compounds in local Chi-
nese chicken varieties [5]. A difference in odor between 
Hu sheep with low and high IMF contents may be related 
to the fatty acid profiles of triglycerides and diglycer-
ides in the psoas major muscles [6]. Functional genes 
(PNPLA3, PLIN1, PRKG1, TRIB3, and CREB5) and dif-
ferential metabolites (arachidonic acid and triglyceride) 
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involved in lipid metabolism were associated with the 
IMF content in Enshi black pigs [3]. These omics analyses 
contribute to our understanding of the complex regula-
tory mechanism of muscle IMF.

The IMF content accounts for 15% of the variation in 
beef palatability [7]. Increasing the IMF content has 
been shown to improve the palatability of Hanwoo beef, 
thereby improving sensory sensitivity, flavor, and juici-
ness [8]. Lipid deposition in animals is primarily influ-
enced by the breed and feed [9]. However, the location 
and function of muscle can also influence the IMF con-
tent [10]. In 18-month-old Alentejana and Barrosã cat-
tle, the IMF content in semitendinosus muscle was 
lower than that in longissimus lumborum muscle [10]. At 
24 months of age, the IMF content of longissimus muscle 
in Japanese Black steers (23.3%) was much higher than 
those of European bulls (Holstein–Friesian 4.7%, Ger-
man Angus 4.4%, Belgian Blue 0.6%) [11]. At the age of 
26 months, the IMF content of longissimus muscle in Jap-
anese Black steers (34.3%) was significantly higher than 
that in Holstein steers (20.4%) [12].

Qinchuan cattle is a representative indigenous Chi-
nese breed, characterized by delicious meat with a 
unique flavor. Under the influence of traditional Chi-
nese food culture, there is a preference for local yellow 
beef for cooking, particularly for typical dishes, braised 
beef, and potatoes. Despite the large number of studies 
of IMF deposition, differences in IMF contents between 
muscle locations have not been determined. Therefore, 
in the present research, Qinchuan cattle were used as 
research subjects to evaluate variation in IMF contents 
and the underlying molecular mechanisms. In particular, 
four portions of meat were taken to determine the IMF 
content, namely tenderloin (psoas major muscle), strip-
loin (longissimus lumborum muscle), high rib (chuck), 
and ribeye. mRNA and metabolite sequencing were 
used to identify differences among the four meat types 
with differential IMF contents. The aim of this study was 
to investigate biomarkers of IMF and the relationship 
between IMF and metabolite and mRNA levels in meat. 
Analyses of the molecular mechanism underlying IMF 
deposition in various meat types are of great value for the 
development and utilization of cattle resources.

The results of the present study were similar to those of 
these previous studies.

Results
Phenotypic variation in the IMF content among muscle 
locations
The IMF content was evaluated in meat samples from 
four muscle locations of four 24-month-old bulls. There 
were four groups: tenderloin (L group), striploin (W 
group), high rib (S group), and ribeye (Y group). As 

shown in a histogram in Fig. 1A, there were statistically 
significant differences among groups (P < 0.01). The IMF 
contents from high to low were 15.86 ± 0.48% in the high 
rib, 14 ± 0.76% in the ribeye, 10.44 ± 0.38% in the strip-
loin, and 8.67 ± 0.48% in the tenderloin. These results 
show that Qinchuan cattle is an informative resource for 
the production of meat with a high IMF content.

DEGs and analysis of transcriptome data
The difference in IMF deposition between S and the 
other three muscle types was further explored at the 
molecular level. Transcriptome sequencing was used to 
filter DEGs related to the IMF content in various mus-
cle locations of Qinchuan cattle. An RNA-seq analy-
sis generated 98.58  Gb of clean data with Q30 greater 
than 90.75% for 15 samples (Table S1). The mapping 
ratios for clean reads were between 95.51% and 97.57% 
(Table S2). Changes in gene expression were evaluated 
based on FPKM values in various samples (Table S3). A 
principal components analysis (PCA) showed that the 
samples could be roughly divided into four groups, indi-
cating that samples within each group had similar gene 
expression patterns (Fig. S1C). Pairwise comparisons of 
the four groups revealed only a single common DEG, 
CCDC80 (Fig.  1B). There were 3031 DEGs in S vs. L, 
including 1901 up-regulated DEGs and 1130 down-reg-
ulated genes (Table S4, Fig. 1C and D), 1747 DEGs in S 
vs. W group, including 580 up-regulated genes and 1167 
down-regulated genes (Table S5, Fig. 1E and F), and 739 
up-regulated genes and 1393 down-regulated genes in S 
vs. Y (Table S6, Fig. 1G and H).

In a GO analysis of DEGs in S vs. L, enrichment for 58 
subcategories was detected, including 23 biological pro-
cess (BP) terms, 17 cellular component (CC) terms, and 
18 molecular function (MF) terms. In particular, 1689 
genes were related to cellular processes in BP, 1744 genes 
were annotated to the cell and cell part process in CC, 
and 1611 genes were located within the binding portion 
in MF (Table S7, Fig.  2A). A KEGG enrichment analy-
sis revealed that these DEGs were primarily involved in 
thermogenesis, cGMP − PKG, and MAPK signaling path-
ways (P < 0.05; Table S8 and Fig. 2B). In S vs. W, the DEGs 
in were also assigned to 58 subcategories, consisting of 23 
BP terms, 17 CC terms, and 18 MF terms. There were 864 
genes related to the biological regulation category in BP, 
948 genes annotated to cell and cell parts in CC, and 959 
genes associated with the binding portion in MF (Table 
S9, Fig.  2C). A KEGG enrichment analysis showed that 
the DEGs were primarily involved in the digestion and 
uptake of proteins, glycolysis/gluconeogenesis, MAPK, 
and PI3K − Akt signaling pathways (P < 0.05; Table S10 
and Fig. 2D). In S vs. Y, the DEGs were also categorized 
into 58 subcategories, consisting of 23 BP terms, 17 CC 
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terms, and 18 MF terms. Among them, 1199 genes were 
associated with cellular processes in BP, 1187 genes were 
associated with the cell and cell part process in CC, and 
959 genes were located within the binding portion in 
MF (Table S11, Fig.  2E). A KEGG enrichment analysis 
showed that DEGs were primarily involved in glycoly-
sis/gluconeogenesis, PI3K − Akt, MAPK, and the Apelin 
signaling pathway (P < 0.05; Table S12 and Fig. 2F). Based 
on these results, MAPK is a potential key signaling path-
way in IMF deposition.

DEMs and analysis of metabolome data
A qualitative metabolome analysis of 15 samples was 
performed using the LC-QTOF platform. A total of 
5,749 peaks were detected and 1,718 metabolites were 
annotated in positive and negative ion modes. In a PCA, 
PC1, PC2, and PC3 cumulatively explained 47.17% 
of the variance among groups (Fig. S1B). The within-
group Spearman correlation coefficients were close to 
1.0, suggesting that the DEM analysis method was reli-
able (Fig. S1C). In an orthogonal projections to latent 
structures-discriminant analysis (OPLS-DA) for the pair-
wise comparisons between S, W, L, and Y, Q2 values for 
all comparisons were greater than 0.75, indicating that 
the constructed model was appropriate (Fig. S1D–F). 

Metabolites were annotated against the KEGG database 
(Kyoto Encyclopedia of Genes and Genomes), HMDB 
(Human Metabolome Database), and LIPID MAPS 
(Lipid Metabolites and Pathways Strategy) (Fig. S2A–C). 
Then, DEMs were filtered based on the following crite-
ria: |log2(fold change)|≥ 1 and VIP ≥ 1. In S vs. Y, 129 
DEMs had a higher abundance in the S group than in the 
Y group, including DG (12:0/20:5(5Z,8Z,11Z,14Z,16E)-
OH (18R)/0:0) and erucic acid (EA), whereas 192 DEMs 
were significantly less abundant in group S (Fig.  3 A 
and Table S13). In W vs. S, 127 DEMs were more abun-
dant in the S group than in the W group, including EA, 
deoxycholic acid, and deoxyloganic acid, whereas 102 
DEMs were much less abundant in group W (Fig. 3 B and 
Table S14). In L vs. S, 89 DEMs were more abundant in 
the S group than in the L group, while 148 DEMs were 
much less abundant in the L group (Fig.  3 C and Table 
S15). Similarly, the heatmap also depicted the same dis-
tribution of DEMs with groups (Fig. 3D–F). In compari-
son to the W, L, and Y groups, 40 common DEMs were 
upregulated in the S group (Fig. 4A and Table S16), and 
EA, carcinine, thiostatin, and glutaminylglutamic acid 
showed the greatest difference between the two groups 
(Fig. 4B–D). Then, a KEGG enrichment analysis was uti-
lized to explore the biological mechanisms associated 

Fig. 1  Basal analysis of transcriptome and phenotype profiles for IMF (n = 4). A Comparison of IMF contents in four groups, namely tenderloin (L 
group), striploin (W group), high rib (S group), and ribeye (Y group) (**P < 0.05). B Venn diagram showing DEGs in pairwise comparisons between 
the four groups. Heatmap of expression correlations between samples: S vs. L (C), S vs. W (E), and S vs. Y (G). Volcano plots of DEGs between 
samples: S vs. L (D), S vs. W (F), and S vs. Y (H)
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with phenotypic changes. In the Y vs. S comparison, the 
majority of DEMs were involved in 42 pathways related 
to purine metabolism, pyrimidine metabolism, histidine 
metabolism, sphingolipid metabolism, and glycine, ser-
ine, and threonine metabolism (Fig. 4E and Table S17). In 
W vs. S, the majority of DEMs were significantly involved 
in 40 pathways related to histidine metabolism, protein 
digestion and absorption, pyrimidine metabolism, and 
sphingolipid metabolism (Fig.  4F and Table S18). With 
respect to L vs. S, the majority of DEMs were involved 
in 41 pathways related to purine metabolism, cysteine 
and methionine metabolism, biosynthesis of unsaturated 
fatty acids, glyoxylate and dicarboxylate metabolism, and 
protein digestion and absorption (Fig. 4G and Table S19). 
In short, the unsaturated fatty acid metabolism pathway 
involving EA was extremely likely to be related to varia-
tion in IMF deposition.

WGCNA of transcriptomics and metabolomics data
Joint metabolome-transcriptome analyses can, to 
some extent, overcome the limitations of single omics 
research, providing more details regarding the tran-
scriptional regulation of metabolic pathways. We per-
formed a dimensionality reduction analysis, weighted 
correlation network analysis (WGCNA) [13] using 
transcriptome and metabolome data. Genes and metab-
olites were partitioned into different modules, and cor-
relations between the modules were evaluated. In L vs. 
S, metabolites were clustered into 13 modules (ME) 
and genes into 28 modules (GE) (Fig.  5A). The corre-
lation coefficient between the GEpurple module and 
the MEblue module was the highest (r = 0.95, P < 0.05). 
The MEblue module contained 183 metabolites, such 
as 3’-hydroxyropivacaine and l-malic acid. The GEpur-
ple module contained 204 genes, such as ATG4B, 

Fig. 2  GO annotation analysis and KEGG pathway enrichment analysis of DEGs. Histogram of GO results for DEGs in S vs. L (A), S vs. W (C), and S vs. 
Y (E). Plot of the degree of KEGG pathway enrichment of DEGs for S vs. L (B), S vs. W (D), and S vs. Y (F). The vertical coordinate indicates the enriched 
pathway; the horizontal coordinate indicates the value of the enrichment factor (ratio of annotated DEGs to all genes in the enriched pathway)
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B3GALT6, and CACFD1 (Tables S20 and S21). In W 
vs. S, metabolites were clustered into 26 modules and 
genes into 87 modules (Fig.  5B). The correlation coef-
ficient between the GEbisque4 module and the MEy-
ellow module was the highest (r = 0.98, P < 0.05); the 
MEyellow module contained 91 metabolites, such as 
niridazole, 3-hydroxy-3-methylglutaric acid, and dihy-
droactinidiolide, and the GEbisque4 module contained 
86 genes, such as BRD2, FKBP5, and MECP2 (Tables 
S22 and S23). In L vs. S, metabolites were grouped 
into 18 modules and genes into 123 modules (Fig. 5C). 
The correlation coefficient between the GEplum4 
module and the MEturquoise module was the highest 
(r = 0.93, P < 0.05); the MEturquoise module contained 
265 metabolites, such as l-lysine, d-xylonate, and for-
myl phosphate, and the GEplum4 module contained 
86 genes, such as ACTR1B, FOXP1, and MAGOH 
(Tables S24 and S25). Regarding the Y vs. S compari-
son, a KEGG analysis revealed enrichment for several 

important biological pathways, such as the sphingolipid 
signaling pathway, glycine, serine and threonine metab-
olism, phospholipase D signaling pathway, biosynthesis 
of amino acids, and protein digestion and absorption 
(Table S28 and Fig.  5D). In W vs. S, a KEGG analysis 
revealed enrichment for various biological pathways, 
such as amino sugar and nucleotide sugar metabolism, 
nicotinate and nicotinamide metabolism, glycine, ser-
ine and threonine metabolism, glyoxylate and dicarbox-
ylate metabolism, and protein digestion and absorption 
(Table S29 and Fig. 5E). Regarding the L vs. S compari-
son, a KEGG analysis indicated enrichment for several 
essential biological pathways, such as arachidonic acid 
metabolism, protein digestion and absorption, folate 
biosynthesis, arginine and proline metabolism, and bio-
synthesis of amino acids (Table S30 and Fig. 5F). In con-
clusion, the enriched pathways associated with these 
genes and metabolites were related to unsaturated fatty 
acid metabolism and amino acid metabolism.

Fig. 3  Heatmap and volcano plots of DEMs between samples. Heatmap of expression correlations between samples: S vs. Y (A), S vs. W (B), and S 
vs. L (C). Volcano plots of DEMs between samples: S vs. Y (D), S vs. W (E), and S vs. L (F)
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Joint analysis of transcriptomics and metabolomics data
The top four DEMs were shared in three groups, includ-
ing deoxyloganic acid, deoxycholic acid, ethyl ester of 
stearic acid, and erucic acid (Table S26). Compared 
with those in other groups, the abundance of erucic acid 
was highest among all differential metabolites in the 
S group and was related to the biosynthesis of unsatu-
rated fatty acids (Fig. S2D). All gene-metabolite correla-
tions were calculated based on the Pearson correlation 
method, and screening was performed according to the 
correlation coefficient (CC) and correlation coefficient 
p-value (CCP). Values of |CC|> 0.80 and CCP < 0.05 
were selected as thresholds. The expression levels of 
the HOXA gene family (HOXA5–7, HOXA9–10), HOXC 
gene family (HOXC6, HOXC8–10), HOXD gene family 
(HOXD1, HOXD4, HOXD8–9), and MYH1, SLC27A6, 
and CACNA2D2 were higher in S than in other groups, 
suggesting that these genes have significant effects on 
the IMF phenotype with positive impacts (Fig. S2E). To 

gain insight into the relationship between genes and 
metabolites, a KEGG analysis of the co-enrichment 
of DEGs and DEMs revealed three critical pathways, 
purine metabolism (ko00230), pyrimidine metabolism 
(ko00240), and glycine, serine and threonine metabolism 
(ko00260) (Table S27).

The bioinformatics analysis showed that EA levels are 
closely related to levels of ACOX3, HACD2, and SCD5. We 
further evaluated correlations between the EA content and 
levels of ACOX3, HACD2, and SCD5 at four muscle loca-
tions. EA had the highest correlation with SCD5 (r = 0.73), 
followed by ACOX3 (r = 0.68) and HACD2 (r = 0.22) 
(Fig. 6C and E). In an analysis of gene expression during 
intramuscular adipocyte differentiation, correlations were 
detected between ACOX3 and SCD5 (r = 0.87), HACD2 
and PPARG​ (r = 0.94), and HACD2 and CEBPA (r = 0.9) 
(Fig. 6D and F). Based on the above findings, IMF deposi-
tion is associated with metabolic pathways for unsaturated 
fatty acids, including ACOX3, HACD2, and SCD5.

Fig. 4  Venn diagram, radar analysis, and KEGG pathway enrichment analysis of DEMs. A Venn diagram of up-regulated DEMs for S vs. L, S vs. W, and 
S vs. Y. Radar diagram of DEMs between samples: Y vs. S (B), W vs. S (C), and L vs. S (D). The corresponding ratio was calculated for a quantitative 
analysis of DEMs, and the top 10 metabolites with the largest absolute value of log2FC were selected for visualization in the radar chart. The degree 
of KEGG pathway enrichment is plotted for DEMs for Y vs. S (E), W vs. S (F), and L vs. S (G)
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Discussion
In general, the IMF content in the muscles of 24-month-
old Qinchuan cattle bulls was relatively high, with dif-
ferences among muscle locations as follows: high rib 
(15.86%), ribeye (14%), striploin (10.44%), and tender-
loin (8.67%). Therefore, Qinchuan cattle can be used as 
a choice breed for the production of high-grade beef and 
has potential for improvement.

In this study, many DEGs related to variation in the 
IMF content have been reported previously, such as 
PPARG​, FAS, FABP3, and ELOVL5. PPARG​ plays an 
essential role in adipose development and is an early fac-
tor involved in preadipocyte differentiation [14]. Single 
nucleotide polymorphisms (SNP) in FAS are associated 
with adipogenesis [15]. A close relationship has been 
detected between FABP3 SNPs and the intramuscular 
fat content in Qinchuan cattle [16]. ELOVL5 plays a vital 
role in the promotion of fatty acid synthesis [17, 18]. Of 
note, CCDC80 (DRO1) was up-regulated in the high-IMF 

groups compared to the low-IMF group (Fig. 6A). Com-
bined with mRNA sequencing data for intramuscular 
adipocytes on days 0, 3, 6, and 9 of differentiation in 
our laboratory [19], we found significant changes in the 
expression of CCDC80 (Fig.  6B). The third day of adi-
pocyte differentiation is a critical period, at which point 
the expression of this gene suddenly decreases, indicat-
ing that CCDC80 may play an important regulatory role 
in fat deposition. CCDC80 plays a key regulatory role in 
major physiological processes, such as weight control, 
energy metabolism, and apoptosis, and is closely linked 
to related diseases, such as obesity and insulin resist-
ance [20]. In addition, CCDC80 had been shown to be 
secreted by adipocytes and plays dual roles in adipogen-
esis via the down-regulation of Wnt/β-catenin signaling 
as well as the induction of C/EBPα and PPARγ [21]. Our 
results combined with these previous findings indicate 
CCDC80 may promote IMF deposition and may be a key 
functional gene related to fat regulation. However, the 

Fig. 5  WGCNA and KEGG pathway enrichment analyses of transcriptome and metabolome data. WGCNA of transcriptome and metabolome 
between samples: Y vs. S (A), W vs. S (B), and L vs. S (C). The gene module is indicated on the right, the bottom shows the metabolite module, and 
the left and top show the clustering dendrograms of genes and metabolites. The closer the absolute value is to 1, the higher the correlation. Red 
indicates a positive correlation, while green indicates a negative correlation, with darker colors indicating stronger correlations. Asterisks indicate a 
significant correlation between metabolites and genes; *P < 0.05, **P < 0.01, and ***P < 0.001. KEGG pathway enrichment analysis: Y vs. S (D), W vs. S 
(E), and L vs. S (F)
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molecular mechanism by which it regulates IMF traits in 
beef needs to be studied further.

Three clusters of genes positively correlated with IMF 
deposition were found in our study: HOXA, HOXC, and 
HOXD. Precise HOX gene expression has been shown 
to be crucial for embryonic patterning [22]. The HOX 
gene cluster is a highly conserved superfamily of regu-
latory genes that exists widely in higher eukaryotes and 
plays a pivotal role in the regulation of cell proliferation, 
differentiation, migration, and apoptosis [23]. HOXA1, 
HOXA4, and HOXC4 were found in human adipose tis-
sue directly, implicating them in the differentiation of 
WAT and BAT [24]. A QTL study has identified HOXA9 
[25], and its expression was lower in Holstein–Friesian 
(IMF, 0.81%) and Hereford (IMF, 1.1%) than in Limou-
sin breed (IMF, 0.53%) [26]. The differences in HOXA9 
expression could be due to differences in muscle type 
[27]. Compared to the high-IMF (S) and low-IMF (Y, 
L, and W) groups in the current work, HOXA9 gene 

expression was downregulated in this research, with 
log2FC values greater than eight (Tables S4–6), indicat-
ing that the effect of HOXA9 depends on the muscle fiber 
composition of muscle location. The accumulation of 
adipose tissue in differentiated adipocytes is associated 
with the expression of HOX genes [28]. It is likely that the 
HOX gene cluster is involved in physiologic processes in 
intramuscular adipocytes.

The types and contents of metabolites are closely linked 
to animal phenotypes. In this study, we identified four 
key upregulated metabolites in the high IMF group: EA, 
carcinine, thiostatin and glutaminylglutamic acid. EA 
(C22:1, n-9) is an unbranched fatty acid and has been 
shown to cause lipidosis of the myocardium as well as 
cardiac steatosis in animal feeding experiments [29]. 
PPARδ and its ligand EA had beneficial effects in the 
treatment of neuroectodermal tumors and Parkinson’s 
disease and EA has potential anti-cancer and neuropro-
tective effects [30]. ABCD2-knockout mice fed a high-EA 

Fig. 6  Potential molecular mechanism underlying intramuscular fat (IMF) regulation. A Levels of CCDC80 expression in four muscle locations. B 
Levels of CCDC80 expression on days 0, 3, 6, and 9 of intramuscular adipocyte differentiation. C Correlation between the EA content and ACOX3, 
HACD2, and SCD5 expression levels in four muscle locations. D Correlations between the expression levels of ACOX3, HACD2, SCD5, CCDC80, PPARG​, 
and CEBPA on days 0, 3, 6, and 9 of intramuscular adipocyte differentiation. E Expression levels of ACOX3, HACD2, and SCD5 in four muscle locations. 
F Expression levels of ACOX3, HACD2, SCD5, PPARG​, and CEBPA on days 0, 3, 6, and 9 of adipocyte intramuscular differentiation. G Potential regulatory 
mechanism by which the EA-involved unsaturated fatty acid synthesis pathway contributes to the formation of IMF
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diet exhibit a rapid expansion of adipose tissue, referred 
to as adipocyte hypertrophy [31]. In contrast, EA was 
found to regulate the differentiation of mesenchymal 
stem cells into osteoblasts/adipocytes by the inhibition 
of PPARγ transcriptional activity [32]. These studies sug-
gested that EA has a dual regulatory role in fat deposition 
in animals. Carcinine plays a vital role in animal vision as 
well as in histaminergic neurons in the brain [33]; how-
ever, little is known about its effect on meat quality rela-
tive to the effects of thiostatin. The addition of dietary 
glutamine and glutamic acid to piglet rations can accel-
erate carbon turnover in piglets after weaning [34]. In 
geese, C16:0, C16:1, and C18:1n9c were positively corre-
lated with intramuscular fat and alanine, and the metab-
olism of aspartic acid, glutamic acid, d-glutamine, and 
d-glutamic acid were the major metabolic pathways asso-
ciated with the flavor of Shaziling pork [35]. The biosyn-
thesis of endogenous fatty acids begins with the synthesis 
of saturated fatty acids from C2 to C16 mediated by FASN 
[36]. SCD, the key rate limiting enzyme in unsaturated 
fatty acid synthesis, then catalyzes the production of 
monounsaturated fatty acids from saturated fatty acids, 
primarily palmitoyl-CoA at 16 carbons and stearoyl-CoA 
at 18 carbons, resulting in palmitoleoyl-CoA and oleoyl-
CoA, respectively [37]. The monounsaturated products 
of SCD are key precursors of triglycerides, and SCD is 
pivotal in fatty acid metabolism [38]. SCD1-catalyzed 
oleic acid, a ligand for PPARγ, has been shown to increase 
bovine triglyceride levels [39]. The SCD1 expression level 
is positively correlated with the marbling score [40]. 
SCD5 mutations lead to the excessive deposition of vis-
ceral fat, and Wnt, PPAR, C/EBP, and fat synthesis signal-
ing pathways are all affected in zebrafish [41]. HACD is 
a key catalytic enzyme for the elongation of long-chain 
fatty acids (LCFAs). The deletion of HACD2 caused a sig-
nificant decrease in the synthesis of LCFA above C18 in 
mouse embryos [42]. In addition, HACD2 is a candidate 
gene for the deposition of subcutaneous fat in beef cat-
tle [43]. Studies have shown that ACOX3 is involved in 
IMF regulation in broilers [44] and can oxidize straight 
chain fatty acids in bovine [45]. However, its specific 
regulatory mechanism is unclear. Based on this previ-
ous research and the results of this study, we hypoth-
esize that EA is the key metabolite affecting the IMF 
content. With respect to its synthesis, carbohydrates are 
converted to acetyl-CoA by glycolysis and then undergo 
a series of iterative reactions and elongation by FASN. 
Saturated fatty acid C16 is then catalyzed by SCD1/SCD5 
to an unsaturated fatty acid and expanded to C22 (EA) 
by HACD2. EA can be used as a ligand of PPAR, and 
PPARα, PPARβ/δ, and PPARγ are stimulated and act as 
transcription factors to regulate downstream target genes 
(such as FABP4), accelerate lipid droplet accumulation, 

promote adipogenesis, and ultimately increase the IMF 
deposition and improve beef quality. Lipid droplets can 
also be decomposed by HSL into LCFA and VLCFA, and 
VLCFAs are oxidized to FA by ACOX3 and then contrib-
ute to fatty acid metabolism (Fig. 6G). Our next step is to 
explore the mechanism by which EA as well as ACOX3, 
HACD2, and SCD5 contribute to the synthesis of triglyc-
erides at the cellular level.

In addition, DEGs and DEMs were enriched in three 
major KEGG pathways, namely purine metabolism, 
pyrimidine metabolism, and glycine, serine and threo-
nine metabolism. Some differential metabolites identified 
in this study were altered in irradiated goat meat, with 
roles in phenylalanine, tyrosine, and tryptophan biosyn-
thesis and purine metabolism [46]. A lower purine con-
tent in meat was significantly associated with a higher 
abundance of intramuscular fat and marbling [47]. Purine 
metabolism and the glycine, serine, and threonine path-
way were enriched for various differential metabolites in 
postmortem metabolite analyses of atypical and typical 
dark, firm, and dry beef [48]. Levels of amino acids pro-
moting sweetness and umami were higher in high IMF 
beef [49].

Conclusions
This study revealed a large number of DEGs and DEMs 
by transcriptome and metabolome analyses of IMF. Of 
note, IMF is relatively rich in the muscles of Qinchuan 
cattle bulls and differs substantially with respect to mus-
cle locations as follows: high rib (15.86%), ribeye (14%), 
striploin (10.44%), and tenderloin (8.67%). We identi-
fied CCDC80 as a candidate gene in the regulation of 
IMF deposition in beef cattle. In addition, EA, carcinine, 
thiostatin, and glutaminylglutamic acid were identified 
as the major metabolites in Qinchuan beef cattle with 
high IMF levels. IMF deposition could be regulated by 
the metabolic pathway of unsaturated fatty acids involv-
ing the metabolite EA and the genes ACOX3, HACD2, 
and SCD5. It is possible that the HOX gene cluster regu-
lates IMF deposition. In addition, DEGs and DEMs were 
enriched in three main KEGG pathways, namely purine 
metabolism, pyrimidine metabolism, and the metabolism 
of glycine, serine, and threonine. Overall, these findings 
provide detailed information on the biological mecha-
nism underlying IMF accumulation and support the 
selection and breeding of Qinchuan cattle.

Materials and methods
Animals and sample collection
All procedures were conducted in accordance with the 
Chinese laws on animal experimentation, approved by 
the Northwest A&F University’s Experimental Animal 
Management Committee (EAMC) (protocol number: 
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NWAFUCAST2018-167), and conducted under the 
authority of the Project License. Four Qinchuan bulls 
were chosen from the same breeding farm. All cattle were 
healthy and disease-free and were maintained under the 
same standard management conditions with free access 
to feed and water and culled at 24 months of age (asso-
ciated with the best meat quality for slaughtering). Bulls 
were fasted for 24  h with free access to water before 
slaughter and were electrically stunned with a stunner for 
5 s, bled, peeled, eviscerated, and split down the midline 
by a commercial plant (Dingle Yihe Meat Processing Co., 
Ltd., Xianyang, Shaanxi, China). A set of four muscles 
(tenderloin, striploin, high rib, and ribeye) were taken 
immediately after slaughter from an individual animal to 
determine the IMF content. All other samples (16 sam-
ples) were immediately frozen and stored at − 80 °C until 
the extraction of RNA and metabolites.

Determination of the IMF content
IMF contents were determined based on the Soxhlet 
extraction method in China GB/5009.6–2016 “National 
Food Safety Standard-Determination of Fat in Food”. The 
specific process was completed by Norminkoda Biotech-
nology Co., Ltd. (Wuhan, China).

RNA extraction, sequencing, and transcriptome data 
analysis
Total RNA extraction, detection of RNA integrity, 
library construction, and RNA-seq were carried out by 
Biomarker Technologies Co., Ltd. (Beijing, China). Spe-
cifically, the RNA of the muscle samples was extracted, 
and after the purity, concentration, and integrity of 
the total RNA were qualified, the library was con-
structed. After the library passed the quality thresh-
olds, the Illumina NovaSeq6000 sequencing platform 
was used for paired-end sequencing. The RNA-seq 
analysis was performed using BMKCloud (www.​biocl​
oud.​net). Stringent quality control was applied to the 
data. The clean reads were aligned to the Bos_taurus.
ARS_UCD1.2 cattle reference genome (https://​bovin​
egeno​me.​elsik​lab.​misso​uri.​edu/​downl​oads/​ARS-​
UCD1.2) using the HISAT2 software package (http://​
www.​ccb.​jhu.​edu/​softw​are/​hisat2). FPKM [50] (Frag-
ments Per Kilobase of transcript per Million frag-
ments mapped) was used to quantify the expression or 
transcript level of the gene. Gene expression was ana-
lyzed using the DEseq2 package [51]. We defined Fold 
Change ≥ 2 and FDR < 0.05 as thresholds to obtain dif-
ferentially expressed genes (DEGs). A Gene Ontology 
(GO) enrichment analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [52] pathway enrichment 
analysis of DEGs were carried out using the R packages 
clusterProfiler and topGO.

LC–MS/MS analysis
The main steps in metabolite extraction include adding 
an appropriate volume of extraction solution and mag-
netic beads for grinding, ultrasonic treatment, stand-
ing, and centrifugation, collecting the supernatant for 
vacuum drying, and adding an appropriate amount 
of extraction solution for reconstitution and testing. 
The detection platform was the Waters Acquity I-Class 
PLUS ultra high performance liquid chromatographer in 
series with the Waters Xevo G2-XS QTOF high resolu-
tion mass spectrometer. For peak extraction and align-
ment, the original data collected by MassLynx V4.2 was 
processed using the Progenesis QI software package and 
identified based on the Progenesis QI online METLIN 
database, a public database, and the self-built library, and 
theoretical fragment identification was performed at the 
same time. The precursor ion had a mass deviation of 
100 ppm, and the fragment ion mass deviation was less 
than 50 ppm. Following the qualitative and quantitative 
metabolite analyses, data quality assessment, annotation, 
differential expression analysis, and functional enrich-
ment analyses were carried out. Furthermore, extensive 
data exploration and analysis were performed using the 
BMKCloud cloud platform (www.​biocl​oud.​net). Lastly, 
metabolites with fold change ≥ 1, Variable Importance in 
Projection (VIP) ≥ 1, and P < 0.05 were chosen as DEMs.

Statistical analysis
IMF contents are expressed as means ± standard devia-
tions (SD). Means were evaluated by an analysis of 
variance (ANOVA) with Tukey’s tests for multiple 
comparisons at a significance level of P < 0.05 using 
the GraphPad Prism 9.3 (GraphPad Software Inc., San 
Diego, CA, USA). PCA and correlation analyses were 
conducted in R (version 4.0).
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