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Abstract 

Background Genomics data is available to the scientific community after publication of research projects and can be 
investigated for a multitude of research questions. However, in many cases deposited data is only assessed and used 
for the initial publication, resulting in valuable resources not being exploited to their full depth.

Main A likely reason for this is that many wetlab-based researchers are not formally trained to apply bioinformatic 
tools and may therefore assume that they lack the necessary experience to do so themselves. In this article, we pre-
sent a series of freely available, predominantly web-based platforms and bioinformatic tools that can be combined 
in analysis pipelines to interrogate different types of next-generation sequencing data. Additionally to the presented 
exemplary route, we also list a number of alternative tools that can be combined in a mix-and-match fashion. We 
place special emphasis on tools that can be followed and used correctly without extensive prior knowledge in pro-
gramming. Such analysis pipelines can be applied to existing data downloaded from the public domain or be com-
pared to the results of own experiments.

Conclusion Integrating transcription factor binding to chromatin (ChIP-seq) with transcriptional output (RNA-seq) 
and chromatin accessibility (ATAC-seq) can not only assist to form a deeper understanding of the molecular interac-
tions underlying transcriptional regulation but will also help establishing new hypotheses and pre-testing them 
in silico.

Keywords ChIP-seq, RNA-seq, ATAC-seq, Integrated data analysis, Transcriptional networks

Background
In recent years, a plethora of methods were established 
in genomics research, approaching the question of what 
constitutes organisms on most basic levels from a vari-
ety of angles. Many of these methods make use of high-
throughput sequencing to address gene expression at 
multiple levels, ranging from transcription (investigated 

e.g. by RNA-seq [1]) over accessibility of chroma-
tin (assessed e.g. by ATAC-seq [2]) to the epigenetic 
modification of chromatin and site-specific binding of 
proteins to DNA, examined by methods such as chro-
matin-immunoprecipitation followed by massive parallel 
sequencing (ChIP-seq [3]). Lowering the cost of sequenc-
ing experiments has resulted in an abundance of genomic 
data available in the public domain. In the Bioinformatics 
community, this data has long served as resource for the 
development of analytical tools, while molecular labora-
tory scientists are just beginning to explore material that 
was published as part of a research project other than 
their own (for example see [4]). In addition to historic 
and epistemic differences between these two scientific 
cultures [5], we suspect that this effect is, at least par-
tially, also rooted in a certain lack of accessible resources 
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and training available to bench scientists. Here, we pre-
sent an analysis pipeline that makes use of different plat-
forms to retrieve sequencing data from the public domain 
together with freely available, user-friendly and predomi-
nantly web-based bioinformatic tools for the evaluation 
and visualization of results. As many platforms and tools 
can be used for several sequencing paradigms, visualized 
in Fig. 1, and to make the content most accessible to new 
users, specific aspects of their application will be intro-
duced in different subchapters of this paper. The initial 
bioinformatic analysis of raw next-generation sequenc-
ing (NGS) results, including quality filtering, alignment 
of the reads to the genome and peak calling, is not sub-
ject in this review article but should follow appropriate 
guidelines such as those curated by the ENCOD E Conso 
rtium. We here focus on the type of analysis that builds 
on already-processed datasets, enabling analysis steps 
such as comparison between datasets, mapping of indi-
vidual data points across datasets, searching for gene 
ontology terms, jointly regulated pathways, or shared 
upstream regulators, and more. We present one exem-
plary route and follow it throughout the paper but sug-
gest alternative tools and approaches alongside. This 
allows users to develop an analysis strategy that fits their 
needs and matches their preferences. We argue that this 
approach can serve as a valuable resource to explore new 
ideas and projects in silico, before moving forward with 
time-, cost-, and resource-intensive wet-lab experiments. 
Data resources are continuously growing and the here 
described databases are frequently augmented with new 
datasets. Nevertheless, data on many target genes or cell 
types are still missing from these repositories. New wet-
bench experiments will therefore be surely needed for 
the foreseeable future. Making the resulting data openly 
accessible is thereby a critical and valuable contribution 
to the scientific community.

Data storage and accession
Most scientific journals require that all sequencing data 
submitted as evidence in a particular study are being 
made available in a public repository after the manu-
script has been accepted for publication. With the pub-
lication, an accession code is provided to retrieve the 
data from respective platforms. Several options are avail-
able for this. For bottom-up approaches, these platforms 
can be searched for available datasets in order to start a 
new research project from previously published data. 
Own sequencing results can also be included and com-
bined with public datasets. Commonly used platforms 
described in detail here are listed in Table 1.

Two frequently used platforms for data storage are Gene 
Expression Omnibus (GEO) for processed data and Seque 
nce Read Archive (SRA) for raw data files. An alternative 

resource for functional genomics data is ArrayExpress 
[12]. It includes metadata detailing experimental proce-
dures as well as processed and/or raw data. While Array 
Express is hosted by the European Molecular Biology 
Laboratory-European Bioinformatics Institute (EMBL-EBI), 
which is part of the intergovernmental European organi-
zation ELIXIR, GEO and SRA are hosted by the US based 
National Center for Biotechnology Information (NCBI). 
Because these databases have been separately main-
tained, users might need to search several databases to 
get a comprehensive overview of public genomics data 
of interest [17]. Since errors can occur when uploading 
datasets as well as descriptive meta-data into databases, 
it may also be helpful to cross-check relevant informa-
tion of individual datasets across platforms and in the 
original publication. GEO includes data from many 
different genetic and genomic approaches, including 
genome methylation, chromatin structure, and genome-
protein interactions [18]. Each dataset on GEO, accessd 
via the GEO Acces sion Viewer, is provided with contact 
information of the researcher who generated it as well 
as a reference to the corresponding publication, if 
available. Datasets of multiple experiments in a given 
study (including different sequencing paradigms) are 
assembled in series that are linked on GEO Accession 
Viewer and can therefore be found with ease. While 
the provision of descriptive data regarding the experi-
mental process applied to obtain a certain dataset is 
standardized on GEO Accession Viewer, the available 
datasets vary in format.

Another valuable resource is the Encyclopedia of DNA 
Elements (ENCODE) project. ENCODE collects a wealth 
of datasets from various sequencing paradigms, meta-
data as well as protocols and provides various data for-
mats (both raw and processed) in order to systematically 
map regions of transcription, transcription factor (TF) 
association, chromatin structure and histone modifica-
tion [13]. However, as compared to the platforms dis-
cussed above, the ENCODE project follows a specific 
scientific aim rather than providing a mere collection of 
data, and thus is focused on in-depth assessment of spe-
cific factors, rather than a wide range of transcriptional 
regulators. Therefore, most projects are centered around 
common cell lines and ubiquitously expressed factors or 
histone marks.

Of note, most datasets in the public domain arise from 
cell culture experiments, which are often chosen for their 
practical advantages in culturing, providing a homoge-
neous cell  population. However, this comes at a cost in 
that cell lines are only an approximation of the primary 
cell types which are modeled. When making use of public 
datasets, potential (epi-)genetic differences that might be 
introduced should be critically assessed. Where available, 
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https://www.ebi.ac.uk/biostudies/arrayexpress
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Fig. 1 Tools and platforms presented for NGS data retrieval and analysis. The type of analysis is depicted by the color of circles, input data formats 
are given by pinned icons. Lines connect each NGS paradigm with bioinformatic resources applicable to this data type
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it is further advisable to juxtapose this data with such 
from primary cells or tissues.

Software repositories and general tools
Many bioinformatic tools as well as databases can be 
found on bio. tools, accessed via this registry and applied 
online or after downloading to a local computer. The 
code-base of tools is usually hosted on Github or Biocon-
ductor. Github is an online platform that allows users to 
create repositories to store and share both, analysis code 
in all programming languages and datasets. A great many 
repositories can be created and openly shared using a 
free personal account, but contributors also have the 
option to restrict the use of their repository by a license. 
The website of the public repository can then be used for 
ease of code as well as data sharing in publications. As an 
example, the public repository created for analyzing data 
with UpSetR discussed in more detail below can be found 
here. For large datasets, file hosting services are recom-
mended whose file links can be shared from the public 
folders for use in Github. Bioconductor is an initiative 
for the collaborative creation of bioinformatic software, 
harboring a multitude of open-source and open-devel-
opment programs written in the statistical program-
ming language R [19]. Commonly used tools described in 
detail in this paper are listed in Table 2 (ChIP-/ATAC-seq 
analysis) and Table 3 (RNA-seq analysis). This list could 
be extended much further as the demand for and devel-
opment of sequencing analysis tools continuously grows, 
but we restrict ourselves to a selection of approaches that 
can be fitted into one exemplary pipeline.

Tools for dataset conversion
Challenges that researchers often face when retrieving 
data from public repositories are the different file formats 
and annotations in which the data is stored. For example, 
ChIP-seq data can be deposited in a variety of formats 
ranging from raw data in .fasta or .fastq, over processed 
data in simple tabular, human-readable .bed files to con-
tinuous track formats such as .bigWig. While .bed formats 
contain the coordinates of sequencing peaks, and thus 
can be viewed as quantitative data structures providing 
information on the presence or absence of peaks [53], 
.bigWig is a more qualitative data structure that also ena-
bles the assessment of peak shapes. Complicating matters 
further, most downstream applications have precise data 
structure requirements (visualized in Fig. 1) that do not 
necessarily match the structure in which the correspond-
ing data is stored in public repositories. However, many 
of these formats can be translated into one another. An 
easy to use resource for this purpose can be found in the 
Galaxy platform, a system for the integration of genomic 
sequences, their alignments, and functional annotation 
[23, 24]. For example, the UNIX command line appli-
cation bedtools getfasta available on Galaxy allows the 
conversion of .bed data into the .fasta file format. In 
case of annotation differences between datasets, annota-
tion transfer tools such as liftOver can convert genome 
coordinates of .bed files into the respective assembly 
[21]. This enables users to integrate data from different 
annotation generations of the same species (e.g. mm9 
and mm10 when working with mouse-derived data) and 
thus to compare results that were mapped to different 

Table 1 Data resources

Purpose Platform/Software Features References

ChIP-seq data ChIP- ATLAS Data can be downloaded in .bed and .bigWig format; [6, 7]

Data can be readily visualized in IGV;

Peak calling differs from original publications

Cistr ome DB Information on QC; Motifs underlying peaks; [8]

Nexus to Galaxy analysis pipeline;

Human and mouse data only; Download of data in .bed only

ChIPB ase Transcriptional regulatory networks of lncRNAs, miRNAs, other ncRNAs [9, 10]

and protein-coding genes; Motif information included;

No raw data can be downloaded

ReMap Collection of manually curated ChIP-seq, ChIP-exo, and DAP-seq data; [11]

Data can be directly accessed via UCSC Genome Browser

Functional genomics Array Expre ss Includes metadata detailing experimental procedures [12]

as well as processed and/or raw data

ENCODE Raw as well as processed data; Good QC and reproducibility [13, 14]

General seq repositories GEO Acces sion Viewer Comprehensive study overview; Contact information to data curators; [15]

No consistent data formats available

SRA Run Brows er Hosts raw data files [16]

https://bio.tools/
https://github.com/
https://www.bioconductor.org/
https://www.bioconductor.org/
https://docs.github.com/en/get-started
https://cran.r-project.org/web/packages/UpSetR/vignettes/basic.usage.html
https://github.com/SGD2020/mcao
https://docs.github.com/en/get-started
https://www.bioconductor.org/
https://www.r-project.org/about.html
https://usegalaxy.org/
https://bedtools.readthedocs.io/en/latest/content/tools/getfasta.html
https://usegalaxy.org/
https://genome.ucsc.edu/cgi-bin/hgLiftOver
http://chip-atlas.org/
https://igv.org
http://cistrome.org/db/#/
https://usegalaxy.org/
https://rna.sysu.edu.cn/chipbase/
https://remap2022.univ-amu.fr/
https://www.ebi.ac.uk/biostudies/arrayexpress
https://www.encodeproject.org/
https://www.ncbi.nlm.nih.gov/geo
https://trace.ncbi.nlm.nih.gov/Traces/sra
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genomic assemblies. In addition, with the help of liftOver 
genomic annotations from a wide range of species can 
be converted into one another, facilitating inter-species 
comparisons. However, a significant drawback of this 
approach is that regions, which are not evolutionary con-
served between the original and target species, are lost. 
It should be noted, that liftOver facilitates the conver-
sion between genomic loci of different species or among 
different generations of genome assemblies, but not 
between different gene nomenclatures. Further tools for 
annotation transfer are discussed elsewhere [22].

Visualization of sequencing data
A helpful step to gain an initial impression of sequenc-
ing data or to view specific genomic regions in detail is 
to visualize genome-wide sequences relative to the refer-
ence genome. This can be achieved by tools such as the 
UCSC Genome Browser or Integrative Genome Viewer 
(IGV) [21, 31]. Uploading sequencing data to either web-
site will allow users to graphically visualize genomic data, 
search them for gene names and genomic coordinates, 
and compare multiple datasets. Alongside the uploaded 
data, additional pre-installed genomic information is 
provided in both tools such as ChIP-seq data for histone 
modifications or common transcription factors, SNPs, 
conservation across species or repeating elements. Yet, 
while UCSC Genom e Browser outperforms IGV in the 

availability of additional datasets, the graphical display 
and image quality is superior in IGV as here content can 
be directly exported as vector graphics. UCSC Genom e 
Browser on the other hand provides .eps graphics, which 
can be converted into publication-quality figures using 
appropriate software such as INKSC APE.

Software choice
Most tools discussed in this review are available as 
graphic-user interfaces (GUI) such as online or desktop 
versions and command line-run programs. For inexperi-
enced users, GUI versions may be a good choice, as these 
usually provide intuitive handling and easier navigation. 
To target our discussion to wet-lab based researchers who 
may have little to no prior experience with bioinformatic 
computing, we will focus on tools that are available online 
as these come without installation requirements. How-
ever, to make the most of the application possibilities of 
a given tool, it may be advantageous to resort to desktop 
or even command line versions, as for many tools these 
include more customization options and can run faster 
than online distributions. For most of the tools presented 
here, online tutorials of their application are provided on 
the respective websites. Users who are interested in diving 
deeper into the bioinformatic application of these tools 
are advised to become familiar with Unix command line 
navigation, as well as programming in R and Python.

Table 2 Platforms and tools for ChIP-/ATAC-seq analysis

Purpose Platform/Software Features References

Annotation/ visualization ChIPs eeker Available on Galaxy; [20]

Assembly conversion liftO ver Easy-to-use online version; [21, 22]

Only available for genomic loci conversion, not nomenclature

General data analysis Galaxy Collection of bioinformatic tools; [23, 24]

Reproducible analysis pipelines

Genome arithmetic bedto ols Available on Galaxy; [25]

Easy-to-use terminal version

GO term analysis GREAT Cis-regulatory regions supported [26]

Motif discovery MEME- ChIP Available on Galaxy; [27]

RSAT Integrates more database options for motif discovery than MEME-ChIP; [28]

Includes original analysis, such as motif quality evaluation

Raw data quality control FastQC Easy-to-use desktop version [29]

Track visualization UCSC Genom e Brows er Abundance of integrated data; [21, 30]

Export of .eps graphics, can be converted to publication-quality

figures using appropriate software

IGV Online and desktop version [31]

High quality resolution;

Limited integration of data from other

sources as compared to UCSC

WashU Cistrome DB carries direct plugins [32]

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu
https://igv.org
https://igv.org
https://genome.ucsc.edu
https://igv.org
https://igv.org
https://genome.ucsc.edu
https://genome.ucsc.edu
https://inkscape.org/?switchlang=en
https://www.datacamp.com/courses/introduction-to-shell-for-data-science
https://www.datacamp.com/courses/introduction-to-shell-for-data-science
https://www.datacamp.com/courses/free-introduction-to-r
https://www.datacamp.com/courses/intro-to-python-for-data-science
http://bioconductor.org/packages/devel/bioc/vignettes/ChIPseeker/inst/doc/ChIPseeker.html
https://usegalaxy.org/
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://usegalaxy.org/
https://bedtools.readthedocs.io/en/latest/
https://usegalaxy.org/
http://great.stanford.edu/public/html/
https://meme-suite.org/meme/tools/meme-chip
https://usegalaxy.org/
http://rsat.sb-roscoff.fr/peak-motifs_form.cgi
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://genome.ucsc.edu
https://igv.org
https://epigenomegateway.wustl.edu/browser/
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Assessment of protein/DNA interaction: ChIP‑seq
Epigenetic modification of chromatin together with the 
temporally and spatially controlled contact of TFs and 
their transcriptional co-regulators lie at the core of gene 
expression regulation. A variety of techniques has been 
developed in recent years to map the occupancy of TFs 
and histones on DNA and detect the chemical modi-
fications these carry. One of the first and still the most 
widely used method to assess the chromatin landscape 
genome-wide is chromatin immunoprecipitation (ChIP) 
[54] followed by massive parallel sequencing (ChIP-seq) 
[3]. Briefly, ChIP uses polymerization of paraformal-
dehyde (PFA) to crosslink proteins to chromatin. After 
cell lysis and recovery of the cell nuclei, the chromatin is 
fragmented by sonication or micrococcal nuclease diges-
tion. The fragmented chromatin is then precipitated with 

antibodies directed against the TF or histone modifica-
tion of interest. Protein-DNA complexes are recovered, 
washed to reduce background signals and the precipi-
tated DNA is isolated by heat-induced crosslinking rever-
sal. The DNA fragments are then subjected to library 
preparation and, after indexing and quality control (QC), 
samples are sequenced using an appropriate next-gen-
eration sequencing platform. Following a series of QC 
steps (which include eliminating contaminating DNA 
sequences from other commonly used model organ-
isms using FastQC [29], removing remaining adapter 
sequences, and quality trimming), the reads are mapped 
against an appropriate reference genome. Mapped reads 
are then filtered to retain only high confidence concord-
ant pairs, usually followed by the removal of reads map-
ping to the mitochondrial genome and unassembled 

Table 3 Platforms and tools for RNA-seq analysis

Purpose Platform/Software Features References

Dataset intersection Venny Easy application; [33]

Low image quality for download

UpSet Enables complex comparison [34]

Data visualization WIlsON Provides data visualization including PCA, heatmap and scatterplot; [35]

Requires CLARION file

GREIN Provides data visualization including PCA plots, and heatmaps, [36]

2D and 3D tSNE;

Uses GEO IDs of existing public datasets as input

Differential gene expression DESeq2 Yields fold-changes and statistical significance [37]

for every expressed gene between the samples of interest;

Included as a part of many RNA-seq pipelines and platforms

(R2, WIlsON, GREIN etc.)

GEO2R Direct application to GEO deposited data [18, 38]

Functional analysis Enric hr Can be queried for any size of lists up to single genes; [39]

Provides information on consensus TFs, lncRNAs, epigenetic roadmaps

of histone marks and motif enrichment

GO term analysis PANTH ER Takes list of gene names as input (several IDs supported); [40, 41]

Can work with large number of different species;

Low image quality of produced plots

STRING [42, 43]

DAVID [44, 45]

KEGG PATHW AY [46–48]

REVIGO Reduces functional redundancy of GO term lists, visualizes results [49]

Nomenclature conversion g: Conve rt Available conversion between multiple namespaces and organisms [50]

BioTo ols. fr Only most commonly used namespaces (UCSC ID, refSeq and

ENSEMBL Gene ID) available

Transcriptional networks ISMARA Provides motif information on promotor area, [51]

but not cis-regulatory regions

RSAT network-interactions Can be easily integrated with other RSAT tools [28]

STRING Provides information of protein-protein interactions of gene products [42, 43]

oPOSS UM [52]

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://bioinfogp.cnb.csic.es/tools/venny/
http://vcg.github.io/upset/
http://loosolab.mpi-bn.mpg.de/wilson/
http://www.ilincs.org/apps/grein/
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://maayanlab.cloud/Enrichr/
http://www.pantherdb.org/
https://string-db.org/
https://david.ncifcrf.gov/
https://www.genome.jp/kegg/pathway.html
http://revigo.irb.hr/
https://biit.cs.ut.ee/gprofiler/convert
https://www.biotools.fr/
https://ismara.unibas.ch/mara/
http://rsat-tagc.univ-mrs.fr/rsat/network-interactions_form.cgi
https://string-db.org/
http://www.cisreg.ca/oPOSSUM/
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contigs. Peak calling is performed, and candidate regions 
are further filtered by fold enrichment score. In this stage 
of analysis, datasets are most commonly deposited in 
public repositories. Different peak calling algorithms are 
in use. While TF binding sites are usually called assum-
ing narrow peaks, for histone modifications broad peak 
callers are employed. When using data from the public 
domain, it should always be cross-checked with other 
publications whether peak width of a certain dataset is in 
the appropriate range for the assessed entity. Performing 
some of these simple but effective quality control meth-
ods can be of great help, especially when working with 
data that originate from the public domain.

Databases
One useful public repository for retrieving datasets is 
ChIP- Atlas, a fully integrated data-mining suite for ChIP-
seq, DNAse-seq, ATAC-seq, and Bisulfite-seq data [6, 7]. 
This database serves the assembly of datasets from vari-
ous sources and organisms, including human and mouse. 
It shows alignment and peak-call results in several for-
mats including .bed as well as .bigWig for ChIP-seq data. 
Alongside data retrieval, ChIP- Atlas allows analyzing 
genome-wide transcriptional regulator interactions with 
one another or with genes of interest, as well as examin-
ing enrichment of protein binding for multiple genomic 
coordinates or gene names. In addition, ChIP-Atlas offers 
options to visually assess the quality of different types of 
sequencing data, a requirement for any meaningful fur-
ther analysis. The representation of ‘Base call quality data 
from DBCLS SRA’ in ChIP-Atlas allows to visually deter-
mine data quality in the form of a homogeneous distri-
bution of quality scores spanning the green area of QC 
plots. Another database harboring human and murine 
data from ChIP-seq, DNase-seq and ATAC-seq experi-
ments, which can be used to extract further cis-regula-
tory information, is Cistr ome DB [8, 55]. While fewer 
datasets are available on Cistr ome DB than ChIP- Atlas, 
additional functions are implemented, such as QC and 
motif discovery, which is a clear advantage of this data-
base. ChIPB ase is a third possibility to collect datasets, 
enabling direct performance of motif discovery [9, 10]. 
While this database focuses on the function of non-cod-
ing RNA (ncRNA) entities, ChIP-function can be initially 
assessed by correlation with expression of TFs as indi-
cated by RNA-seq. A drawback of ChIPB ase is that raw 
peak data cannot be downloaded, but a reference to GEO 
Acces sion Viewer is provided, through which access to 
the original data is possible. Finally, large-scale integra-
tive analysis can also be performed with ReMap, another 
collection of manually curated ChIP-seq, ChIP-exo, and 
DAP-seq (DNA Affinity Purification Sequencing) data 
from public sources (GEO, ENCODE, ENA) [11].

Downloaded ChIP-seq datasets can then be subjected 
to post-analysis and in silico assessments by a specific 
workflow that we present below. A schematic of this 
workflow is summarized in Fig. 2 A, and exemplary out-
puts are displayed in Fig. 2 B-F. For simplicity, only one 
possible approach is described below, in which we focus 
on the identification of regulatory interactions in chro-
matin. However, many different analysis routes are pos-
sible and, depending on the initial data structure, other 
approaches than the ones detailed below may be suitable. 
Figure  1 lists several tools and platforms, together with 
their respective input data formats and purposes that 
can be used on ChIP-seq data. Table 2 gives an overview 
over some of the most prominent tools that can be used 
instead or in addition to those discussed below.

Visualization
As described above for the visualization of general 
sequencing information, called peaks and sequencing 
tracks generated in the course of ChIP-seq experiments 
are commonly visualized in genome browsers relative to 
a reference genome and relevant genomic features. The 
two most common formats for ChIP-seq data are .bed 
for called peaks and .bigWig for continuous sequenc-
ing tracks. There are several genome browsers to choose 
from, depending on the origin of the data one would like 
to visualize. ChIP- Atlas can be easily combined with IGV 
(Fig.  2 B), while Cistr ome DB carries direct plugins for 
UCSC Genome Browser (Fig.  2 B’) [21, 30] and WashU 
Epigenome Browser [32]. Data curated in ReMap as well 
as ENCODE can be directly accessed via UCSC Genom e 
Brows er and multiple factors can be integrated for paral-
lel visualization.

Functional analysis
A useful next step is to assess ChIP-seq datasets in 
terms of potential biological functions. The Genomic 
Regions Enrichment of Annotations Tool (GREAT) is a 
good choice for predicting functions of cis-regulatory 
regions  [26]. Any set of genomic regions in .bed format 
can serve as input to this GO term analysis tool. However 
it should be noted, that the current version of GREAT 
only supports human (hg19 and hg38) and mouse (mm9 
and mm10) assemblies, and data from different species or 
assemblies need to be converted first using liftOver. Out-
puts can be visualized either as bar chart or interactive 
ontological hierarchy (Fig.  2 C). Additionally, ChIP-seq 
peaks can be subjected to peak annotation and visualiza-
tion with ChIPseeker (Fig. 2 D) to gain a deeper under-
standing of where peaks are localized relative to distinct 
genomic sites such as promotor regions, and intragenic 
or intergenic genomic sequences [20]. While GREAT 
needs to be accessed through the respective website, 

http://chip-atlas.org/
http://chip-atlas.org/
http://cistrome.org/db/#/
http://cistrome.org/db/#/
http://chip-atlas.org/
https://rna.sysu.edu.cn/chipbase/
https://rna.sysu.edu.cn/chipbase/
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://remap2022.univ-amu.fr/
http://chip-atlas.org/
https://igv.org
http://cistrome.org/db/#/
https://genome.ucsc.edu
https://epigenomegateway.wustl.edu/browser/
https://epigenomegateway.wustl.edu/browser/
https://remap2022.univ-amu.fr/
https://www.encodeproject.org/
https://genome.ucsc.edu
https://genome.ucsc.edu
http://great.stanford.edu/public/html/
http://great.stanford.edu/public/html/
https://genome.ucsc.edu/cgi-bin/hgLiftOver
http://bioconductor.org/packages/devel/bioc/vignettes/ChIPseeker/inst/doc/ChIPseeker.html
http://great.stanford.edu/public/html/
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ChIPs eeker can be used via the platform Galaxy. To 
this end, a .gtf file harboring the corresponding genome 
assembly (e.g. comprehensive gene annotation) needs to 
be retrieved from GENCO DE [56], and uploaded to Gal-
axy. Galaxy offers many additional functional analysis 
tools, such as DiffB ind for differential binding analysis of 
ChIP-seq data [57], or Genri ch to detect sites of genomic 

enrichment. Tools available on this platform are easily 
explored, as they come with a comprehensive overview of 
their features, and supported input and output formats.

Network analysis
A frequently used method to better understand the 
underlying logic of a given transcriptional regulation 

Fig. 2 Exemplary ChIP-seq analysis pipeline and outputs. (A) Exemplary workflow and suggested tools, (B) overlay of ChIP-seq tracks in IGV 
and (B’) UCSC Genom e Brows er, (C) associated GO terms of ChIP-seq data obtained by analysis with GREAT, (D) genomic annotation of ChIP-seq 
peaks with ChIPs eeker, (E) motif distribution of two exemplary TFs in whole genome and (E’) exemplary secondary motif spacing derived 
from MEME-ChIP analysis, and (F) dataset intersection of two exemplary TFs using bedto ols inter sect, visualized with simple text editor program 
(columns 1-4: peak information TF1 [peak chromosome, start, stop, name], columns 5-7: peak information TF2 [peak chromosome, start, stop], 
column 8: overlapping peak width)

http://bioconductor.org/packages/devel/bioc/vignettes/ChIPseeker/inst/doc/ChIPseeker.html
https://usegalaxy.org/
https://www.gencodegenes.org/
https://usegalaxy.org/
https://usegalaxy.org/
https://usegalaxy.org/
https://bioconductor.org/packages/release/bioc/html/DiffBind.html
https://github.com/jsh58/Genrich
https://igv.org
https://genome.ucsc.edu
http://great.stanford.edu/public/html/
http://bioconductor.org/packages/devel/bioc/vignettes/ChIPseeker/inst/doc/ChIPseeker.html
https://bedtools.readthedocs.io/en/latest/content/example-usage.html?highlight=intersect#bedtools-intersect
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scheme is to assess the regulatory network in the form 
of motif discovery using MEME-ChIP. This tool takes 
its input in .fasta format. However, .fasta format is not 
provided by many platforms but can be re-constructed 
on basis of more common .bed formats with the help of 
the getfa sta function in the bedto ols toolkit (available 
on Galaxy). MEME- ChIP is designed for the analysis of 
ChIP-seq ’peak regions’ [27, 58]. These expected bind-
ing regions are defined as short genomic sequences of 
6-12 bp in length surrounding the summit of ChIP-seq 
peaks, i.e. the individual local maxima of alignment reads 
in a given ChIP-seq experiment (e.g. the TF binding site 
in case of a ChIP-seq experiment for a TF). Given a set 
of genomic regions, MEME-ChIP performs a series of 
ab initio analyses, such as primary and secondary motif 
discovery, motif distribution, motif enrichment analysis, 
motif visualization, binding affinity analysis, and motif 
identification (Fig.  2 E). Moreover, datasets can be sub-
jected to spaced motif analysis (SpaMo), which infers 
physical interactions between a previously defined TF 
and TFs bound at neighboring sites at the DNA interface, 
whereby close proximity of TF motifs indicates poten-
tial interaction (Fig.  2 E’) [59, 60]. Another platform to 
perform de novo motif discovery or motif scanning to 
predict TF binding sites is RSAT. While RSAT operates 
similarly to MEME- ChIP, it integrates more database 
options for motif discovery. Furthermore, RSAT includes 
original analysis, such as motif quality evaluation, motif 
comparisons and clustering, detection and analysis of 
regulatory variants, building of control datasets, and 
comparative genomics to discover motifs based on cross-
species conservation [28].

Public repositories can also be searched for datasets 
of such factors for which potential interaction functions 
are indicated by motif analysis. Potential co-binding can 
be assessed by overlap computation of ChIP-seq peaks 
in .bed format using the bedto ols intersect function [25] 
available on Galaxy. This tool generally enables genome 
arithmetic and can be used to merge, count, comple-
ment, and shuffle genomic intervals from multiple files 
in widely used file formats  (an exemplary intersection 
output of two TF ChIP-seq datasets is shown in Fig. 2 F). 
Alternatively, the intersection tool Intervene available on 
Galaxy can be applied, which allows to produce Upset 
plots of multiple intersections [61].

Alternatives to ChIP‑seq
Despite its experimental power and wide application, 
ChIP-seq remains challenging with small samples and 
binding sites can be mapped only within 100-200 base 
pairs, limiting the resolution of this method. In ChIP-exo, 
this problem is alleviated by including a trimming step of 
the precipitated DNA fragments by lambda exonucleases 

[62]. In ChIP-chip (ChIP-on-chip), DNA fragments are 
isolated by ChIP and assessed by hybridization to genomic 
microarrays [63]. Both methods have found less wide-
spread use than ChIP-seq, but data generated by them can 
be examined similarly to the analysis pipelines described 
above for data generated by ChIP-seq if appropriate data 
formats are available. A further limitation of ChIP is the 
reliance on highly specific antibodies that recognize their 
target after formalin-fixation of the chromatin. As a solu-
tion to this problem, DamID (DNA adenine methyltrans-
ferase identification) offers an approach to identify target 
sites of chromatin-binding proteins on the genome with-
out the need to have suitable antibodies available. Instead, 
the DNA-binding protein is ectopically expressed as a 
fusion to E.coli DNA adenine methyltransferase [64]. 
Sequencing data generated by DamID can be assessed 
by the tools described above for ChIP-seq, although spe-
cialized tools are available for the initial steps of the data 
processing workflow such as sequence alignment or read 
extension. A detailed pipel ine can be found on GitHub.

Two relatively new technical improvements for chro-
matin profiling that are becoming increasingly popular 
are CUT&RUN (Cleavage Under Targets and Release 
Using Nuclease; [65]) and CUT&Tag (Cleavage Under 
Targets and TAGmentation; [66]). Both techniques rely 
on the fusion of protein A, required for the purifica-
tion of antibody-precipitated DNA, to a DNA-cleaving 
enzyme, micrococcal nuclease (MNase) in CUT&RUN 
or Tn5 transposase in CUT&Tag. Both approaches offer 
an improved signal to noise ratio compared to ChIP-seq, 
making them better suited for low cell numbers. Unlike 
ChIP or DamID, CUT&RUN and CUT&Tag are per-
formed on unfixed cells and therefore not affected by 
possible fixation-induced artefacts. A pipeline for analy-
sis and visualization of CUT&RUN and CUT&Tag data 
is provided by CUT& RUNTo ols [67]. However, for its 
application one has to delve a little deeper into bioinfor-
matics as currently no web-based analysis tool is availa-
ble. Navigation through GitHub alongside some previous 
experience with Python code are therefore required to 
apply this toolkit. For pre-analyzed CUT&RUN and 
CUT&Tag data, the GEO Acces sion Viewer again pro-
vides datasets for several biological contexts and tran-
scriptional regulators.

Assessment of chromatin accessibility: ATAC‑seq
Condensed chromatin, characterized by packaging with 
linker histone H1 and tight DNA wrapping around nucle-
osomes, prevails in transcriptionally inactive regions, 
while open chromatin regions, i.e. stretches of DNA 
exhibiting depletion of nucleosomes, are associated with 
transcriptional activity [68, 69]. Mapping genome-wide 
changes in chromatin accessibility has thus long served 

https://meme-suite.org/meme/tools/meme-chip
https://bedtools.readthedocs.io/en/latest/content/tools/getfasta.html
https://bedtools.readthedocs.io/en/latest/
https://usegalaxy.org/
https://meme-suite.org/meme/tools/meme-chip
https://meme-suite.org/meme/tools/meme-chip
http://rsat.sb-roscoff.fr/peak-motifs_form.cgi
https://meme-suite.org/meme/tools/meme-chip
http://rsat.sb-roscoff.fr/peak-motifs_form.cgi
https://bedtools.readthedocs.io/en/latest/content/example-usage.html?highlight=intersect#bedtools-intersect
https://usegalaxy.org/
https://bitbucket.org/CBGR/intervene/src/master/
https://usegalaxy.org/
http://owenjm.github.io/damidseq_pipeline/
https://bitbucket.org/qzhudfci/cutruntools/
https://www.ncbi.nlm.nih.gov/geo
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as a way to identify regulatory elements and study the 
relationship between chromatin structure and transcrip-
tional activation. Different NGS-based paradigms for 
epigenetic profiling of open chromatin and nucleosome 
positions have been developed: DNase-seq (DNase I 
hypersensitive sites followed by massive parallel sequenc-
ing) uses the endonuclease DNase to cleave DNA within 
accessible chromatin, followed by library preparation and 
NGS [70]. MNase-seq uses the endonuclease/exonucle-
ase Micrococcal nuclease (MNase) to eliminate accessi-
ble DNA and selectively sequences nucleosome-bound 
DNA [71]. FAIRE (Formaldehyde-Assisted Isolation of 
Regulatory Elements) sequencing involves formaldehyde 
cross-linking of proteins to DNA, shearing of the DNA, 
recovery of the nucleosome-free DNA-fragments by phe-
nol-chloroform extraction, and NGS [72]. In the Assay 
for Transposase-Accessible Chromatin using sequencing 
(ATAC-seq), hyperactive Tn5 transposase integrates into 
open chromatin regions where it simultaneously cuts and 
ligates adapters for library preparation and high-through-
put sequencing [2, 73]. This underlying principle allowed 
ATAC-seq to be developed further to include methods 
to create chromatin accessibility maps of individual cells 
[74, 75]. Irrespective of the NGS-based technology that 
was used to profile chromatin accessibility, open chroma-
tin regions can be annotated bioinformatically, and post-
hoc analysis such as DNA-footprinting or analysis of 
motif enrichment (AME) can be performed. For a further 
discussion, the reader is referred to [4].

Because ChIP-seq and ATAC-seq both yield partial 
genome reads annotated to the whole genome as results, 
the tools described above for analysis of ChIP-seq results 
can also be applied to ATAC-seq analysis. Further, data 
generated by ATAC-seq and ChIP-seq experiments can 
be combined in multiple ways, and ATAC-seq datasets 
can also be retrieved through ChIP- Atlas. For ATAC-seq, 
some simple forms of quality control can be applied. For 
example, transcription start sites (TSS) of actively tran-
scribed genes always have a more open chromatin envi-
ronment, so ATAC-seq data should inevitably contain 
TSS. Starting from ATAC-seq results, and thus from 
genomic regions that classify as ’open’ in a particular cell 
population or tissue, motif discovery can be applied to 
determine which TF binding motifs these sequences har-
bor. This approach will give a first indication of the types 
of TFs that can bind to these genomic regions, in princi-
ple. ChIP-seq data for these TFs in the same or related 
cells and tissues may then be retrieved from the public 
domain and compared one by one to the initial ATAC-
seq results. This can be done with the help of tools like 
the already described bedto ols inter sect to narrow down 
the list of candidate TFs involved in gene expression reg-
ulation through the genomic sequences identified in the 

initial ATAC-seq experiment. If ChIP-seq data for TFs 
of interest are not available, in silico analysis of ATAC-
seq can precede ChIP-seq experiments. In such cases, 
promising TF candidates for immunoprecipitation may 
be identified by motif analysis of open chromatin regions 
with help of MEME- ChIP or RSAT, followed by assess-
ment of the corresponding TF-DNA binding by ChIP-seq 
experiments in the laboratory.

Assessment of gene activity: RNA‑seq
The most commonly used high-throughput technique in 
transcriptomics is bulk RNA-sequencing (RNA-seq). It 
provides insight into the transcriptome of tissue sections, 
biopsies, or cell populations. Although further methods, 
that will be discussed below, have been developed in the 
recent years and despite the caveat that bulk RNA-seq 
determines the average expression level of individual 
genes over a large and frequently inhomogeneous start-
ing cell population, bulk RNA-seq also has considerable 
strengths as compared to alternative approaches. The 
focus of bulk RNA-seq is on global changes in the tran-
scriptional profile. Major advantages of bulk RNA-seq 
are the easy application and relatively low prices, provid-
ing better accessibility compared to single-cell RNA-seq 
(scRNA-seq), in which an assessment of heterogeneity is 
the focus. For these reasons, bulk RNA-seq datasets are 
frequent in the public domain. However, both methods 
have their limitations. scRNA-seq is more cost-intensive, 
suffers from cell dropout and reduced coverage of genes 
and physiologically occurring fluctuations in expression 
are often overrepresented. Bulk RNA-seq on the other 
hand measures gene expression in mixtures of cells and, 
consequently, cannot distinguish between low-abundant 
transcripts in large cell populations and high-abundant 
transcripts in small populations. It will be the focus of this 
chapter to present tools for the in-depth analysis of bulk 
RNA-seq datasets, which non-specialists can make use 
of. Nonetheless, the involvement of a trained bioinforma-
tician is certainly highly recommended to fully evaluate 
sequencing data quality and as support to learn and apply 
the tools presented in this paper. In addition, even the 
best and most sophisticated analysis approaches cannot 
compensate for low quality data and a bioinformatician 
can point out the limitations of the original data. Which 
approach is the right one depends on the question at hand 
and is up to the investigator to determine. In addition, 
when making use of public datasets or analyzing their 
own datasets, users are recommended to critically assess 
the study outline under which the data was generated, 
whether homogeneity of the sample was ensured, and 
appropriate control experiments were executed for the 
reported claims. Specifically, we recommend making sure 
that the expected outcomes of the dataset, for example a 

http://chip-atlas.org/
https://bedtools.readthedocs.io/en/latest/content/example-usage.html?highlight=intersect#bedtools-intersect
https://meme-suite.org/meme/tools/meme-chip
http://rsat.sb-roscoff.fr/peak-motifs_form.cgi
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transgene expression profile, have been satisfied and the 
data quality metrics are acceptable. Again, we recommend 
taking the support of a trained bioinformatician if needed 
for this crucial initial aspect of the data analysis.

RNA-seq allows the analysis of protein-coding mRNAs 
and ncRNA such as ribosomal RNA (rRNA) or micro-
RNA (miRNA). For this matter, high quality total RNA is 
extracted from cells or tissues. Different sub-populations 
of RNA can be enriched or depleted to increase sequenc-
ing depth. Ribodepletion, which removes the abundant 
rRNA but leaves the full diversity of other RNAs intact, 
is usually carried out as enrichment step. In cases where 
RNA subpopulations are in focus, other isolation proto-
cols can be applied e.g. size selection for long ncRNAs 
or small ncRNAs, or poly-A enrichment to specifically 
enrich mRNA. Following the choice of RNA subsets, 
the RNA is converted to complementary DNA (cDNA) 
by reverse transcription and sequencing adaptors are 
added to one or both ends of the cDNA fragments. After 
amplification of the fragments, the RNA-seq library can 
be sequenced by various paradigms using NGS platforms 
[76, 77]. When performing RNA-seq, normalization of 
sequencing depth and gene length to permit comparison 
of results between genes and samples is obtained by one 
of three measures: Reads Per Kilobase Million (RPKM) 
for single-end RNA-seq, Fragments Per Kilobase Mil-
lion (FPKM) for paired-end RNA-seq, or Transcripts 
Per Kilobase Million (TPM), which can be used for both 
sequencing paradigms. As of now, validation of RNA-seq 
experiments by qPCR is a standard in good experimen-
tal practice, and is a useful starting point when building 
hypotheses on public domain datasets. However, it must 
be noted that qPCR is a sensitive methodology for detect-
ing relative levels of a particular transcript, whereas 
RNA-seq datasets are limited by their sequencing depth. 
This aspect can be appreciated particularly when com-
paring scRNA-seq with bulk RNA-seq as mentioned in 
the section comparing these two analyses types. Thus less 
abundant transcripts may be absent in sequencing data-
sets, while they are often detected by qPCR. Therefore 
validation of less abundant genes may not yield compa-
rable results by the two methods. Whether this experi-
mental practice will be uphold in the future, will depend 
among others on the abundance of available datasets on a 
given physiological context in the public domain.

Platforms and databases
RNA-seq datasets can be accessed through various data-
bases, including GEO Acces sion Viewer, R2 and ARCHS4 
[78]. Available data formats on GEO vary greatly among 
datasets, ranging from spreadsheets over .txt to graphic 
formats such as .bedgraph or .bigWig, as no standardized 
upload criteria are defined for this repository. For direct 

analysis of GEO RNA-seq data, GEO2R may be used to 
perform differential expression analysis. The R2 Genom 
ics Analy sis and Visua lizat ion Platf orm is another option 
for exploring and analyzing gene expression data. It con-
tains datasets from large numbers of array-type gene 
expression profiling studies together with bulk RNA-
seq, scRNA-seq and some ChIP-seq datasets. Any pub-
lic dataset can be added to the R2 platform upon request 
using the accession ID of the dataset. This aspect is simi-
lar to the GREIN platform which will be discussed below. 
The R2 platform allows users to explore gene expression 
data in multiple ways, including the correlation of genes 
(with other genes and with sample groups) and the analy-
sis of differential expression between groups (by DESeq2 
or other tests). Within the framework of R2, data can also 
be subjected to KEGG pathway analysis between groups 
or by correlation. R2 further provides the option to para-
metrically analyze gene set enrichment (PAGE) [79], to 
perform survival analysis (Kaplan-Meier) and gene ono-
tology analysis for suitable datasets, and to create clas-
sic PCA plots, volcano plots, heatmaps, as well as Upset 
plots. For RNA-seq data, some databases do provide 
data quality information. For example the GREIN plat-
form provides information about the sequence alignment 
scores, duplicate reads, sequence counts for each sample 
and indicates  whether it passed the quality test or not. 
Likewise, RNA-seq data can be expected to be enriched 
in exonic sequences, and, hence, the overrepresentation 
of exonic sequences in RNA-seq data can be regarded as 
a sign of confidence. We strongly recommend users to 
make sure that the data quality is acceptable before in-
depth analysis of a particular dataset. In case no quality 
information is provided, users are advised to check for 
expected expression profiles, i.e. whether appropriate 
housekeeping or marker genes for the given context are 
present, and how many genes have average counts above 
a given number, thereby ensuring a good statistical basis 
for differential gene expression analysis. A particular 
challenge for working with data from different sources, 
especially when the data comes from older studies, is the 
often ambiguous gene nomenclature. In the past, multi-
ple alternative paradigms were developed for gene iden-
tification, resulting in many genes having been assigned 
multiple names. In such cases, it is up to the research-
ers themselves to identify alternative or redundant gene 
names. In this case tools for the conversion of common 
nomenclatures can be helpful such as BioTo ols. fr and 
g: Conve rt of the g:Profiler toolset [50].

Below we present an analysis pipeline to make use of 
retrieved RNA-seq datasets from the public domain, fol-
lowing a certain workflow. A schematic of this workflow 
is exemplified in Fig. 3 A, and exemplary outputs are dis-
played in Fig. 3 B-F.

https://www.ncbi.nlm.nih.gov/geo
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi?
https://maayanlab.cloud/archs4/
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
http://www.ilincs.org/apps/grein/?gse=
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
http://www.ilincs.org/apps/grein/?gse=
https://www.biotools.fr/
https://biit.cs.ut.ee/gprofiler/convert
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Fig. 3 Exemplary RNA-seq analysis pipeline and outputs. (A) Exemplary workflow and suggested tools, (B) Scatterplot and (B’) heatmap obtained 
by WIlsON analysis, (C) visualization of dataset intersection in UpSet plot and venn diagram, (D) bar plot and (D’) pie diagram of GO terms obtained 
with PANTH ER, (E) interaction network obtained by STRING analysis and (F) motif enrichment of differentially expressed genes and (F´) predicted 
motif interactions using ISMARA to assess potential transcriptional regulators

http://loosolab.mpi-bn.mpg.de/wilson/
http://vcg.github.io/upset/
http://www.pantherdb.org/
https://string-db.org/
https://ismara.unibas.ch/mara/
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Visualization
For visualization and analysis of RNA-seq data, a multi-
tude of tools are available and are summarized in Table 3. 
Just as for ChIP-/ATAC-seq, sequencing tracks can be 
directly visualized using genome browsers. However, 
while genomic ChIP-/ATAC-seq data usually contain 
coding and regulatory regions of the genome, expres-
sion data lack that part of the genome that is not tran-
scribed. For these differences in materiality of genomic 
and expression data, plain visualization of RNA-seq 
tracks, unlike the visualization of ChIP-/ATAC-seq 
tracks, is of limited explanatory power. Therefore, the 
use of other tools that highlight the distinct properties of 
RNA-seq data, such as differences in expression between 
conditions, is indicated. A useful tool to gain first insight 
into RNA-seq data, is WIlsON (Webbased Interactive 
Omics visualizatiON) [35]. WIlsON requires CLARION 
(generiC fiLe formAt foR quantItative cOmparsions 
of high throughput screeNs) files as input. This file for-
mat relies on a tab-delimited table with some metadata 
describing the columns that can be easily constructed 
from any tabular formats. It supports data that can be 
reduced to features (e.g. genes or transcripts) and their 
annotation with assigned numerical values (e.g. count or 
p-value). Those feature annotations and numerical values 
can later be used for filtering and plotting purposes, as 
exemplified in Fig. 3 B and B’. An original tab-delimited 
table (e.g. RNA-seq data) can be reformatted manually 
into a CLARION file using a spreadsheet software fol-
lowing the instructions in the WIlsO N docum entat ion. 
An example of RNA-seq data and its conversion to a 
CLARION file can be found in this GitHu b folder. Once 
the CLARION file is loaded into the WIlsON app, users 
can generate various plots following four basic steps: (i) 
filtering for features, (ii) selection of plot type, (iii) adjust-
ing plot parameters, and (iv) rendering/downloading 
results. Possible types of analysis include PCA, heatmap 
and scatterplot.

Another interactive web-based platform to explore 
and visualize RNA-seq data is GREIN [36]. The com-
mon features of WIlsON and GREIN include visualiza-
tion to obtain metadata of the samples, counts tables and 
QC reports, correlation plots, PCA plots and heatmaps. 
A major difference between both platforms is that data 
can be highlighted and individual genes are searchable 
in WIlsON, while GREIN offers both 2D and 3D tSNE 
(t-distributed stochastic neighbor embedding) plots, 
in which high-dimensional data is reduced to minimal 
descriptive features and visualized. In addition, GREIN 
uses GEO IDs of existing public datasets as input, making 
it more user-friendly, whereas WIlsON relies on CLAR-
ION files. Both offer high quality data download options.

Differential expression analysis
After an initial insight into the data, the standard analy-
sis step for RNA-seq data is to determine differentially 
expressed genes between at least two treatment groups. 
Multiple tools are available for this purpose, but we will 
focus on DESeq2 as it is commonly used and available on 
the Galaxy platform [37]. DESeq2 is a popular statistical 
package written in R. It was initially developed to perform 
differential expression analysis of RNA-seq datasets, but 
is also applicable to comparative assessments of ChIP-
Seq and mass-spectrometry results [37]. The statistical 
analysis is based on negative binomial linear models that 
are used to estimate the logarithmic fold changes and the 
strength of these changes considering inter-sample varia-
tion. Once count data are obtained after mapping the raw 
data (e.g. .fastq files) to the reference genome, the counts 
or reads for each gene and sample including its replicates 
can be analyzed by  the DESeq2 package for differential 
expression. This approach yields both fold-changes and 
statistical significance for every expressed gene between 
the samples of interest. The DESeq2 package is included 
as a part of many RNA-seq pipelines and platforms (such 
as R2, WIlsON, or GREIN). Alternatively, DESeq2 can be 
directly implemented in R using the Bioconductor pack-
age as described by Love and colleagues [37].

Data intersection
One of the most common bioinformatic analyses per-
formed on -Omics data is the intersection of various data-
sets for shared features and differences. This has been 
classically done using Euler or Venn diagrams, the latter 
being available through several web-based analysis plat-
forms such as Venny [33] or Galaxy [80, 81]. While the 
classic diagrams are easy to understand and interpret up 
to a small number of sets, they become more complicated 
when the number of sets increases to 4 or more. This is 
because the number of intersections (2n ) increases expo-
nentially with the increase in number of sets (n). For the 
latter purpose, Lex and colleagues introduced UpSet, a 
matrix-based visualization of intersecting sets that is also 
amenable to visualization of the associated elements [34].

In order to visualize datasets on UpSet, an input file is 
created in Python or another supported programming 
language. For upload, two files are necessary. Firstly, a 
.csv spreadsheet comprising the binary data of the sets to 
be visualized, and secondly a .json file, an open standard 
language-independent file format that is used frequently 
for reading data from a server for use in online platforms. 
The .json file contains metadata of the .csv file as well as 
its location and name, and needs to be stored in an acces-
sible location such as a shared folder on a public server 
or in a public repository such as GitHub. An example is 
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available here, and can be used as template for the con-
struction of .json and the corresponding .csv files [82]. 
To generate the .csv file, a binary data spreadsheet file 
has first to be created from the RNA-seq data. A simple 
binary transformation can be 1 for regulated genes and 0 
for non-regulated genes between 2 conditions. Once the 
binary sets of interest are created, a .csv spreadsheet file 
should be set up with user defined headers for the binary 
data columns. Additional columns for fold changes or 
reads etc. can be included in this UpSet file for data visu-
alization along with the intersection of sets with UpSet.

On the UpSet website, one needs to input the .json file 
created as described above. The genes comprising any 
particular intersection of interest can be visualized on the 
site under ‘Query Results’ after selecting a certain inter-
section on the UpSet plot (see Fig. 3 C). Specific genes of 
interest can also be searched in the ‘Query Filters’ menu. 
For the list of genes or elements displayed on the plat-
form, a simple copy paste option allows the data import 
into a spreadsheet file (after selection of .txt). For UpSet 
plots, Venn diagrams, or any other features in display, 
only a screenshot option is available for storing the data.

Functional analysis
Gene Ontology (GO) analysis is commonly executed 
following differential gene expression analysis to assess 
functions of genes and gene products. GOs are built as 
a transdisciplinary endeavor between Molecular Biology, 
Computer Science and Linguistics/Philosophy and as to 
the procedural progress of research, are continuously 
updated with the latest empirical evidence [83]. Different 
tools for GO  term analysis exist, which build upon dif-
ferent logics, sources and gene concepts. Therefore, it is 
recommended to use multiple options for a deeper and 
more comprehensive understanding of the biological 
context under investigation.

One widely used GO analysis tool is PANTH ER [40, 
41]. This tool builds on a knowledge base curated by the 
Gene Ontol ogy Conso rtium [84, 85]. PANTH ER takes 
a list of gene names as input (supported are several ID-
systems including Ensembl and Uniprot) and can work 
with a large number of different species. As output, the 
GO terms Molecular Function, Biological Process, Cel-
lular Component, Protein Class, and Pathway are avail-
able (see Fig. 3 D and D´ for an exemplary analysis) and 
various statistical tests can be peformed. A full list of 
genes in the analyzed gene set that are associated with 
each pathway in the dropdown menu can be obtained via 
the associated hyperlink with each GO term. One draw-
back of PANTH ER is the low quality of produced plots, 
but this can be bypassed by direct downloading of the 
data and plotting with R or any other data analysis plat-
form of choice. Other GO term analysis tools include 

DAVID [44, 45], KEGG PATHW AY Datab ase [46–48] 
and STRING [42, 43]. However, it should be noted that 
the main functionality of STRING is to provide informa-
tion on protein-protein interactions of gene products as 
described below. Since the output of most of these tools 
are complex hierarchies of GO terms, another useful tool 
is REVIGO, which can be applied to reduce functional 
redundancy of GO  term lists and visualize the results 
[49]. One downside of REVIGO is that it requires GO 
term IDs as input. Depending on the output format of the 
preceding GO term analysis step, it may become neces-
sary to retrieve these IDs manually. Further discussion of 
the above described GO analysis tools can be found else-
where [86].

Enric hr is another interactive and collaborative gene 
list enrichment analysis tool, which can be applied to var-
ious genomics data, including data obtained from ChIP-
seq and ATAC-seq experiments [39]. The required input 
format for Enric hr are Entrez gene symbols. The program 
allows to query a given list of input gene symbols for 
various characteristics, such as consensus TFs, lncRNA, 
epigenetic roadmaps of histone marks, and various other 
enrichment paradigms that may be associated with these 
genes. In contrast to GO term analysis tools like PANTH 
ER or DAVID, which perform population-based statistics 
and therefore perform more reliably on larger gene sets, 
Enric hr can be queried for any number of genes, even 
single genes.

Network analysis
A frequent feature of transcription control is the recipro-
cal regulation of gene activities, including feedback- and 
feedforward-loops, both of which can be of highly com-
plex dynamics and often operate in parallel. Such multi-
factorial regulatory networks can be explored in silico 
with the help of computational approaches.

STRING (Search Tool for the Retrieval of Interacting 
Genes/Proteins) uses RNA-seq data to examine whether 
functional relationships may exist among gene prod-
ucts. STRING requires a list of gene names as input and 
performs network analysis on them, making use of the 
STRING database of known and predicted protein-pro-
tein interactions [42, 43]. A network of connected genes 
displayed as cloud of spheres and lines is given as output 
(see Fig. 3 E). This can be assessed interactively and sub-
jected to clustering analysis. The graphical output may be 
customized in its visual appearance and downloaded in 
high image quality.

RNA-seq data can further be subjected to a reverse 
analysis of gene expression regulatory networks. The 
aim hereby is to project transcriptional regulators that 
may function as upstream regulators of genes that were 
identified as differentially expressed in a given RNA-seq 
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experiment. One such approach is the web-based tool 
ISMARA (Integrated System for Motif Activity Response 
Analysis) [51]. It is designed to perform motif discovery 
and to predict key TFs and miRNAs, which may be criti-
cal for the changes in gene expression observed in a given 
experiment. For motif analysis, the tool only requires raw 
gene expression data as input (RNA-seq or microarray 
data) from a set of biological samples, uploaded as .fastq 
or .bed/.bam/.sam alignment files. These input data can 
be directly used for automatic processing and model-
ling, based on pre-calculated annotations of hundreds 
of regulatory sites of several mammalian genomes. Once 
the analysis is complete, ISMARA provides a table with 
the motive activities found in the samples, sorted by the 
significance score, which ISMARA assigns to each motif. 
Besides motif names and significance scores expressed 
as z-values, the output file also includes gene names of 
TFs associated with the motif, the activity profiles across 
samples, and the consensus binding sequence of TFs, 
termed logos (see Fig.  3 F). Each of the listed motifs is 
further linked to another separate results page, contain-
ing additional information. These include the top target 
genes known to be regulated by the motif, the target 
genes network according to the STRING database [42, 
43], respective gene ontology analysis of various catego-
ries, as well as predicted direct regulatory interactions 
between this and other motifs (see Fig. 3 F’). All collected 
information together with high-resolution images can be 
downloaded from the website. Repeating ISMARA analy-
ses with sample averaging emphasizes contrasts between 
sample groups (e.g. treated vs. non-treated). ISMARA 
thereby allows the annotation of replicates and calculates 
motif activity profiles that are averaged over these repli-
cates and thus enables a simple initial analysis of possi-
ble regulatory networks. However, ISMARA predicts the 
TF motifs only based on proximal promotors. This fea-
ture can be a shortcoming of this tool, as many TFs pre-
dominantly bind to distal or intragenic control regions of 
gene expression, like enhancers, rather than to proximal 
promotors. Finally, ISMARA can also be applied to ChIP-
seq data for motif discovery, similar to MEME- ChIP 
described earlier. Alternative transcription factor binding 
site analysis tools are oPOSS UM [52] and RSAT network-
interactions [28].

Further applications of RNA‑seq
Bulk RNA-seq determines the average expression level 
of individual genes over a large and often inhomogene-
ous starting cell population. This approach can deliver a 
wide range of information in various experimental setups 
but may not be sufficient when cellular and spatial lev-
els need to be considered. Spatial transcriptomics and 
scRNA-seq are two new, sophisticated methods that fill 

these gaps. scRNA-seq allows to read the transcriptome 
of individual cells in great depth and, thus, delivers infor-
mation of gene expression with cellular precision. This 
technical advance has greatly changed how gene expres-
sion is studied in biology and biomedicine. The boom in 
this technology led to an exponential increase of available 
scRNA-seq datasets, the navigation through which can 
be challenging. The Human  Cell Atlas project pursues 
the ambitious goal to map every cell type in the human 
body. A comprehensive, manually curated and search-
able list of single-cell transcriptomics studies, indexed by 
publication and including meta-data such as cell source, 
type of analysis, and protocol used can be found here 
[87]. scRNA-seq datasets can be accessed through GEO 
Acces sion Viewer, but numerous other collections exist, 
with The Singl e Cell Expre ssion  Atlas hosted by EMBL-
EBI or the Cell Types  RNA- Seq Atlas of Allen Brain Insti-
tute, which contains transcriptomic information from 
mouse and human cortex, being just two examples of 
many. Upon publication, pre-analyzed scRNA-seq data-
sets are often made accessible via interactive web appli-
cations, frequently presented as visually appealing Shiny  
Apps. These can be employed for in-depth assessment 
of individual genes and cell cohorts but mostly must be 
accessed through a link given in the respective original 
publication. Readers specifically interested in bioinfor-
matic analysis of scRNA-seq data are referred to the large 
number of excellent recent reviews on this topic, such 
as [88–91]. A web-based, manually curated catalogue 
of software tools for the analysis of scRNA-seq data is 
scRNA- tools  datab ase.

While the cell-to-cell heterogeneity in popula-
tions of cells is kept in scRNA-seq, spatial transcrip-
tomics retains the spatial information of transcripts 
within tissues [92–94]. The method quickly expanded 
in the last few years to include applications to epig-
enome sequencing via chromatin state profiling [95] 
and to ATAC-sequencing [96]. The positional infor-
mation is obtained via arrayed barcoded oligonucleo-
tides that are hybridized to overlaid tissue specimen. 
These approaches also allow multimodal spatial profil-
ing for example with antibody-based protein barcod-
ing approaches in parallel to next-generation RNA-seq 
[97]. The tools and platforms described in the current 
review are also applicable to spatial -Omics datasets 
once appropriate transformation of the data and clus-
tering is performed to separate the positional informa-
tion from the sequencing data. For example, RNA-seq 
data obtained from spatial transcriptomics can be ana-
lyzed by DESeq2 for comparing the raw data (.fastq) 
from 2 regions of interest to obtain differential gene 
expression between them. In addition, spatial tran-
scriptomics data can be explored with the help of tools 
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like the 10x Genom ics Loupe  Brows er or several spe-
cialized software packages [98], many of which can be 
accessed through bio. tools but require more program-
ming experience.

Integrative data analysis
In order to maximize the opportunities for insight 
that computational analysis tools provide, it is often 
necessary to triangulate and integrate information 
from various sources. Several tools and pipelines can 
be employed to bioinformatically integrate data from 
various sequencing experiments. One useful tool to 
annotate ChIP-seq peaks with the two closest genes 
is RnaCh ipInt egrat or. However, unlike most of the 
other tools described in this review RnaCh ipInt egrat or 
requires some programming and command line expe-
rience. Using RNA-seq as prompt, the RSAT module 
retrieve-sequences allows to extract upstream, down-
stream or open reading frame sequences [99], while 
RSAT retrieve-ensembl-seq retrieves sequences of 
promotors or other specified features on-the-fly from 
Ensembl [28]. These promotor regions can be subjected 
to downstream motif analysis to discover potential TF 
binding sites using RSAT network-interactions, as well 
as overlapped with relevant ChIP-seq data using bedto 
ols inter sect. In cases where ATAC-seq data is avail-
able, intersection of promotors and TF occupancy can 
be further refined by information about chromatin 
accessibility, thus integrating data from three different 
sequencing paradigms. Subsequently, after conversion 
of the peak data to gene sets e.g. following this Galaxy 
tutor ial, datasets can be subjected to STRING and thus 
interrogated for an in silico prediction of protein-pro-
tein interactions. Finally, once the above strategies have 
revealed genomic binding of one or more DNA-bind-
ing proteins in close proximity, proteomics databases 
such as PRIDE (PRoteomics IDEntifications Data-
base) or BioGR ID can be interrogated to determine 
whether corresponding protein-protein interactions 
have already been detected in similar biological systems 
[100–102].

Conclusions
Traditionally, the epistemic culture in Molecular Biol-
ogy used to follow an unidirectional path from hypoth-
esis to data acquisition [103, 104]. In the post-genomics 
era, Biology has been increasingly informed by infor-
matics as to cope with large-scale datasets produced by 
whole-genome sequencing approaches. Bioinformatics 
has since evolved as a subdiscipline of Molecular Biol-
ogy, but the two research disciplines still need to be 
more fully integrated.

In this review, we present general resources and an 
exemplary analysis pipeline that integrates publicly 
available data types and multiple research method-
ologies. The use of published genomics data together 
with multi-layered data integration may constitute a 
new epistemic practice to uncover biological functions 
as well as their relationality in space and time. As an 
added benefit, resources may be used more sustainably, 
as new hypotheses can be first tested in silico  before 
moving to experiments in the wet-lab. Indeed, in recent 
years an increasing number of researchers have inte-
grated their own results with public datasets and used 
bioinformatic tools in their analysis similar to what we 
proposed in this review. This includes such broad appli-
cations as cellular senescence [105], carcinogenesis [38, 
106], or immunology [107, 108].

Still, this approach necessitates a reciprocal reflec-
tion of the object of inquiry and the methodology used, 
and questions such as the following should therefore 
be asked: What kind of data are available and which 
data might be lacking to complement the picture? 
How was the data produced, what bias may have been 
introduced? Can biological contexts be compared (e.g. 
because of evolutionary relation) or should they be 
considered separately? What are relevant and ontologi-
cally meaningful controls? The latter point is particu-
larly important when multiple datasets are compared, 
and corrections for multiple testing need to be applied. 
Because bioinformatic tools are continuously devel-
oped and new genomics datasets become available, 
the approach presented here must be considered as a 
procedural activity constantly under flux rather than a 
fixed pipeline. Experimental validation of bioinformati-
cally derived hypothesis and in silico predictions should 
be triangulated with in vitro and in vivo approaches to 
bridge the gap of disciplinary languages, and to gain a 
deeper insight into the objects of inquiry in both mate-
rial and informational dimensions.
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