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Abstract 

Background Due to the dynamic nature of enhancers, identifying enhancers and their strength are major bioin-
formatics challenges. With the development of deep learning, several models have facilitated enhancers detection 
in recent years. However, existing studies either neglect different length motifs information or treat the features at all 
spatial locations equally. How to effectively use multi-scale motifs information while ignoring irrelevant information 
is a question worthy of serious consideration. In this paper, we propose an accurate and stable predictor iEnhancer-
DCSA, mainly composed of dual-scale fusion and spatial attention, automatically extracting features of different 
length motifs and selectively focusing on the important features.

Results Our experimental results demonstrate that iEnhancer-DCSA is remarkably superior to existing state-of-
the-art methods on the test dataset. Especially, the accuracy and MCC of enhancer identification are improved 
by 3.45% and 9.41%, respectively. Meanwhile, the accuracy and MCC of enhancer classification are improved by 7.65% 
and 18.1%, respectively. Furthermore, we conduct ablation studies to demonstrate the effectiveness of dual-scale 
fusion and spatial attention.

Conclusions iEnhancer-DCSA will be a valuable computational tool in identifying and classifying enhancers, espe-
cially for those not included in the training dataset.

Keywords Enhancers, Dual-scale convolution, Spatial attention, Word embedding

Introduction
Enhancers are short non-coding DNA fragments that 
play a crucial role in controlling gene expression [1]. 
Recent studies have revealed that genetic variation in 
enhancers has been associated with many human ill-
nesses, especially various types of cancer [2], disorders 
[3] and inflammatory bowel disease [4]. Identifying and 
classifying enhancers has become a research hotspot in 
bioinformatics and computational biology. However, 
enhancers have dynamic natures, which can even be up 
to 1 Mbp away from the target genes, and exist in various 
chromosomes [5], making the identification and classifi-
cation of enhancers a challenging task.

Although the current biological experimental meth-
ods are effective, they are costly and time-consuming 
[6]. With the development of Machine Learning (ML), 
several ML-based computational prediction methods 
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have been proposed to identify enhancers in genomes 
quickly. For example, ChromeGenSVM [7], RFECS [8], 
EnhancerFinder [9] and DEEP [10]. These computational 
approaches focus on distinguishing enhancers from non-
enhancers by treating enhancer identification as a binary 
classification problem. However, enhancers are a group 
of functional elements that are formed by different sub-
groups, such as weak enhancers and strong enhancers. 
Enhancers of different subgroups imply distinct levels 
of biological activity and different regulatory effects on 
target genes. To understand the gene regulation mecha-
nism of enhancers, it is critical to correctly classify them 
into these subgroups. Hence, several two-layer predic-
tors have been proposed that not only identify enhanc-
ers but also predict their strength, such as iEnhancer-2L 
[11], EnhancerPred [12], iEnhancer-EL [6], iEnhancer-XG 
[13] and iEnhancer-RF [14]. But these methods usually 
need to elaborately design hand-crafted features or use 
the ensemble of multiple models based on different fea-
tures. Their performance heavily depends on the quality 
of hand-crafted features or ensemble. Besides, it is diffi-
cult to extract comprehensive nucleotide patterns from 
DNA sequences based on limited experience and domain 
knowledge.

Therefore, some researchers begin to use deep learning 
methods to identify enhancers and their strengths, such 
as EnhancerDBN [15], iEnhancer-ECNN [16], BERT-
Enhancer [17], iEnhancer-RD [18], iEnhancer-GAN [19], 
iEnhancer-EBLSTM [20] and spEnhancer [21]. Although 
these approaches have facilitated the identification and 
classification of enhancers, they have some of the follow-
ing disadvantages: (i) Neglect features of different length 
motifs within enhancers that are useful for enhancer 
identification and classification. The experimentally char-
acterized enhancer sequences have variable lengths and 
contain motifs of various sizes [22]. In previous work, the 
features of an enhancer sequence are extracted sequen-
tially by a fixed-size filter. In this way, it is difficult to 
sufficiently and efficiently extract features of different 
length motifs in the DNA sequence. (ii) Treat features at 
all spatial locations equally. Intuitively, features at differ-
ent spatial locations contribute differently to enhancer 
identification and classification. Therefore, it is necessary 
to assign different attention scores to features at differ-
ent spatial locations, focusing on important features and 
suppressing unnecessary ones. (iii) Ignore the relation-
ship between adjacent nucleotides. The feature encod-
ing strategy in previous methods mainly adopts one-hot, 
k-mer, Word2Vector and BERT. Although k-mer consid-
ers the relationship between adjacent nucleotides among 
these methods, using only k-mer features to encode 
raw sequence cannot keep the raw sequence order 
information.

To overcome the disadvantages mentioned above, we 
propose an accurate and stable predictor in this paper. 
From Fig. 1, we can see the comparison of previous deep 
learning methods with our method. Aiming at the first 
disadvantage (i), we construct a dual-scale fusion mod-
ule to obtain features of different length motifs in the 
DNA sequence, making up for the deficiency that only 
using a single fixed-size filter can not extract the fea-
tures sufficiently and efficiently. Extracting features of 
different length motifs can improve the network’s ability 
to identify and classify enhancers. Aiming at the second 
disadvantage (ii), we employ a spatial attention module, 
assigning different attention scores to features at differ-
ent spatial locations in the feature matrix. Spatial atten-
tion can focus on important features that help identify 
and classify enhancers. Aiming at the third disadvantage 
(iii), we implement a superior feature representation 
method by combining n-gram [23] with skip-gram [24], 
inspired by Yang et  al. [19]. The method can enhance 
the relationship between adjacent nucleotides of DNA 
sequences while keeping the raw sequence order infor-
mation. In this paper, we name the proposed predictor 
iEnhancer-DCSA. Experimental results demonstrate 
that iEnhancer-DCSA achieves outstanding performance 
compared to existing state-of-the-art predictors on the 
benchmark dataset.

Related work
Machine learning methods for enhancer prediction
Although the current biological experimental methods 
are effective, they are time-consuming and expensive. 
To fast identify enhancers, several ML-based prediction 
approaches have been developed. Firpi et  al. [25] intro-
duced a computational framework, CSI-ANN, that used 
chromatin histone modification signatures. But its prac-
tical application was limited because it worked with an 
excessive number of marks. Fernandez and Miranda-
Saavedra [7] proposed a method, ChromaGenSVM, using 
the selected optimal combinations of specific histone epi-
genetic marks. Rajagopal et al. [8] developed RFECS for 
integrating histone modification profiles. Erwin et al. [9] 
proposed EnhancerFinder, which applied a multiple ker-
nel learning (MKL) algorithm to combine diverse data. 
Kleftogiannis et  al. [10] developed DEEP, an ensemble 
framework, which integrated three components with 
diverse characteristics. These above methods needed 
manual feature construction and focused on distinguish-
ing enhancers from non-enhancers. However, to really 
understand the gene regulation mechanism of enhancers, 
it is indispensable to accurately distinguish their strength.

Therefore, several two-layer predictors have been pro-
posed, whose flowchart is depicted in Fig.  2. Liu et  al. 
[11] proposed iEnhancer-2L by using the pseudo k-tuple 
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nucleotide composition (PseKNC). Jia and He [12] devel-
oped EnhancerPred, which applied a two-step wrapper-
based feature selection strategy to high dimension feature 
vector. Due to the unsatisfactory performance of the two-
layer predictor in identifying strong and weak enhancers, 
Liu et al. [6] proposed an upgraded version of iEnhancer-
2L called iEnhancer-EL, composed of 16 independent 
key classifiers. These classifiers were selected from a set 
of 171 elementary classifiers constructed by SVM using 
k-mer, subsequence profile and PseKNC. To provide 
interpretability and further improve the performance, 
Cai et  al. [13] proposed iEnhancer-XG, which used five 
feature extraction methods. iEnhancer-XG allowed using 
SHapley Additive exPlanations (SHAP) to explain the 
impacts of different feature types. Since the prediction 
performance of these machine learning methods heavily 
depended on the quality of hand-crafted features, they 
usually elaborately designed useful features. Although 
several methods have used the ensemble of multiple 
models based on different features, it is generally difficult 

to extract comprehensive nucleotide patterns from DNA 
sequences based on limited experience and domain 
knowledge. Compared to the above works, our method 
does not need to carefully design and generate hand-
crafted features.

Deep learning methods for enhancer prediction
Inspired by the successful application of deep learning to 
several problems in bioinformatics, Bu et al. [15] explored 
employing the deep belief network EnhancerDBN for 
identifying enhancers. EnhancerDBN demonstrated that 
deep learning could effectively boost performance. Then 
Nguyen et  al. [16] proposed iEnhancer-ECNN, which 
used ensembles of CNNs. Since word embedding tech-
niques had large potential applications for sequence 
analysis, Le et al. [17] presented a model BERT-Enhancer 
based on BERT and 2D CNN. In the same year, Yang et al. 
[18] developed a predictor, iEnhancer-RD, using new 
coding schemes and deep neural networks. Considering 
that the training dataset was relatively small, Yang et al. 

Fig. 1 Comparison of previous deep learning methods with our proposed method in identifying enhancers. ‘ ⊕ ’ and ‘ ⊙ ’ denote the concatenation 
operation and element-wise multiplication, respectively. Best viewed in color
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[19] proposed iEnhancer-GAN, which used Seq-GAN 
to enlarge the training dataset and constructed CNN 
to perform identification tasks. Niu et  al. [20] used just 
DNA sequence information and ensembles of BLSTM to 
build a prediction network called iEnhancer-EBLSTM. 
Because deep learning methods might be improved by 
removing features that do not contribute to the models, 
Mu et al. [21] proposed a BD-LSTM model spEnhancer, 
which hypothesized that different word vector features 
might have different contributions and assigned different 
weights to these word vectors.

All the above deep learning frameworks neglect fea-
tures of different length motifs within enhancers that 
are useful for enhancer identification and classifica-
tion. And EnhancerDBN [15], iEnhancer-ECNN [16], 
iEnhancer-GAN [19] and iEnhancer-EBLSTM [20] treat 
the features at all spatial locations equally. But in fact, 
features at different spatial locations contribute dif-
ferently to enhancer identification and classification. 
Despite the presence of a self-attention mechanism in 
the BERT-Enhancer [17], it is necessary to fine-tune the 
selected BERT-based multilingual cased pre-trained 
model due to the huge number of parameters in BERT 
and the small number of labelled samples in the train-
ing dataset. Because the field of pre-trained task is 
different from that of downstream target task, BERT-
Enhancer is difficult to achieve promising results with-
out sufficient samples for fine-tuning. Moreover, when 

employing the attention mechanism in the BD-LSTM 
model for enhancer detection, spEnhancer [21] needs 
to introduce the location information of each k-mer 
into the DNA sequence encoding strategy. Compared 
to previous predictors, our model not only considers 
extracting features of different length motifs in various 
enhancers but also employs spatial attention to directly 
focus on the important features.

Materials and methods
This section introduces our proposed predictor for iden-
tifying and classifying enhancers. The overall framework 
consists of three modules, as shown in Fig. 3. (1) We per-
form feature representation to obtain the word embed-
ding of DNA sequences by combining n-gram word 
segmentation operation with skip-gram model. (2) We 
simultaneously extract features from the input sequence’s 
word embedding by using two filters with different recep-
tive fields, and then conduct feature fusion to obtain 
informative features of different length motifs in the 
DNA sequence. (3) We utilize spatial attention to focus 
on important features that can help identify and classify 
enhancers, avoiding introduce confusions when treating 
features equally. The feature matrix obtained through the 
above steps is input sequentially to a max-pooling layer 
and a fully-connected layer to predict the enhancer and 
its strength.

Fig. 2 The flowchart to show how two-layer predictors work. Enhancer classifier I is used to identify enhancers, while enhancer classifier II is used 
to classify strong enhancers and weak enhancers. Classifier I and II are built on the same framework



Page 5 of 14Wang et al. BMC Genomics          (2023) 24:393  

Benchmark dataset
The benchmark dataset was obtained from the stud-
ies by Liu et  al. [6, 11]. Its construction was based on 
the chromatin state information of nine cell lines, i.e., 
GM12878, H1ES, HepG2, HMEC, HSMM, HUVEC, 
K562, NHEK, and NHLF. The entire genome profile of 
multiple histones was used to annotate the chromatin 
state information. According to the annotation infor-
mation, the identified numbers of strong enhancers, 
weak enhancers and non-enhancers were 742, 370 517 
and 5 257 994, respectively. To remove redundancy 
and prevent bias, the ‘CD-HIT’ tool was used to elimi-
nate the sequences whose similarity exceeded 20%. 
The number of non-enhancers and weak enhancers is 
far greater than that of strong enhancers. To avoid the 
class imbalance of training samples affecting the effect 
of model training, a random sampling method was uti-
lized to balance the benchmark dataset. Obviously, the 
same dataset provides a platform for the fair compari-
son with previous research.

The whole dataset consists of two parts: training and 
independent test datasets. The training dataset con-
tains 1484 enhancers and 1484 non-enhancers, which 
is for enhancer identification. Furthermore, among the 
enhancers, strong and weak enhancers both have 742 

samples, which is for enhancer classification. The inde-
pendent test dataset includes 100 strong enhancers, 100 
weak enhancers and 200 non-enhancers.

Feature representation
Since genomic sequences are considered a language for 
transmitting genetic information within and between 
cells, we select the word embedding technique for fea-
ture representation. The method solves the sparseness 
problem in word vectors brought by the one-hot encod-
ing scheme and considers the context information in 
the word vector representation [26]. Many bioinformat-
ics researchers have already deployed word embedding 
to represent biological sequences, regarding the DNA 
sequence as the ‘sentence’ and the letters A, C, G, and 
T as the ‘word’. However, only adopting the four words 
A, C, G, and T to represent a DNA sequence ignores 
the internal structure of the DNA sequence, limiting the 
overall performance of predictors [27]. To this end, we 
combine the n-gram word segmentation method with the 
Word2Vector technique to perform feature representa-
tion. The detailed flowchart of feature representation is 
shown in Fig. 3 (a).

According to molecular biology’s central dogma, the 
genetic codon comprises three consecutive nucleotides, 

Fig. 3 The overall framework of our method. It contains three parts: feature representation, dual-scale fusion and spatial attention. a We use 
the classic word2vec model skip-gram combined with 3-gram word segmentation operation for feature representation. b We design a dual-scale 
fusion module to facilitate feature extraction of different length motifs in DNA sequences. c We employ a spatial attention module to focus 
on important features and suppress unnecessary ones. Best viewed in color
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transmitting genetic information from mRNA to protein 
and determining protein synthesis [28]. In view of this, 
we adopt the 3-gram word segmentation operation in our 
experiments, indicating the DNA sequence as a sentence 
and every three consecutive nucleotides as a word. For 
example, sequence ATCGG can be represented by three 
words: ATC, TCG, CGG. Thus, a DNA sequence consist-
ing of K nucleotides can be formulated as :

where N = K − 2 and N is the total number of words in 
the DNA sequence. wn represents the nth word.

For Word2Vector techniques, two classical models can 
be applied to generate a feature vector for each word, i.e., 
skip-gram and CBOW. Although both techniques are 
used for word embedding, we experimentally find that 
skip-gram is more effective than CBOW in our method. 
Thus, we select the skip-gram model for word embedding 
with the following objective function:

where c is the window size of the training context, and 
p(wn+i|wn) is defined as follows:

where e′wn+i and e′wj are output vector representations 
of words wn+i and wj respectively, and ewn is input vector 
representation of word wn . W is the words number in a 
vocabulary. Based on the above combination of 3-gram 
and skip-gram, we can obtain superior word embeddings 
of input DNA sequences.

Dual‑scale fusion
Combining the CNN-based deep learning methods with 
the word embedding methods has been demonstrated to 
identify and classify enhancers effectively [17]. At pre-
sent, biologists have discovered that enhancer sequences 
usually contain motifs of different lengths, which are 
highly conserved short gene segments. The motifs and 
their sizes may vary in different enhancers, even within 
the same enhancer sequence. The sufficient and efficient 
extraction of features from motifs will help identify and 
classify enhancers.

However, existing methods employing CNN to identify 
and classify enhancers only use a single-scale convolution 
operation (i.e. a fixed-size filter) to extract features from 
the DNA sequences. Naturally, this method is not con-
ducive to feature extraction of different length motifs in 
DNA sequences. Therefore, in this paper, we adopt two 

(1)S = {w1,w2,w3, ......,wN },

(2)L = −
1

N

N

n=1 −c≤i≤c,i �=0

log p(wn+i|wn),

(3)p(wn+i|wn) =
exp((e′wn+i)

T ewn)∑W
j=1 exp((e

′
wj )

T ewn)
,

1D convolution operations with different scales. Under 
different receptive field sizes, they can effectively extract 
features of varying length motifs from the word embed-
ding of DNA sequences and then perform feature fusion, 
as shown in Fig. 3 (b). Moreover, enhancer sequences are 
known to be rich in transcription factor binding sites. 
According to Hong et al.’s survey [29], motifs length typi-
cally ranges from 5 to 30, and the average length is 11. 
Selecting the filter size of around 11 may help identify 
motifs, thereby improving the ability to identify and clas-
sify enhancers. Inspired by Hwang et al. [30], we take into 
account motif lengths of 8, 10 and 12 bp in each sam-
ple. Therefore, the combinations of 8, 10, 12 are experi-
mented and the results analysis is shown in the Results 
and discussion section (see Performance comparison of 
different scale fusions section). We select the best com-
bination (10,12). Dual-scale fusion can be expressed as:

where f 10 and f 12 represent convolution operations with 
filter sizes of 10 and 12, respectively. Ein denotes the word 
embedding of input DNA sequence. [·, ·] indicates con-
catenation for feature fusion. We select ReLU as the acti-
vate function in F. Dual-scale fusion compensates for the 
inadequacy that only a fixed-size filter can not sufficiently 
and efficiently extract features of different sizes motifs 
from the word embedding of DNA sequences, improving 
the model’s ability to identify and classify enhancers.

Spatial attention
Attention plays a vital role in human perception. The 
attention mechanism is widely used in classification 
tasks in natural language processing [31, 32] and com-
puter vision [33, 34]. In this study, we present a spatial 
attention-based method to further improve model per-
formance. We utilize the inter-spatial relationship of fea-
tures in the feature matrix to assign different attention 
scores to features at different spatial locations, deciding 
‘where’ is an informative part to be focused on.

Since pooling operations effectively highlight informa-
tive regions, we perform average and max pooling opera-
tions along the channel axis, respectively, and concatenate 
the average and max pooled features to produce an effi-
cient feature descriptor. Then the feature descriptor is 
processed using a 1D convolution layer and sigmoid func-
tion to generate a spatial attention vector. The vector can 
help our network learn which spatial location features in 
the feature matrix contribute to identifying and classify-
ing enhancers. Figure 3 (c) depicts the computation pro-
cess of the spatial attention vector, represented as follows:

(4)F(Ein) = [ReLU(f 10(Ein)),ReLU(f 12(Ein))],

(5)S(F) = Sigmoid (f [AvgPool(F),MaxPool(F)]),
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where F indicates the feature matrix obtained by dual-
scale fusion and f represents a 1D convolution operation. 
Next, the spatial attention vector S(F) is multiplied with 
the feature matrix F to obtain the refined feature matrix 
F̂  , shown as follows:

where ⊙ indicates element-wise multiplication. The spa-
tial attention scores are broadcasted along the chan-
nel dimension during multiplication, making our model 
focus on important features while suppressing unneces-
sary ones. Finally, we perform a max-pooling operation 
along the spatial dimension and use a fully-connected 
layer to get the final classification probability. The pro-
posed method iEnhancer-DCSA is trained using the 
cross-entropy loss:

where pi and yi are the prediction probability and label 
for sample i, respectively. N ′ is the batch size of sequence 
samples. We use Adam optimizer during training.

Model settings and evaluation metrics
In this study, we divide DNA sequences (sentences) 
into overlapping nucleotide fragments (words) by a 
fixed sliding window of size 3. Then the skip-gram 
model is employed to train every three nucleotides into 
a 20-dimensional word vector. Table  1 lists the detailed 
information about the parameters for the word2vec 
model. Dual-scale fusion mainly consists of two 1D con-
volution layers with 1024 filters of 10 units and 1024 fil-
ters of 12 units separately. Table 2 provides the detailed 
configuration of the dual-scale fusion module. Spa-
tial attention mainly comprises average-pooling and 

(6)F̂ = F ⊙ S(F),

(7)LCE = −
1

N ′

N ′∑

i=1

yi ln pi,

max-pooling operations. Table  3 shows the detailed 
information of the spatial attention module.

For a fair performance comparison, we follow the pre-
vious predictors [13, 21] to evaluate our model perfor-
mance using cross-validation and independent test. The 
four widely-used classification performance metrics are 
applied to quantitatively measure the prediction perfor-
mance: accuracy (ACC), Matthews correlation coeffi-
cient (MCC), sensitivity (SN), and specificity (SP). These 
metrics are well-known in bioinformatics [35–37] and 
are used in benchmark research on identifying and clas-
sifying enhancers. The definition of each metric is given 
below:

where TP, FP, TN, and FN represent true positives, false 
positives, true negatives, and false negatives, respec-
tively. As in previous works [6, 21], the overall perfor-
mance metrics ACC and MCC are regarded as the most 

(8)ACC =
TP + TN

TP + FN + TN + FP
,

(9)SN =
TP

TP + FN
,

(10)SP =
TN

TN + FP
,

(11)MCC =
(TP × TN ) − (FP × FN )

√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
,

Table 1 Detailed information for the word2vec model’s training 
parameters

Parameters Value

Method Skip-gram

Corpus Benchmark 
training dataset 
[11]

Vector Size 20

Window Size 5

Minimum Count 1

Initial Learning Rate 0.025

Number of Epochs 51

Negative Sampling 5

Downsample Threshold 1e-3

Table 2 Detailed configuration of the dual-scale fusion module

Note: ♠ and ♣ are in parallel. ‘Concat’ denotes concatenation

Layers Output shape

Input [20, 198]

♠ Conv1D(1024, 10, 1) + ReLU [1024, 189]

♣ Conv1D(1024, 12, 1) + ReLU [1024, 187]

Concat(♠ , ♣) [1024, 376]

Table 3 Detailed configuration of the spatial attention module

Note: ♠ and ♣ are in parallel. ‘Concat’ and ‘Multiply’ denote concatenation and 
element-wise multiplication, respectively

Layers Output shape

♥ Input [1024, 376]

♠ MaxPool(1) [1, 376]

♣ AvgPool(1) [1, 376]

Concat(♠ , ♣) [2, 376]

♦ Conv1D(1, 7, 1) + Sigmoid [1, 376]

Multiply(♥ , ♦) [1, 376]
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important indicators. The former reflects predictors’ 
overall accuracy, while the latter is used for denoting sta-
bility in practical applications. The metrics SN and SP 
represent the ratios of correctly predicted positive and 
negative samples, respectively. Furthermore, we also add 
AUC for evaluation. A good model tends to have a high 
AUC value.

Results and discussion
In this section, extensive experiments are performed to 
demonstrate the efficacy of our proposed method. First, 
we compare the performance of iEnhancer-DCSA with 
existing predictors. Then, we implement some ablation 
experiments to illustrate the effectiveness of dual-scale 
fusion and spatial attention. Furthermore, we explore the 
impact of several combinations of different filter sizes on 
model performance and select the combination with the 
optimal performance.

Performance comparison between proposed predictor 
and existing methods
To demonstrate the effectiveness of our approach for 
identifying and classifying enhancers, performance 
results from our predictor should be compared to pre-
viously published works. We train with the training set 

and perform an independent test. The training and inde-
pendent test datasets are described in the previous sec-
tion. As shown in Table  4, iEnhancer-DCSA reaches an 
outstanding performance compared to previous works 
on the blind dataset. In the first layer, iEnhancer-DCSA 
achieves an accuracy of 82.50%, MCC of 0.651, sensitiv-
ity of 79.50%, specificity of 85.50%, and AUC of 85.58%. 
Subsequently, the second layer’s accuracy, MCC, sensi-
tivity, specificity, and AUC reach 91.50%, 0.837, 98.00%, 
85.00%, and 96.60%, respectively. The experimental 
results indicate that iEnhancer-DCSA is remarkably 
superior to existing state-of-the-art methods in terms of 
accuracy and MCC. In detail, the accuracy and MCC of 
enhancer identification (layer 1) are improved by 3.45% 
and 9.41%, respectively. Meanwhile, the accuracy and 
MCC of enhancer classification (layer 2) are improved 
by 7.65% and 18.1%, respectively. Especially in the sec-
ond layer, our predictor establishes a new state-of-the-
art in terms of all metrics, significantly higher than other 
methods, except that AUC obtains the second. We intui-
tively visualize accuracy and MCC comparison in Fig. 4 
between our iEnhancer-DCSA and the other models. 
From Fig.  4, we observe that our model is suitable for 
enhancer identification and especially for enhancer clas-
sification. Moreover, we explore the model’s uncertainty 

Table 4 Performance comparison of the independent test on the same independent test dataset

Note: ‘-’ indicates no result in the paper, and the best performance is highlighted in bold while the second-best performance is underlined

Layer Method ACC(%) MCC SN(%) SP(%) AUC(%)

First Layer (Enhancer 
Identification)

iEnhancer-2L [11] 73.00 0.460 71.00 75.00 80.62

EnhancerPred [12] 74.00 0.480 73.50 74.50 80.13

iEnhancer-EL [6] 74.75 0.496 71.00 78.50 81.73

iEnhancer-ECNN [16] 76.90 0.537 78.50 75.20 83.20

iEnhancer-XG [13] 75.75 0.515 74.00 77.50 -

BERT-Enhancer [17] 75.60 0.514 80.00 71.20 -

iEnhancer-EBLSTM [20] 77.20 0.534 75.50 79.50 83.50

iEnhancer-RF [14] 79.75 0.595 78.50 81.00 86.00
iEnhancer-RD [18] 78.80 0.576 81.00 76.50 84.40

spEnhancer [21] 77.25 0.579 83.00 71.50 82.35

iEnhancer-DCSA (Ours) 82.50 0.651 79.50 85.50 85.58

Second Layer (Enhancer 
Classification)

iEnhancer-2L [11] 60.50 0.218 47.00 74.00 66.78

EnhancerPred [12] 55.00 0.102 45.00 65.00 57.90

iEnhancer-EL [6] 61.00 0.222 54.00 68.00 68.01

iEnhancer-ECNN [16] 67.80 0.368 79.10 56.40 74.80

iEnhancer-XG [13] 63.50 0.272 70.00 57.00 -

BERT-Enhancer [17] - - - - -

iEnhancer-EBLSTM [20] 65.80 0.324 81.20 53.60 68.80

iEnhancer-RF [14] 85.00 0.709 93.00 77.00 97.00
iEnhancer-RD [18] 70.50 0.426 84.00 57.00 79.20

spEnhancer [21] 62.00 0.370 91.00 33.00 62.53

iEnhancer-DCSA (Ours) 91.50 0.837 98.00 85.00 96.60
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by randomly generating five additional random number 
seeds, resulting in five sets of experimental results for 
enhancer identification and classification, respectively. 
The mean accuracy in the first layer is found to be 82.20 
with a variance of 0.285, whereas the mean MCC is 0.645 
with a variance of 0.0001. Similarly, in the second layer, 
the mean accuracy is 90.50 with a variance of 1.1, and the 
mean MCC is 0.821 with a variance of 0.0004. The exper-
imental results show that our model still has the highest 
accuracy and MCC, and the variance is small, indicating 
that the model is also stable. For more details, please see 
Supplementary Table S1.

In addition, we follow iEnhancer-XG [13] to adopt 
the 10-fold cross-validation to evaluate our method. 
We divide the training dataset randomly into ten dis-
joint parts of approximately equal size. Each part is, in 
turn, used as a validation set, and the rest are combined 

to train our network. As shown in Table  5, iEnhancer-
DCSA reaches a competitive performance compared 
to the previous state-of-the-art work. In the first layer, 
our model achieves an accuracy of 78.94%, MCC of 
0.580, sensitivity of 72.84%, specificity of 84.23%, and 
AUC of 84.97%. Subsequently, the second layer’s accu-
racy, MCC, sensitivity, specificity, and AUC reach 
66.91%, 0.344, 72.58%, 61.00%, and 68.72%, respectively. 
Although the proposed approach only has the second-
highest accuracy and MCC in identifying enhancers dur-
ing cross-validation, being lower than iEnhancer-XG, 
iEnhancer-XG uses five feature extraction methods and 
needs to perform complex feature engineering. In con-
trast, our method automatically learns the feature repre-
sentation from raw data and outperforms iEnhancer-XG 
in both accuracy and MCC metrics when classifying 
enhancers’ strength.

Fig. 4 Accuracy and MCC comparison of iEnhancer-DCSA with the other existing models. a Comparison on layer 1, b Comparison on layer 2



Page 10 of 14Wang et al. BMC Genomics          (2023) 24:393 

To summarize, the independent test and cross-val-
idation results show that iEnhancer-DCSA is a valu-
able computational tool for enhancer identification and 
enhancer classification, especially for the latter.

Effectiveness of dual‑scale fusion and spatial attention
Ablation studies are crucial for deep neural networks. 
To evaluate the contribution of dual-scale fusion and 

spatial attention in the whole framework, we conduct 
some ablation experiments and the results are shown 
in Table  6. “- SS1” and “- SS2” indicate that only one 
of the two different single-scale convolutions is used, 
implying the removal of dual-scale fusion from iEn-
hancer-DCSA. And “- SA” denotes the removal of spatial 
attention. The experimental results show that remov-
ing dual-scale fusion or spatial attention degrades the 

Table 5 Performance comparison of the cross-validation on the same training dataset

Note: ‘-’ indicates no result in the paper, and the best performance is highlighted in bold while the second-best performance is underlined

Layer Method ACC(%) MCC SN(%) SP(%) AUC(%)

First Layer (Enhancer 
Identification)

iEnhancer-2L [11] 76.89 0.540 78.09 75.88 85.00

EnhancerPred [12] 73.18 0.464 72.57 73.79 80.82

iEnhancer-EL [6] 78.03 0.561 75.67 80.39 85.47
iEnhancer-ECNN [16] - - - - -

iEnhancer-XG [13] 81.10 0.627 75.70 86.50 -

BERT-Enhancer [17] 76.20 0.525 79.50 73.00 -

iEnhancer-EBLSTM [20] - - - - -

iEnhancer-RF [14] 76.18 0.526 73.64 78.71 84.00

iEnhancer-RD [18] - - - - -

spEnhancer [21] 77.93 0.523 70.82 85.04 84.68

iEnhancer-DCSA (Ours) 78.94 0.580 72.84 84.23 84.97

Second Layer (Enhancer 
Classification)

iEnhancer-2L [11] 61.93 0.240 62.21 61.82 66.00

EnhancerPred [12] 62.06 0.241 62.67 61.46 66.01

iEnhancer-EL [6] 65.03 0.315 69.00 61.05 69.57
iEnhancer-ECNN [16] - - - - -

iEnhancer-XG [13] 66.74 0.340 74.94 58.55 -

BERT-Enhancer [17] - - - - -

iEnhancer-EBLSTM [20] - - - - -

iEnhancer-RF [14] 62.53 0.253 68.46 56.61 67.00

iEnhancer-RD [18] - - - - -

spEnhancer [21] 64.13 0.211 85.03 30.52 61.48

iEnhancer-DCSA (Ours) 66.91 0.344 72.58 61.00 68.72

Table 6 Ablation studies for iEnhancer-DCSA. “- SS1” and “- SS2” denote the absence of the first and second single-scale convolution, 
respectively. “- SA” represents no spatial attention. “- SS1 - SS2 - SA” indicates the removal of dual-scale fusion and spatial attention

Note: the best performance is highlighted in bold

Layer Method ACC(▽ACC) MCC(▽MCC) SN SP AUC 

First layer iEnhancer-DCSA 82.50 0.651 79.50 85.50 85.58
- SS1 81.50(-1.00) 0.631(-0.020) 79.00 84.00 85.50

- SS2 80.50(-2.00) 0.610(-0.041) 81.00 80.00 85.21

- SA 81.75(-0.75) 0.638(-0.013) 77.00 86.50 85.38

- SS1 - SS2 - SA 64.50(-18.0) 0.296(-0.355) 74.50 54.50 70.22

Second layer iEnhancer-DCSA 91.50 0.837 98.00 85.00 96.60
- SS1 87.00(-4.50) 0.762(-0.075) 99.00 75.00 93.16

- SS2 88.00(-3.50) 0.770(-0.067) 96.00 80.00 93.84

- SA 85.00(-6.50) 0.734(-0.103) 100.00 70.00 96.56

- SS1 - SS2 - SA 62.00(-29.5) 0.246(-0.591) 73.00 51.00 62.24
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model performance. It indicates that both modules play 
an important role in the entire network. Concretely, 
for the enhancer identification task, the accuracy and 
MCC of “- SS1” and “- SS2” are lower than “- SA”. This 
means the role of dual-scale fusion is greater than that 
of spatial attention. For the enhancer classification task, 
the accuracy and MCC of “- SA” are lower than “- SS1” 
and “- SS2”. This means the role of spatial attention is 
greater than that of dual-scale fusion. When only using 
dual-scale fusion in classifying enhancers’ strength, 
the SN reaches the highest value, indicating that dual-
scale fusion is sensitive to identifying strong enhanc-
ers. However, at this time, the SP is quite lower. After 
adding spatial attention, the SP demonstrates a notable 
enhancement, the gap between the SN and SP has sig-
nificantly narrowed, and the overall accuracy has also 
significantly improved. We can also see from Table 4 that 
our method is superior to other methods in classifying 
strong and weak enhancers, both SN and SP. Moreover, 
we simultaneously remove dual-scale fusion and spa-
tial attention in our iEnhancer-DCSA, like “- SS1 - SS2 
- SA”. It means using a max-pooling layer and a fully-
connected layer on feature representation to identify 
and classify enhancers. From Table 6, we can see that the 
accuracy and MCC of “- SS1 - SS2 - SA” are far lower 
than others in both the enhancer identification and 
enhancer classification tasks. Therefore, it also indicates 
that dual-scale fusion and spatial attention play a criti-
cal role in our framework. Figure 5 presents the receiver 
operating characteristic (ROC) curves for both tasks. It 

can be observed that the inclusion of dual-scale fusion 
or spatial attention significantly enhances the area under 
the curve (AUC). When both are incorporated, the 
model achieves the maximum AUC.

Performance comparison of different scale fusions
We consider the combinations of 8, 10 and 12bp for the 
motif length in each sample under the analysis of Materi-
als and methods section (see Dual-scale fusion section) 
and perform cross-validation and independent test in 
identifying enhancers and their strength. As shown in 
Fig.  6(a), the cross-validation accuracies of (10,12) are 
almost equal to (8,12), while the cross-validation MCCs 
of (10,12) are higher than (8,12). The detailed perfor-
mance results of dual-scale fusion using different combi-
nations of filters have been listed in Supplementary Table 
S2. Based on the comprehensive evaluation of accuracy 
and MCC, we select (10,12), which demonstrates an 
overall slightly superior performance, as the filter combi-
nation for dual-scale fusion. The independent test results 
further validate the appropriateness of this selection, as 
presented in Fig.  6(b). The independent test accuracies 
of (10,12) exhibit an improvement of 0.25% and 1% over 
(8,12), respectively. Moreover, all independent test MCCs 
of (10,12) outperform (8,12).

In addition, we also try to use more than two filters of 
varying sizes, but we find that the model performance is 
comparable or lower as the number of filters increases. 
The reason may be that, on the one hand, the num-
ber of samples of the benchmark dataset is not enough 

Fig. 5 The ROC curves for both layers. a Layer 1, b Layer 2
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Fig. 6 Performance comparison of dual-scale fusion using different combinations of filters on the benchmark dataset. a Cross-validation, b 
Independent test
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to support the use of more diverse convolution kernels 
in our framework. On the other hand, more convolu-
tion kernels of various sizes make it easy to introduce 
the noise from the word embedding of DNA sequences. 
Considering the time complexity and model parameters, 
we choose dual-scale fusion with the best performance.

Conclusion
In this study, we propose an efficient computational 
framework, iEnhancer-DCSA, to accurately and sta-
bly predict enhancers and their strength. We construct 
dual-scale fusion using convolution filters with differ-
ent receptive fields to simultaneously extract features 
of different length motifs from the word embedding 
of DNA sequences. We employ spatial attention to 
make our model focus on important features that con-
tribute to identifying enhancers and their strength. 
Experimental results demonstrate that iEnhancer-
DCSA achieves outstanding performance compared 
to existing predictors on both training and independ-
ent test datasets. Especially on the independent test 
dataset, the accuracy and MCC of enhancer identifi-
cation are improved by 3.45% and 9.41%, respectively, 
and the accuracy and MCC of enhancer classification 
are improved by 7.65% and 18.1%, respectively. In the 
future, we expect to leverage other biological knowl-
edge to optimize this deep learning framework and 
achieve better performance.
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