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Abstract
Background  The genetics of male fertility is complex and not fully understood. Male subfertility can adversely 
affect the economics of livestock production. For example, inadvertently mating bulls with poor fertility can result 
in reduced annual liveweight production and suboptimal husbandry management. Fertility traits, such as scrotal 
circumference and semen quality are commonly used to select bulls before mating and can be targeted in genomic 
studies. In this study, we conducted genome-wide association analyses using sequence-level data targeting seven 
bull production and fertility traits measured in a multi-breed population of 6,422 tropically adapted bulls. The beef 
bull production and fertility traits included body weight (Weight), body condition score (CS), scrotal circumference 
(SC), sheath score (Sheath), percentage of normal spermatozoa (PNS), percentage of spermatozoa with mid-piece 
abnormalities (MP) and percentage of spermatozoa with proximal droplets (PD).

Results  After quality control, 13,398,171 polymorphisms were tested for their associations with each trait in a mixed-
model approach, fitting a multi-breed genomic relationship matrix. A Bonferroni genome-wide significance threshold 
of 5 × 10− 8 was imposed. This effort led to identifying genetic variants and candidate genes underpinning bull fertility 
and production traits. Genetic variants in Bos taurus autosome (BTA) 5 were associated with SC, Sheath, PNS, PD and 
MP. Whereas chromosome X was significant for SC, PNS, and PD. The traits we studied are highly polygenic and had 
significant results across the genome (BTA 1, 2, 4, 6, 7, 8, 11, 12, 14, 16, 18, 19, 23, 28, and 29). We also highlighted 
potential high-impact variants and candidate genes associated with Scrotal Circumference (SC) and Sheath Score 
(Sheath), which warrants further investigation in future studies.

Conclusion  The work presented here is a step closer to identifying molecular mechanisms that underpin bull fertility 
and production. Our work also emphasises the importance of including the X chromosome in genomic analyses. 
Future research aims to investigate potential causative variants and genes in downstream analyses.
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Background
Northern Australia represents a critical region for the 
Australian beef breeding industry, and bull fertility is an 
important contributor to profitability [1–3]. However, 
bull fertility has yet to benefit from the advancements 
in genomics and selective breeding, which has further 
contributed to improving female fertility [4]. The Bull 
Breeding Soundness Evaluation (BBSE) provides a com-
prehensive assessment of male fertility-related traits 
linked to the number of calves a sire produces in the 
subsequent mating season [5, 6]. The BBSE traits which 
consist of assessment of body conformation, testicular 
development and sperm motility and morphology assess-
ment, are heritable and can be used for selection and 
genetic improvement programs [7]. Previous genome-
wide association studies (GWAS) have identified can-
didate genes for Scrotal Circumference (SC) and semen 
traits which are recorded in BBSE [8–11]. Identify-
ing these critical genomic regions expands the current 
understanding of the underlying genetics of bull fertility 
and can also be used to inform genomic predictions and 
improve their accuracy [12].

Previous work used medium or high-density SNP 
arrays, such as the Illumina 50 K panel or the BovineHD 
chip. Thus, genetic variants associated with GWAS are 
usually not causal mutations but are single nucleotide 
polymorphisms (SNP) in Linkage Disequilibrium (LD) 
to causal variants [13]. With advancements in genome 
sequencing and imputation methodologies, lower-den-
sity panels can be accurately imputed to sequence level 
[14, 15]. This allows the genome to be viewed in finer 
detail, which increases our chances of detecting a causal 
variant. This study aimed to conduct GWAS on seven 
BBSE traits to identify genetic variants and candidate 
genes underpinning bull fertility. The variants identified 
in this analysis could be incorporated into genomic pre-
dictions to improve the rate of genetic improvement in 
bull fertility and production traits.

Materials and methods
Animals and phenotypes
A total of 6,422 animals of six breeds with BBSE mea-
surements of seven phenotypes were used in this study. 
These animals are from two research populations and 
four stud herds from the industry. The two-research 
populations consisted of animal data obtained from the 
Cooperative Research Centre for Beef Genetic Technolo-
gies (Beef CRC) project [16], which included 1,051 Brah-
man (BRH) and 1,819 Tropical Composite bulls (TRC). 
Animal data for these four stud herds were contributed 
by four properties in Queensland, which included 1,288 
Santa Gertrudis (SGT), 760 Droughtmasters (DMT), 844 
Ultra blacks (UBK), and 660 Belmont Tropical Compos-
ite (BTC) [17]. The seven BBSE phenotypes used in this 
study included four physical measures on the animal and 
three semen measurements. These measurements were 
conducted according to the standards prescribed by Aus-
tralian Cattle Veterinarians [5], which have been covered 
extensively in the literature [16]. Details on the seven 
phenotypes can be found in Table 1. Summary statistics 
and heritabilities of each trait are shown in Table 2. The 
breed-wise summary statistics for each trait are available 
in Additional file 6.

Phenotypic measures for all six populations were col-
lected from 2003 to 2020. Each bull was assessed once, 
and the year of measurement was recorded as the fixed 
effect - year of birth. The individuals involved in the 
assessment and collection of phenotypes are different 
for the two research populations and the four stud herds. 
Phenotypes for the two research populations were col-
lected and assessed by two experienced veterinarians 
who worked together throughout the collection period. 
In the four stud herds, an experienced animal scientist 
and veterinarian conducted the examinations. For semen 
morphology traits, semen samples from the two research 
populations were analysed in the same laboratory. 
Whereas, sperm samples from the four stud herds were 

Table 1  Traits measured as part of Bull Breeding Soundness Evaluation (BBSE).
TraitsA DescriptionB

Body conformation

Weight Body weight (Kg)

Body condition score (CS) Visual assessment of body condition: Scale 1–5.

Sheath score (Sheath) Visual score of the structure of the sheath. Scale 1(Pendulous) to 5(Very tight).

Scrotal circumference (SC) Scrotal circumference measured at the largest circumference of the scrotum 
(cm).

Laboratory semen assessments

Percentage of Normal Sperm (PNS) Microscopic analysis. The percentage of anatomical normal sperm in a given 
sample. Assessment based on standards for shape indicating normal or 
abnormal cells.

Percentages of specific abnormalities Microscopic analysis. Percentage of specific sperm defects (abnormalities). 
Percentage of sperm having proximal cytoplasmic droplets (PD), or mid-
piece abnormalities (MP).

APhenotype column heading information, BDescription of phenotype and scoring metric
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assessed in different accredited labs selected by the pro-
ducers. The age of the bulls when the phenotypes were 
collected differed across the six populations. In the Beef 
CRC, when SC was collected, BRH and TRC bulls were 
around 360 days old. Sheath score and sperm morphol-
ogy assessments were conducted at around 700 days old. 
In the four stud herds, all phenotypes for SGT and DMT 
bulls were obtained at around 600 days, whereas UBK 
and BTC bulls had their phenotypes measured around 
440 days old and 390 days old, respectively. Phenotypes 
were pre-adjusted using a generalised linear model anal-
ysis (PROC GLM) for their fixed effects (year of birth, 
breed, property) and covariates (age at measurement, 
PC1 and PC2) using SAS ® software 9.4 (SAS Inst. Inc.). A 
subset of this population was previously used in a multi-
breed analysis [18].

Genotypes, quality control and genomic relationship 
matrices
SNP genotype imputation up to whole-genome sequence 
level was conducted in two rounds. In the first round, 
the reference population was established using Beef CRC 
and industry cattle. This reference population consisted 
of 2,452 animals made of BTC, BRH, DMT, SGT, UBK, 
Angus, Bonsmara, Boran, Composite, and Tuli breeds 
that were genotyped with the bovine high-density chip 
(~ 700 K) and phased using Eagle 2 (v2.4.1) which formed 
the imputation targets for the next step [19]. In the target 
population (n = 6422), genotyping was first done using a 
variety of commercial 50 K SNP chips (Bovine SNP50 v1 
or v2 or Neogen Tropical Chip v1 and v2). The genotypes 
from these animals were also phased with Eagle 2 (v2.4.1) 
[19], and formed the imputation targets for the next step. 
Imputation of targets from low to high density using the 
phased reference was conducted using Minimac3 for 
the autosomes and Minimac4 for the X chromosome 
[14]. For imputation to sequence level, genotypes from 
668 animals in the 1000 bull genome project run 7 [20] 
were filtered to keep only bi-allelic markers and minor 
alleles with at least four copies. The sequence-level refer-
ence panel consisted of 668 animals made of BRH, DMT, 
SGT, Afrikander, Angus, Angus Red, Beefmaster, Boran, 

Brangus, Charolais, Gir, Hereford, Limousin, Mur-
ray Grey, Nelore, Senepol, Shaiwal, Shorthorn and Tuli 
breeds. The data generated in the first round was then 
used to impute genotypes to sequence level (~ 25 million) 
in the second round using the same procedure done in 
the first round. SNPs with an imputation R2 > 0.8, a call 
rate > 0.9 and a minor allele frequency > 0.01 were kept 
for further analysis, leaving 13,398,171 SNPs, including 
92,134 SNPs mapped onto the X chromosome after qual-
ity control for all 6422 animals. The Genomic Relation-
ship Matrices (GRM) were constructed in the software 
GCTA [21] using a high-density panel, one GRM for 
the autosomes plus the Pseudo – Autosomal Region of 
chromosome X (657,563 SNPs for autosomes and 22,775 
SNPs for X), and a second GRM using the remaining SNP 
from the X chromosome. Heritability estimates for each 
trait were obtained using the restricted maximum likeli-
hood (REML) analysis in GCTA [21].

Genome-wide association analysis and quantitative trait 
loci analysis
The first two principal components calculated PLINK 1.9 
[22], and the GRMs, were used to account for the under-
lying genetic structure of the multi-breed population 
under study. As bias could be introduced when a tested 
SNP is also included in the GRM that is fitted in the 
model [23], the Leave One Chromosome Out (LOCO) 
approach to GWAS was also implemented by building a 
different GRM when testing each chromosome, leaving 
out any SNPs that are on the tested chromosome [24]. 
The MLM method implemented in GCTA is as follows:

	 y = a+ bx + g− + e

Where y represents the phenotype in question, a repre-
sents the mean, b represents the additive genetic effect 
of the tested SNP, x represents the SNP genotype indica-
tor variable which is coded as 0, 1 and 2, g – represents 
the joined effect of all variants, excluding any variants on 
which the chromosome of the tested SNP is located, and 
e is the residual variance. A genome-wide significance 
threshold of 5 × 10− 8 was used, which is a conservative 

Table 2  Summary statistics and summary of GWAS results
NA MeanB SDC MinD MaxE Adj MinF Adj MaxG SNPsH h2(SD)I

Weight 6014 391.59 98.65 124.00 810.00 -175.60 268.42 169 0.30 (0.02)

CS 5917 2.96 0.37 2.00 4.00 -1.52 1.13 30 0.07 (0.02)

SC 6235 30.82 4.26 15.50 52.50 -9.59 15.96 55,706 0.46 (0.02)

Sheath 6417 3.19 1.77 1.00 9.00 -3.97 6.78 135,424 0.59 (0.02)

PNS 6055 61.76 27.53 0.00 100.00 -76.44 65.61 9042 0.18 (0.02)

PD 6052 13.50 19.96 0.00 96.00 -48.41 84.78 1726 0.15 (0.02)

MP 6052 11.39 11.04 0.00 83.00 -22.94 68.73 173 0.13 (0.02)
ANumber of records available for a trait. BMean of a trait. CStandard deviation of a trait. DMinimum value of the trait. EMaximum value of the trait. FMinimum adjusted 
value of the trait. GMaximum adjusted value of the trait. HNumber of significant SNPs identified using LOCO GWAS analysis. IHeritability estimates for each trait
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Bonferroni correction. After the first round of GWAS 
was completed, the most significant SNPs in each chro-
mosome were refitted as a discrete covariate in the sec-
ond round of GWAS for each trait in GCTA [21]. This 
was done to determine if the most significant SNP in 
each chromosome could account for the entire peak for 
that chromosome. GWAS Manhattan plots were cre-
ated in R [25] using the Scattermore package [26]. Using 
bedtools [27], SNPs within 50 Kbp that met the signifi-
cance threshold (5 × 10− 8) were merged into a Quantita-
tive Trait Loci (QTL). Using GALLO [28], genes found in 
each region were reported using gene annotation data of 
the Bos taurus ARS UCD 1.2 genome assembly obtained 
from Ensembl version 105 [29]. The find_genes_qtls_
around_markers function was used to identify the genes 
located in each region. The following parameters were 
used: the method was set to gene, marker was set to hap-
lotype, and the interval was set to 0.

Similarly, the same regions were used to identify any 
previously reported QTL in the Animal QTL database 
(https://www.animalgenome.org/cgi-bin/QTLdb/BT/
index) [30] that overlapped with regions reported in this 
study. Ensembl Variant effect prediction (VEP) was con-
ducted on all significant SNPs to ascertain the impact of 
each variant [31]. Pairwise LD was calculated between 
the high impact variants and the top variant for their 
respective QTL using PLINK 1.9 [22]. We considered 
variants that meet the R2 threshold of 0.4 to be in LD. 
Finally, the percentage of genetic variance explained by 
each SNP was calculated using a formula made available 
in a previous report [32]:

	
%Vi = 100x

2piqiâ
2
i

σ2
g

Where pi and qi are the SNP’s allele frequencies â2i  is the 
estimated additive effect of the trait studied, and σ2

g  is the 
estimated genetic variance.

Results and discussion
In this study, we conducted GWAS using sequence-level 
genotypes and targeted seven bull fertility and produc-
tion traits measured in a multi-breed population of 6,422 
bulls. This section discusses important regions and can-
didate genes identified through GWAS and QTL analy-
sis. A summary of GWAS results for the most significant 
genomic region discovered for each trait is provided in 
Table  3. A complete table of GWAS summary statistics 
for all tested SNP and each trait is available in Additional 
file 1. Additional file 2 contains SNP that were significant 
for at least one trait. Manhattan plots for GWAS in SC 
and Sheath are shown in Figs.  1 and 2. The remaining 
Manhattan plots can be found in Additional file 3. A vast 
number of previously published QTL were identified for 
some traits. As such, we have summarised these results 
in Figs. 3 and 4. The sperm morphology traits (PNS, PD, 
and MP) did not have normally distributed residuals. 
This is not ideal for GWAS, but it is expected as sperm 
morphological abnormalities affect only some bulls. The 
majority of breeding bulls present a high percentage of 
normal sperm.

Heritability estimates of individual traits
Heritability estimates across traits range from low (0.07, 
CS) to high (0.59, Sheath) (Table  2). The estimates we 
report for our traits were similar to those published in 

Table 3  Summary of the most significant genomic region per trait
TraitA Main Peak N SNP < 5 × 10− 8 E Most significant SNPF Gene and 

consequenceGChrB Start-EndC P-ValueD

Sheath 5 44,264,399–
57,689,597

8.44 × 10 − 288 46,571 5:47810529
rs132782818

LLPH, Downstream 
Gene Variant

PNS 5 46,332,642–
46,628,009

3.35 × 10− 14 436 5:46434577
rs385064678

CAND1, Intergenic 
Variant

PD 5 45,878,759–
46,630,417

1.98 × 10− 13 739 5:46035763
rs717912623

DYRK2, Intergenic

WT 14 23,278,231–
23,392,939

2.27 × 10− 10 25 14:23338890
rs109815800

PLAG1, Intron 
Variant

CS 23 6,692,720–6,752,357 1.79 × 10− 9 10 23:6704516
rs720629044

LRRC1, Intron 
Variant

SC X 78,997,703–
82,589,295

1.15 × 10− 79 2986 X:79,072,719
rs132656042

CXCR3, Down-
stream Gene 
Variant

MP X 6,803,110–6,845,284 2.77 × 10 − 10 24 X:6,803,111
rs479067101

GRIA3, Intergenic 
Variant

ACorresponding trait. BChromosome number of the most significant region genome-wide CStart and end location of the most significant region genome-wide. 
DP-value of the most significant variant Genome-wide. ENumber of SNPs that meet the significance threshold within the most significant region. FLocation of most 
significant SNPs and Reference SNP cluster ID. GNearest gene and predict consequence from Ensembl Variant Effect Predictor

https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
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tropical beef cattle populations [8, 33, 34]. Our estimates 
for SC were similar to those measured in TRC bulls at 12 
months (0.46) and slightly higher than those measured at 
24 months (0.44) [34].

Single trait associations
The number of associated SNP varied enormously, 
depending on the target trait (Table 3). A total of 30 sig-
nificant SNPs were detected for CS, while more than 135 
thousand SNP were significant for Sheath. The stron-
gest SNP association for Weight was located at 23.3 Mb 
of BTA 14 (p = 2.27 × 10− 10). This result is somewhat 
expected because previous GWAS in datasets containing 

Bos Taurus and Bos Indicus breeds have been reporting a 
QTL in BTA 14 for stature and weight traits [35–37].

The strongest SNP association for CS (p = 1.79 × 10 − 9) 
was located at 6.7 Mb of BTA 23. This is a new discov-
ery as there are no CS QTL in BTA 23 currently recorded 
in the cattle QTL database (https://www.animalgenome.
org/cgi-bin/QTLdb). The strongest SNP association for 
SC (p = 1.15 x − 79) was located at 79 Mb on the X chro-
mosome. This is not the first time we detect SNP asso-
ciations on X for SC, and so this result confirms previous 
GWAS carried out with smaller datasets [8, 9, 11]. The 
strongest association (p = 1.98 × 10− 288) for Sheath was 
located at 47.8  Mb of BTA 5. This finding is consistent 

Fig. 2  The Manhattan plot in A shows associations for Sheath in GWAS LOCO, whereas the Manhattan plot in B shows associations for Sheath after fitting 
the most significant SNP in each chromosome as fixed effects. The inverse log p – values for each SNP are plotted along the y-axis for each chromosome 
on the x-axis. The dotted line represents the genome-wide significance threshold of 5 × 10− 8

 

Fig. 1  The Manhattan plot in A shows associations for SC in GWAS LOCO, whereas the Manhattan plot in B shows associations for SC after fitting the most 
significant SNP in each chromosome as a fixed effect. The inverse log p – values for each SNP are plotted along the y-axis for each chromosome on the 
x-axis. The dotted line represents the genome-wide significance threshold of 5 × 10− 8
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Fig. 4  Stacked bar plots showing published QTL and their associated traits that overlapped with QTL reported in this study for semen traits

 

Fig. 3  Stacked bar plots showing published QTL and their associated traits that overlapped with QTL reported in this study for body conformation traits
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with previous GWAS work in sheath score that used a 
subset of the data included in this study [32]. The subset 
of data contained only BRH and TRC bulls, which differs 
from our multi-breed analyses [32]. In short, the larger 
dataset is expanding on the initial findings and in sub-
sequent sections of this discussion, we detail the QTL, 
genes, and variants uncovered with sequence-level data.

Similarly, the current dataset enhanced our ability to 
detect associations for the three semen traits: PNS, PD 
and MP. The strongest SNP association (p = 3.35 × 10 − 14) 
for PNS was located at 46.4 Mb at BTA 5. Previously, we 
had only identified SNPs on X for PNS [8, 9, 11]. A recent 
study on American cattle did identify SNP associations 
in chromosome 5 for PNS, corroborating our new find-
ing in tropical breeds [38]. The strongest SNP association 
(p = 1.98 × 10 − 13) for PD was located at 46 Mb of BTA 5. 
A total of 173 significant SNP associations were detected 
for MP. The strongest SNP association (p = 2.77 × 10 − 10) 
was located at 6.2 Mb of the X chromosome. This mul-
tibreed dataset confirmed that chromosome X harbors 
SNP associations for semen traits as expected [8, 9, 11]. 
It also allowed the discovery of significant SNP on BTA 5, 
pointing to new candidate genes (described below).

The most significant SNP for a trait may not account 
for all the variation at a particular locus, and multiple 
causal variants may exist at a given locus [39]. As such, 
we verified the most significant SNPs for each chromo-
some in each trait by refitting these SNPs back into the 
mixed model. In general, the most significant SNP in 
each chromosome accounted for the entire variation in 
that locus for most traits, as seen in Figs. 1 and 2. How-
ever, in Sheath, the most significant SNP did not account 
for all the variation in BTA 5 (Fig. 2). Perhaps more than 
one causal SNP exists in that BTA 5 region and this is 
important because it overlaps with significant QTL dis-
covered for SC and semen traits. The SNP associations 
across traits found in BTA 5 are discussed in more detail 
below (see Table 4).

QTL analysis
The GWAS literature includes accounts of false posi-
tives: QTL or SNP associations that are seen once and 
not validated (winners curse) [40]. To mitigate this issue, 
we focused on reporting QTL regions that overlap with 
known QTL from previous work. We used the QTL data-
base [30] to identify consensus between our current anal-
yses and published work. The number of significant QTL 
identified per trait and the total sum of these QTL can be 
found in Table 4.

A total of 1,120 previously reported QTL overlapped 
with the regions identified in this study for weight. While 
most of the identified QTL were associated with weight-
related traits, some of these regions were also important 
female traits such as milk fat yield, health-related traits, 
and reproductive traits.

A total of 20,095 previously reported QTL overlapped 
with the significant regions reported for SC. Most QTL 
were associated with SC reported in Canchim bulls [41], 
and the age of puberty was reported in our previous 
study with TC bulls [11]. This result is not surprising as a 
bull is considered to have reached puberty after achieving 
a SC of 26 cm [42].

In Sheath, 2,671 previously reported QTL overlapped 
with the significant regions in this study. Most QTL were 
associated to female traits such as milk protein percent-
age or milk yield. However, QTL were also associated 
to male traits such as inhibin hormone levels and SC. 
Inhibin hormone levels are considered an early indica-
tor of sexual development, and genes such as INHBE and 
INHBC are located in BTA 5 [11, 43]. Of note, the GWAS 
on blood hormone levels of Inhibin used 50 K genotype 
data for Brahman and TRC cohorts that were included in 
the current larger dataset [11].

Previously reported QTL for PNS mirrored the result 
for SC (Figs.  3 and 4). This is not surprising given that 
both BTA 5 and chromosome X were associated with 
both traits, and a positive genetic correlation has been 
reported in a previous study between the two traits [16]. 
For PD, previously reported QTL were associated with 
reproduction traits such as inhibin level and SC, whereas 
most QTL were associated to meat and carcass and 
female traits for MP. Recent studies in dairy populations 
reported a QTL in BTA 6 associated with sperm abnor-
mality traits in Brown Swiss bulls [44, 45]. Studies in Hol-
stein bulls identified regions in BTA 1, 2, 4, 6, 7, 8, 16, 
23 and 26 associated with progressive and total motility 
[46]. However, none of these regions overlapped with the 
QTL reported in our studied population. The dissimilari-
ties in QTL reported could be due to genetic differences 
between beef and dairy cattle at a genome-wide level 
[47].

Significant QTL mapping to the X chromosome for SC, 
PNS and sperm abnormalities highlights its importance 

Table 4  Summary of the number of QTL and the sum of all QTL 
for each trait
TraitA Num-

ber of 
QTLB

Total sum 
of QTL 
(bp)C

Sheath 85 50,798,093

PNS 69 13,312,033

PD 42 1,885,633

WT 22 722,476

CS 3 107,850

SC 148 72,863,848

MP 15 435,628
ACorresponding Trait. BNumber of significant QTL. CTotal sum of QTL in base-pair
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in male fertility and spermatogenesis. The X chromo-
some is a candidate region for species divergence genes 
which are highly expressed in the testis of mice and 
humans [48]. Sexual antagonism and sex-chromosome 
meiotic drive have been suggested as a possible reason 
for the large number of genes associated with spermato-
genesis found in the X chromosome [8].

Overlapping regions across traits
Due to the vast number of genes detected for some 
traits, we have included the list of genes in each associ-
ated region for each trait in Additional file 4. To facilitate 
further use of our findings, we have included a list of all 
genes across associated regions in Additional file 5. A list 
of genes across associated regions that map at least four 
traits is shown in Table 5.

Across traits, we observed that BTA 5 is an important 
region for male fertility in bulls. Regions in BTA 5 that 
have overlapping results point to SNP and genes associ-
ated with five out of the seven studied traits: SC, Sheath, 
PNS, PD and MP (Table  5). 16 candidate genes were 
identified within these significant regions as associated 
with at least four traits. Next, we reviewed the literature 
to discuss how the known function of these genes could 
be related to SC, Sheath, or sperm morphology traits.

Three candidate genes (DYRK2, CAND1, and GRIP1) 
listed in Table  5 have known biological roles linking 
them with spermatogenesis. Spermatogenesis is likely to 
underpin most bull fertility traits, so these genes war-
rant further discussion. The DYRK family of kinases 
displayed high expression in the testis and was sug-
gested to play a role in the later stages of spermatogen-
esis [49]. The CAND1 protein is highly expressed in the 
brain and testis in humans and has been reported to be 
highly expressed in spermatozoa of fertile men [29, 50]. 
In mice, GRIP1 is necessary for the adhesion of Sertoli 
cells to germ cells and plays an important role in efficient 

spermatogenesis [51]. Mice without GRIP1 appeared 
to suffer from impaired fertility due to abnormalities in 
the testis [51]. However, little is known about the role 
of GRIP1 in bull fertility, although its gene and protein 
expression in different stages of the oestrous cycle have 
been covered previously [52]. Perhaps these genes are 
similarly involved with spermatogenesis in bulls. How-
ever, further research is required to ascertain their effects 
on bovine spermatogenesis and testicular function.

The remaining candidate genes from Table  5, do not 
have a known function that directly links them to sper-
matogenesis. However, they are ubiquitously expressed 
in reproductive tissues. The CPNE (copines) gene group 
of membrane-bound proteins have multiple functions 
in membrane transport, signal transduction and can-
cer [53]. CPNE8 is a gene expressed ubiquitously in the 
prostate, testis, heart, and brain tissues [53, 54]. It was 
previously suggested that CPNE8 might be an impor-
tant gene for prostate regulation and development [54]. 
The PTPRR gene may have a tumour-suppressive func-
tion in prostate cancer, and prostate cancer samples 
often contain lower levels of PTPRR compared to regu-
lar tissue samples [55, 56]. In addition, the PTPRB gene 
was expressed in porcine and equine spermatozoa and 
found mainly in the plasma membrane of sperm heads, 
acrosome, and tail [57]. The expression of PTPRB mainly 
in the tail of spermatozoa, suggests its involvement in 
sperm motility regulation [57]. Previous literature has 
highlighted the different functions of tyrosine phosphor-
ylation in spermatozoa, which are crucial for successful 
fertilisation [58–60]. The expression of the BEST3 gene in 
the form of bestrophin 3 is ubiquitous in human muscle 
but found in low levels in the bone marrow, testis and 
retina [61]. At the same time, BEST3 plays a role in regu-
lating cell proliferation and apoptosis, both of which are 
important features in mammalian spermatogenesis [62–
65]. Most of these genes appear to be involved in cancer 

Table 5  List of candidate genes within regions associated with four out of seven traits
CHRA Start-EndB GenesC TraitsD N SNP < 5 × 10− 8 E

5 42,406,844–42,650,763 CPNE8 (1), PTPRR (1) SC,Sheath,PNS,PD 1597

5 42,779,371–42,807,448 PTPRR (1) SC,Sheath,PNS,PD 201

5 42,904,927–42,913,128 PTPRB (1) SC,Sheath,PNS,PD 41

5 42,981,369–42,990,679 PTPRB (1) SC,Sheath,PNS,PD 65

5 43,756,064–43,776,581 BEST3 (1) SC,Sheath,PNS,PD 125

5 46,125,382–46,266,879 DYRK2 (1) SC,Sheath,PNS,PD 681

5 46,332,642–46,628,009 CAND1 (1), ENSBTAG00000053087 (2) SC,Sheath,PNS,PD 1295

5 47,382,308–47,645,887 GRIP1 (1), HELB (1), ENS-
BTAG00000053419 (1), IRAK3 (1), ENS-
BTAG00000052954 (1), TMBIM4 (1)

SC,Sheath,PNS,PD 1699

5 47,786,054–47,944,488 HMGA2 (1), bta-mir-763 (3) SC,Sheath,PNS,PD 432

5 48,240,075–48,336,776 MSRB3 (1) SC,Sheath,PNS,PD 403

5 48,438,416–48,438,418 MSRB3 (1) SC,Sheath,PNS,MP 1
AChromosome Number, BStart to End location of region, CGenes within regions with corresponding biotypes: (1) Protein coding, (2) lncRNA, (3) miRNA, DIntersecting 
traits for each region. ENumber of SNPs that meet the significance threshold
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literature, which is consistent with reproductive physiol-
ogy that often involves cell proliferation [66].

Notably, three genes within BTA 5 regions (Table  5) 
play an important role in tropical adaptation, which is 
expected in this cattle population. Between 47.3  Mb 
and 47.9  Mb is a common region in BTA 5 that con-
tains several genes, including HELB, which is suggested 
to influence tropical cattle adaptation, which helps cat-
tle cope with harsh temperatures and high intensity of 
ultraviolet light [67]. IRAK3 is suggested to be involved 
in intramuscular fat disposition and systemic inflamma-
tion regulation, HMGA2 regulates body size. The region 
containing HMGA2 has been previously associated with 
navel length in Nellore cattle and has also been reported 
to regulate body size [68, 69]. A copy number variant 
(CNV) in the HMGA2 gene has been proposed to be a 
functional variant associated with naval length [68]. This 
CNV is within a detected QTL and may play a role in 
sheath score, SC, PNS, and PD in the studied population. 
We conducted a preliminary analysis to observe the same 
region (5:47,840,005-47846215, reference genome ARS 
UCD 1.2) and explored whether this CNV segregates 
in our population. Using 138 whole genome sequenced 
cattle, that were part of the reference panel for the SNP 
imputation, we observed in 79 of them an increased 
coverage depth which likely indicates the presence of a 
CNV. Future studies are required to confirm whether this 

region of increased coverage depth is due to a CNV seg-
regating in our population and whether this CNV is the 
same as previously described. Additional efforts should 
be made to impute this CNV for the entire multibreed 
population and verify it’s contribution to these traits. 
Regions in BTA5 have been consistently reported in 
previous studies. BTA 5 is evidently harbouring impor-
tant regions for fertility traits and production traits. 
Dissecting the genes and mutations implicated in fertil-
ity as opposed to heat tolerance or growth could further 
inform selective breeding.

Variant effect prediction (VEP): candidate genes
For the most significant variant in each trait (Table  3), 
VEP did not reveal any variants that will have a moder-
ate or high functional impact on a protein. Instead, most 
variants were labelled as modifiers which either have 
effects that are difficult to predict or have little evidence 
of protein impact.

When VEP was expanded to include SNPs within 
candidate regions listed in Table  4, similar results were 
observed with significant variants categorised as modifi-
ers (Fig. 5). This is logical as most traits examined in this 
study are complex. As such, the effects of these variants 
segregating in various loci across the genome have little 
effect on the protein or phenotype [70]. However, we 
observed one variant of high functional impact located 

Fig. 5  Bar plot showing the distribution of predicted impact for each gene
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in IRAK3, which results in a premature stop codon 
(Table  6). While this SNP may not have an equivalent 
quantitative effect on the trait compared to the peak SNP, 
it could still have a high functional impact which should 
be considered. As mentioned previously, IRAK3 plays 
a role in immune suppression. A rodent study reported 
a negative relationship between IRAK3 and TNF-α 
expression and suggested that IRAK3 is associated with 
immune suppression during cases of sepsis [71]. IRAK3 
may also be a factor produced by Sertoli cells that causes 
inflammatory effector T-cells to develop regulatory func-
tions which reduce the number of available T-cells [72]. 
A recent review highlighted that Sertoli cells aid in cre-
ating and maintaining an environment that shields germ 
cells from autoimmune destruction [73]. This is due to 
the presentation of antigens on the surface of end-stage 
germ cells, which are detected as foreign, and can lead to 
autoimmune destruction resulting in suboptimal fertility 
or sterility [73, 74]. Perhaps, a variant of high impact on 
IRAK3 may affect the protein’s ability to regulate autoim-
mune destruction efficiently, leading to decreased fertil-
ity. However, further downstream work is required to 
verify this speculation.

Variants prioritized with the variant effect predictor
We identified 17 high-impact variants, predicted with 
VEP, as shown in Table 6. High-impact variants are pre-
dicted to have a disruptive effect on a protein, which may 
have a potential downstream impact on the associated 
phenotypes [31]. Pairwise LD calculation between high-
impact variants and the top variants for their respective 
QTL are available in Additional file 6 (Tables S7 to S10). 
Among these high-impact variants, 15 variants were in 

BTA 5, and the remaining two were found in BTA 2 and 
the X chromosome. All variants were associated with 
either SC, Sheath, PNS or PD. Seven high-impact vari-
ants were in LD with the top variants for their respective 
QTL with an R2 ranging from 0.41 to 0.97. The high-
impact variant rs479267746 lies within the coding region 
of a gene (IRAK3) which has been previously associ-
ated with fertility. The expression of IRAK3 by Sertoli 
cells, which play an important role in spermatogenesis, 
has been discussed in detail in the previous section. The 
high-impact variant rs439285466 lies within the protein-
coding region of a gene called RLIM. Although RLIM has 
not been associated to bull fertility or bull production 
traits, it has been previously associated with the regula-
tion of cell proliferation which is fundamental process 
for spermatogenesis [75]. Considering the LD with top 
QTL variants for SC and other bull traits, together with 
the VEP results and the known function of IRAK3 and 
RLIM, we would prioritize the 2 high-impact variants in 
these genes for future work. These variants should be fur-
ther tested for their impact on bull fertility.

The remaining 10 high-impact variants, while not in 
LD (R2 < 0.4) with the top variants of the correspond-
ing QTL, were significantly associated with either SC 
or Sheath themselves. Some of the high impact variants 
identified in this study, lie within known genes (NUDT4, 
SMUG1, KRT77, BIN2, ARHGAP9, and CFAP54) pre-
viously not connected with bull traits or male fertility 
[75–82]. We proposed these 17 variants be further inves-
tigated in subsequent analysis to ascertain variant effects 
in other populations.

Table 6  Variants that were prioritised using the Variant Effect Predictor (Ensembl)
RsidA Chr:BPB ConsequenceC GeneD TraitE

rs381450099 2:131913815 stop gained SH2D5 SC

rs516958669 5:23029308 splice donor variant,non coding transcript variant NUDT4 Sheath

rs209438028 5:25896459 splice acceptor variant,non coding transcript variant SMUG1 Sheath

rs382669161 5:27216516 stop gained KRT77 Sheath

rs136259011 5:27555357 start lost KRT89 Sheath

rs715902417 5:28482148 start lost BIN2 Sheath

rs516753252 5:29011232 stop gained ENSBTAG00000038893 Sheath

rs135081036 5:31435644 stop gained OR8S15 Sheath

rs520423926 5:34992638 stop gained ENSBTAG00000026249 Sheath

rs465638922 5:43113646 splice donor variant ENSBTAG00000054094 Sheath

rs524081599 5:43642979 splice acceptor variant,non coding transcript variant MYRFL Sheath

rs380705670 5:44348662 stop gained,splice region variant LYSB Sheath

rs479267746 5:47594939 stop gained IRAK3 SC, Sheath, PNS, PD

rs209263815 5:55987506 splice donor variant ARHGAP9 SC, Sheath

rs210582075 5:60955156 splice donor variant CFAP54 Sheath

rs209628246 5:75712558 start lost CYTH4 Sheath

rs439285466 X:76,501,215 splice donor variant RLIM SC
AReference SNP cluster ID, BChromosome and Base Pair, CPredicted Protein Consequence, DGene name, ETrait associated



Page 11 of 13Tan et al. BMC Genomics          (2023) 24:365 

Conclusion
This study highlights the importance of BTA5 for bull fer-
tility and production traits and demonstrates the need to 
include the X chromosome in genomic analyses. We also 
highlighted candidate genes of relevance across several 
traits, which should be further investigated in ascertain-
ing gene effects on spermatogenesis and fertility. Finally, 
we identified several high-impact variants for SC and 
Sheath, which required further validation in future work.
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