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Abstract 

The tumor immune microenvironment (TIME) of colon cancer (CC) has been associated with extensive immune 
cell infiltration (IMI). Increasing evidence demonstrated that plasma cells (PC) have an extremely important role 
in advance of antitumor immunity. Nonetheless, there is a lack of comprehensive analyses of PC infiltration in clini-
cal prognosis and immunotherapy in CC. This study systematically addressed the gene expression model and clinical 
information of CC patients. Clinical samples were obtained from the TCGA (The Cancer Genome Atlas) databases. 
Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), GSVA, and the MAlignant Tumors using 
Expression data (ESTIMATE) algorithm were employed to research the potential mechanism and pathways. Immu-
nophenoscore (IPS) was obtained to evaluate the immunotherapeutic significance of risk score. Half maximal inhibi-
tory concentration (IC50) of chemotherapeutic medicine was predicted by employing the pRRophetic algorithm. 
A total of 513 CC samples (including 472 tumor samples and 41 normal samples) were collected from the TCGA-
GDC database. Significant black modules and 313 candidate genes were considered PC-related genes by accessing 
WGCNA. Five pivotal genes were established through multiple analyses, which revealed excellent prognostic. The 
underlying correlation between risk score with tumor mutation burden (TMB) was further explored. In addition, 
the risk score was obviously correlated with various tumor immune microenvironment (TIME). Also, risk CC samples 
showed various signaling pathways activity and different pivotal sensitivities to administering chemotherapy. Finally, 
the biological roles of the CD177 gene were uncovered in CC.

Keywords Colon cancer, Plasma cells, Tumor immune microenvironment, Prognosis prediction, Clinical therapy, 
Tumor mutation burden

Introduction
Colon cancer (CC) is the third most frequent malignancy 
and the second most common cause of cancer-related 
death worldwide [1]. Radical surgery remains the major 
scheme therapy for non-metastatic CC. However, recur-
rence after surgery remains a problem to resolve. It has 
been reported that 80% of recurrence occurs in the first 
3 years after therapy, most commonly resulting in death 
[2]. Also, the median survival time for patients with dis-
tant metastases is only 10–12 months, even after pallia-
tive care and treatment [3]. Hence, for advanced patients 
who missed the opportunity for curable surgery, system-
atic or multidisciplinary treatment strategies, such as 
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chemotherapy, targeted treatment, and immunotherapy, 
may be considered to enhance the prognosis [4, 5].

Accumulating evidence indicated a large number of PC 
infiltration in cancer [6], and several studies provided evi-
dence that the higher expression of PC metagene is asso-
ciated with excellent prognosis in some cancers [7, 8]. In 
their study, Chen-Kian et al. demonstrated that inhibitors 
secreted by PC are necessary to terminate the tumor cell 
cycle [9].

Overall survival (OS) was found to be improved in 
several tumors following the use of immune checkpoint 
blockade (ICB) therapy [10–12]. While the role of PC 
in local tumor immunity is unclear, tumor-specific IgG1 
antibodies produced through PC are known to exert anti-
tumor effects via antibody-dependent cytotoxicity [13]. 
Another study demonstrated that PC in breast cancer 
overexpress PD-L1, and there is also evidence of direct 
interaction between PC and immune cells [14]. Besides, 
PD-L1 PC has been reported to inhibit helper T and B 
lymphocytes by generating IL-10 [15]. Accumulating evi-
dence shows that PC occupies a significant position in 
tumor immunity.

Currently, there is no all-encompassing analysis of the 
biological role of PC in colon cancer prognosis and tumor 
microenvironment. Therefore, immune profiling may 
be the most reliable and promising strategy for omnidi-
rectional evaluation of tumor susceptibility to clinical 
treatment, used to identify CC cases based on specific 
risk profiles associated with PC profiling and generate 
individualized procedures to improve efficacy accord-
ingly. Accordingly, in the present study, we employed 
the TCGA CC sample dataset to explore the underlying 
role of PC profiling. PC features were then obtained by 
the CIBERSORT algorithm, and the most available black 
module associated with PC was detected using WGCNA 
[16, 17]. Five hub genes and multiple-COX regression 
models were recognized. Consequently, a multi-genes 
risk model and a comprehensive prognostic nomogram 
were constituted. Finally, the synergistic effect of risk 
score with TMB was identified. In addition, the underly-
ing role of the risk score in TIME [18] was explored. The 
potential therapeutic prediction and signaling pathways 
of risk score were uncovered.
CD177 is considered to have an important role in 

affecting the clinical and prognostic value of various 
cancers. For example, overexpression of CD177 has 
been associated with detrimental outcomes in ovarian 
and pancreatic ductal adenocarcinoma and excellent 
outcomes in breast cancer [19, 20]. More importantly, 
current research has demonstrated that CD177 could 
improve the inhibitory function of tumor-infiltrating 
Treg cells (TC) in the TME. In addition, blocking CD177 
with antibodies in CD177 + tumor-infiltrating cells may 

be a novel target for antitumor immunotherapy [21]. 
CD177 has been addressed by many tumor-related stud-
ies [20, 22–24], and some experiments have verified its 
expression differences. The above shows that CD177 may 
be closely related to the occurrence and development 
of tumors. More importantly, we found that CD177 had 
the most stable and significant differential expression 
in human CC tissue samples among the five key genes 
screened. However, the biological function of CD177 in 
CC remains unclear, so we focused on selecting CD177 
for further verification and research. In addition, the 
biological functions of CD177 in predicting prognosis, 
immunotherapy, and immune infiltration of CC were 
investigated to provide a strong perception of clinical CC 
treatment strategies Fig. 1.

Materials and methods
Data collection
CC-associated mRNA sequences and clinical data were 
used from TCGA-GDC (https:// portal. gdc. cancer. 
gov/), type, including RNA-seq, clinical information 
and somatic alteration information. We obtained tran-
scriptome profiles of 472 tumor samples and 41 normal 
samples. Incomplete data were excluded. All data were 
pre-processed by Perl language and R software.

The landscape of infiltrating immune cells
The CIBERSORT algorithm (http:// ciber sort. stanf ord. 
edu/) was used to analyze and calculate the sequencing 
data of the samples and the abundance of 22 tumor-infil-
trating immune cells (TIC), which were obtained based 
on the cellular composition of the TIME [25].

Weighted gene co‑expression network analysis
Sequencing data of 11,283 genes from CC patients were 
used to produce weighted co-expression networks by the 
WGCNA [17] to identify core modules associated with 
characteristic immune cell subtypes in CC patients. Next, 
the power value scatter plot was created, and optimal 
soft power value (soft power = 0.9) was selected to obtain 
the correlation matrix between genes, cluster the genes, 
dynamically identify and cut the module (minModules 
Size = 60), plot the pattern of the gene module, and find 
and merge similar modules to obtain the module graph. 
A heat map was used to assess the correlation between 
the module and immune cells based on the immune 
cell results file. The samples were filtered according to 
p < 0.05; the correlation coefficient was obtained by cor-
relation testing, and the correlation heat map was drawn. 
Next, each module was cycled to obtain the genes con-
tained in each module. Finally, the "PC" population was 
emphasized, and the modules most correlated to PC were 
extracted for subsequent analysis.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
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Functional enrichment analysis
The Entrez ID of each PC-associated gene was acquired 
through the R package " org.Hs.eg.db [26] ". KEGG [27–
30] and GO [31] pathway annotation were performed 
through "clusterProfiler [32] ", "enrichplot [33] " and 
"ggplot2 [34] " packages to demonstrate the potential 
mechanism of hub gene in biological processes associ-
ated with PC and visualize the results [35]. The sam-
ples were grouped according to the expression amount 
of the target gene, and the logFC of the high and low 
expression groups was obtained. Then, the genes were 
sequenced and analyzed. According to the p-value 
and the corrected p-value as the filter conditions, the 
results of significant enrichment were obtained and 

visualized (termNum = 8). In addition, the expression 
data were analyzed and scored by GSVA. Finally, the 
normal sample was removed, the tumor sample and 
the risk set were intersected to obtain the intersec-
tion sample, the gene set was circulated to obtain the 
expression of the gene and gene set, and the correlation 
test was performed (p-value < 0.001***, p-value < 0.01**, 
p-value < 0.05*).

Construction and validation of PC‑related prognostic 
signature
The most important module of genes was imple-
mented to construct prognostic risk profiles for CC to 

Fig. 1 Flowchart of the study
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explore the prognostic role of PC-related genes. Uni-
variate Cox regression analysis (UCR) identified can-
didate genes that were significantly associated with OS 
(*p < 0.05).

In addition, the coefficients of many unrelated fea-
tures were set to 0 according to the conditioning weight 
λ, and all regression coefficients were reduced to 0 by 
lasso. Subsequently, we analyzed a multivariate Cox 
regression (MCR) model to recognize pivot genes and 
calculate their corresponding coefficients. Finally, 11 
pivot PC-related genes with prognostic risk models 
were established, and a risk score was computed [36].

All samples procured corresponding risk scores by 
risk formula. Each sample was divided into low-risk 
and high-risk subgroups when the median value of the 
risk score (0.9564) was set as the cut-off point. Firstly, 
the K-M survival curve was used employing the R pack-
age "survival" to identify prognostic differences. In 
addition, ROC curves were used to verify prognostic 
value. Subsequently, UCR and MCR were executed on 
the effectiveness of risk signature as independent prog-
nostic features. R "pheatmap [37] " package was used to 
compare clinical features in low- and high-risk patients 
and visualize the correlation of risk score with clinico-
pathological variables [36].

Establishment and identification of the nomogram
A ROC analysis was employed to identify the ideal 
prognostic indicator, risk score, gender, age, tumor 
grade and clinicopathological stage for 1/2/3-year 
OS [38]. In order to establish a quantitative prognos-
tic prediction model for CC patients, we developed 
a nomogram combining risk score and other clinico-
pathological features to predict a 1/2/3-year OS rate. In 
addition, the calibration curve reflecting the predictive 
validity of the nomogram was constructed.

Collection and pre‑processing of epigenetic mutation data
TMB was considered to examine the number of base 
replacements, somatic, coding and insertion-deletion 
mutations per megabase of the genome at a 5% detec-
tion limit using the abbreviation for nonsynonymous 
and code-switched abbreviations [39]. The number of 
somatic nonsynonymous point mutations was calcu-
lated for each sample using the "maftools" R package 
[35].

Correlation of risk score with TIME characterization
To define the relative between risk score and TIC, 
TIMER [18], XCELL, EPIC, CIBERSEORT-ABS, CIB-
ERSORT, QUANTISEQ, and MCP counter were 
used to assess the immune environment. In addition, 

spearman correlation analysis was used to investigate 
the correlation between risk score and immune infiltra-
tion status and compare the differences in TIC scores 
between low and high-risk subgroups.

Gene set variation analysis
Pathway analyses were constructed to assess the activa-
tion of characteristic pathways and metabolic pathways 
mentioned in the MSigDB databases (https:// www. 
gsea- msigdb. org/ gsea/ msigdb). Additionally, to evalu-
ate the correlation pathway activity in each sample, the 
GSVA package (version 1.36.3) was used to assign the 
path activity estimates [39].

Prediction of patients’ response to immunotherapy
A total of 45 ICB-related genes were obtained, and 
their expression levels were investigated in low/high-
risk samples. To further explore the underlying role 
of the risk score in immunotherapeutic prediction, 
IPS was taken as a determinant for quantifying tumor 
immunogenicity and featured the cancer antigenome 
and intratumoral immune landscape [40]. This scoring 
system was established based on effector cells, suppres-
sor cells, checkpoints or immunomodulators (CP), and 
a weighted average Z-score. MHC-related molecules 
were calculated by averaging the Z-scores of samples 
from the four categories in their respective categories.

Prediction of chemotherapeutic effect
R package pRRophetic was used to estimate IC50 of CC 
samples in various ICI score groups. The construction 
of regression models was done based on expression pro-
files of cancer drug sensitivity genomics (GDSC) (www. 
cance rrxge ne. org/) cell lines and TCGA gene expression 
profiles [41].

Experimental validation
A total of 10 clinical specimens of CC patients were 
obtained from the general surgery department of Jiangsu 
Province Hospital of Chinese Medicine for qRT-PCR 
testing A polyvinylidene difluoride membrane (Immo-
bilon-P, Millipore, Billerica, MA, USA). Antibodies 
against the following proteins were following: CD177 
antibody ((Abmart Shanghai) 22-321AA), Anti-β-Tubulin 
(Abmart Shanghai M20005S), and Goat Anti-Rabbit 
Mouse IgG-HRP (Abmart Shanghai M21003). Blots were 
visualized using enhanced chemiluminescence reagents 
ECL (Biosharp BL523B China). In addition, we collected 
10 clinical specimens of CC patients from the general 
surgery department of Jiangsu Province Hospital of Chi-
nese Medicine for qRT-PCR (Quantitative Real-time Pol-
ymerase Chain Reaction) testing [42]. β-actin levels were 

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
http://www.cancerrxgene.org/
http://www.cancerrxgene.org/
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used as the endogenous control, and the relative expres-
sion of CD177 was calculated by the 2-ΔΔCt method. 
Primer sequences for PCR: CD177, 5′- TCA TCT CTC 
AGG AGG TGG GC -3′ (forward) and 5′-CCA AGT GAG 
AGA CTC CAG GC-3′ (reverse); β-actin, 5′- CCA ACC 
GCG AGA AGA TGA  -3′(forward) and 5′- CCA GAG 
GCG TAC AGG GAT AG -3′(reverse).

Statistical analysis
The Kruskal–Wallis test was used for comparisons 
between more than two groups, and the Wilcoxon test 
was used for comparisons between two groups. The 
Kaplan–Meier log-rank test was employed for survival 
curves. Relevant risk score subgroups with somatic muta-
tion frequency were analyzed through the chi-square 
test, and the Spearman analysis was used to calculate the 
relation coefficient. For further analysis, the results of the 
CIBERSORT algorithm were p < 0.05. A p-value < 0.05 
indicated statistical significance [42].

Results
Removing a batch effect
A total of 11,283 genes were obtained in two different 
CC cohorts (TCGA-CC Project). To identify the com-
prehensive landscape of TIME, the CIBERSORT algo-
rithm was carried out (Supplementary file 1: Table  S1). 
Figure  2A shows the abundance of 22 TIC types. To 
further reveal the underlying correlation between these 
TIC, the connection was employed to visualize the com-
prehensive landscape of TIME (Fig. 2B). PC was found to 
have the strongest negative correlation with PC (p < 0.05; 
r =  − 0.4), whereas PC was most positively correlated 
with T cells CD4 + memory resting (p < 0.05; r = 0.25).

Establishment of the WGCNA network
We performed immune infiltration subgroup analysis on 
sequencing files of 11,283 genes. The optimal soft thresh-
old power (β) was set to 9 after establishing the scale-free 
network, as it was the first power value when the scale-
free topology index reached 0.90 (Fig. 3A). The dynamic 
tree-cutting algorithm (module size = 8) introduced 
genes with similar expression patterns into the same 
module, enabling different modules to form hierarchical 
clustering trees. According to weighted correlation, hier-
archical clustering analysis was employed, and the clus-
tering outcomes were segmented based on the set criteria 
to acquire 8 gene modules (Fig. 3B). In Fig. 3C, each row 
shows the candidate module with characteristics vector 
genes, and each column presents the 8 TIC types. Among 
8 candidate modules, the black module had the strongest 
correlation with PC (cor = 0.51, p = 5e-33). Therefore, PC-
related genes from the black module (Supplementary file 
1: Table S2) were used for further investigation.

Development of risk signature
The expression data and follow-up information from the 
TCGA-CC project were obtained to further investigate 
the prognostic value of candidate genes. Eight PC-related 
genes were determined with importance prognostic value 
by UCR (p < 0.05, Supplementary 1: Table S4). Prognos-
tic features were performed for these hub genes; lasso 
regression was employed to avoid overfitting. Finally, 
5 PC-related genes correlated with CC prognosis were 
identified (Fig. 4A). After 10 rounds of cross-validation, 
the optimal value of the penalty parameter was estab-
lished (Fig.  4B). After MCR analysis, five PC-related 
genes, i.e., CD177, LGALS2, TMC8, TNFRSF13C, 
and VWA5A, were identified, and all were regarded 
as prognostic indicators (p < 0.05, Supplementary file 
1: Table  S5). High expression of 3 hub gene (VWA5A, 
CD177, and LGALS2) was positively correlated with 
prognosis. TMC8 and TNFRSF13C were the opposite, as 
shown in Fig. 5.

The genome in the TCGA database demonstrated sig-
nificantly different expression patterns in CC tissues 
compared to normal tissues (Supplementary file 2: Fig-
ure S1A–E). The HPA database showed that proteins 
(CD177, LGALS2, TMC8, and VWA5A) were significantly 
dysregulated in tumor tissue relative to normal sam-
ples (Supplementary file 2: Figure S2A–J). In addition, 
survival analysis of most hub genes showed abnormal 
mRNA expression that resulted in significantly differ-
ent OS times (most p < 0.05, Supplementary file 2: Figure 
S3A–F).

All samples were divided into high/low expression 
groups based on the median expression of the hub gene. 
Subsequently, GSEA identification function enrichment 
was conducted on the high/low-expressed hub gene 
(Supplementary file 1: Table S3).

As shown in Fig.  5A, KEGG revealed that high 
expression of CD177 was concentrated in the cell 
adhesion molecule signaling pathway, neuroactive 
ligand-receptor interaction signaling pathway, and 
calcium signaling pathway. Genesets uncovered that 
high CD177 expression was mainly associated with 
keratin filament, immunoglobulin complex, and regu-
lation of lymphocyte activation (Fig. 5B). As shown in 
Fig.  5C, the three KEGG demonstrated high expres-
sion of TNFRSF13, which was positively enriched in 
the primary immunodeficiency signaling pathway, 
graft versus host disease signaling pathway, and neu-
roactive ligand-receptor interaction signaling path-
way. Figure 5D demonstrates that the GO pathway had 
the most significant correlation with high TNFRSF13 
expression. The high expression with TNFRSF13 was 
mainly in adaptive immune response based on somatic 
recombination of immune, B cell receptor signaling 



Page 6 of 16Zhang et al. BMC Genomics          (2023) 24:430 

pathway, antigen receptor-mediated signaling path-
way, and B cell-mediated immunity. KEGG showed 
that the LGALS2 had high expression in the allograft 
rejection signaling pathway, acute myeloid leuke-
mia, and intestinal immune network for IgA produc-
tion (Fig. 5E). Moreover, the GO pathways in complex 
immunoglobulin circulating and immunoglobulin 
receptor binding were identified as the most LGALS2-
relevant signaling pathways (Fig.  5F). KEGG enrich-
ment term revealed that the high expression of TMC8 

was mainly associated with the intestinal immune net-
work for IgA production (Fig.  5G). Figure  5H shows 
that the GO pathway was most significantly correlated 
with high TMC8 expression. The high expression of 
TMC8 was mainly in B cell receptor signaling path-
ways. However, VWA5A did not enrich the relevant 
signaling pathways and the GO terms. In addition, 
we calculated risk scores for 5 hub genes in the risk  
profile of CC patients: risk score = (− 0.1453 ∗ expres-
sion of CD177) + (− 0.2687 ∗ expression of VWA5A) 

A

B C

Fig. 2 Landscape of immune cell infiltration in tumor immune environment of colon cancer. Subpopulation of 22 immune cell subtypes A. B. 
Intrinsic correlation of 22 infiltrating immune cells in colon cancer. C. Expression of subpopulation of 22 immune cell subtypes in tumor and normal 
tissues. The color from blue to red represents a trend of a negative correlation to a positive correlation
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+ (− 0.1755 ∗ expression of LGALS2) + (− 0.5049 ∗ expres-
sion of TMC8) + (− 0.2988 ∗ expression of TNFRSF13C). 
Finally, the corresponding risk score was classified into 
low-risk and high-risk subgroups based on the median 
cut-off value of the CC samples (1.3001).

Validation of risk prognostic signature
K-M survival curves showed significantly lower OS 
times in high-risk samples than in low-risk samples 
(p < 0.001; Fig.  4C). Moreover, distributions of the dot 
pot of survival status and risk score indicated shorter 
OS for high-risk CC patients (Fig.  4D, E). Next, UCR 
showed the hazard ratio (HR) of the risk score of 1.851 
(95% CI 1.522 − 2.250; Fig.  3F). Finally, the results 

of MCR (HR = 1.765, 95% CI 1.427 − 2.184; Fig.  3G) 
pointed to risk score as an independent prognostic indi-
cator for CC. These outcomes demonstrated that these 
five hub gene features could predict clinical prognosis.

Correlation of risk signature with clinicopathological 
variables
As shown in Fig.  6A, the distribution of clinical vari-
ables in the high/low-risk subgroups was recognized 
and visualized. Figures  6B-G show the proportion of 
clinical subtypes based on age, gender, clinical stage, 
tumor grade, N category and T status in the low/high-
risk subgroups.

A B

C

Fig. 3 Selection of the appropriate soft threshold (power) and construction of the hierarchical clustering tree. A Selection of the soft threshold 
made the index of scale-free topologies reach 0.90 and analysis of the average connectivity of 1–20 soft threshold power. B Plasma cells-related 
genes with similar expression patterns were merged into the same module using a dynamic tree-cutting algorithm, creating a hierarchical 
clustering tree. C Heatmap of the correlations between the modules and immune-infiltrating cells (traits). Within every square, the number 
on the top refers to the coefficient between the cell infiltrating level and corresponding module, and the bottom is the p value
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Construction of prognostic nomogram
As shown in Fig.  7A, ROC curves were plotted with 
AUC values of 0.684, 0.663, and 0.662 for 1-, 3-, and 
5-year OS, demonstrating excellent prognostic abil-
ity. To further demonstrate that risk score is the most 
effective prognostic indicator among multiple clinico-
pathological variables, we designated age, gender, and 
clinical stage as candidate prognostic factors.

These clinical characteristics were included in the 
AUC analysis for 1-year, 3-year, and 5-year OS, and we 
found that clinical staging acquired the highest AUC 
values (Fig. 7B). Subsequently, a prognostic nomogram, 
including risk score and clinical staging, was used to 
predict prognosis (Fig. 7C) quantitatively. Finally, cali-
brate curves demonstrated that the nomogram model 
had excellent prognosis predictive performance (AUC 
value > 0.5, Fig. 7D).

Correlation of risk signature with TMB
First, TMB levels were detected in both high- and 
low-risk score subgroups. Our results revealed that 

the low-risk score subgroup had lower TMB levels 
than the low–high-risk sample (p = 9.1e-05, Fig.  8A). 
Patients were assigned to different subtypes accord-
ing to the TMB immune set point [43]. Survival curves 
showed that the low TMB values had longer OS time 
(p = 0.019, Fig. 8B). A correlation analysis further vali-
dated the positive association between TMB and risk 
score (R = 0.21, p = 1.41–05; Fig. 8C). Subsequently, we 
validated the combined effect of risk score and TMB 
in the prognosis prediction of CC. Stratified survival 
curves for risk score subgroups in low and high TMB 
status subtypes showed significant prognostic differ-
ences (p = 0.001; Fig.  8D). In sum, the results demon-
strated that risk score might serve as an independent 
prognostic predictor to assess the clinical prognostic of 
anti-tumor immunotherapy.

In addition, the distribution among high-risk and 
low-risk scoring subtypes in gene mutations was also 
identified and visualized. The mutation patterns and 
clinical characteristics of the top 20 most frequently 
altered driver genes are shown in Fig. 8E, F. The mutation 

Fig. 4 Establishment of the prognostic risk signature. A LASSO coefficient profiles of 71 candidate genes. A vertical line is drawn at the value 
chosen by tenfold cross‐validation. B Ten‐time cross‐validation for tuning parameter selection in the lasso regression. The vertical lines are plotted 
based on the optimal data according to the minimum criteria and 1-standard error criterion. The left vertical line represents the 5 genes finally 
identified. C Kaplan–Meier curve analysis presenting difference of overall survival between the high-risk and low-risk groups. D Distribution 
of multi-genes model risk score. E The survival status and duration of CC patients. F Univariate Cox regression results of overall survival. 
G Multivariate Cox regression results of overall survival
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Fig. 5 GSEA for samples with high and low expression of 4 hub genes. A The enriched gene sets in KEGG collection by the high CD177 expression 
sample. B The enriched gene sets in GO collection by the high CD177 expression sample. C The enriched gene sets in KEGG collection by the high 
TNFRSF13C expression sample. D. The enriched gene sets in GO collection by the high TNFRSF13C expression sample. E The enriched gene sets 
in KEGG collection by the high LGALS2 expression sample. F The enriched gene sets in GO collection by the high LGALS2 expression sample. G. The 
enriched gene sets in KEGG collection by the high TMC8 expression sample. H The enriched gene sets in GO collection by the high TMC8 expression 
sample

Fig. 6 Clinical significance of the prognostic risk signature. A Heatmap presents the distribution of clinical feature and corresponding risk score 
in each sample. Rate of clinical variables subtypes in high or low risk score groups. B Age, C Gender, D clinical stage, E T status, F N statusand G M 
status
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landscape revealed that APC (76% vs. 65%) had a higher 
somatic mutation rate in the high-risk score subtype, 
while ABCA13 (18% versus 14%) had a higher somatic 
mutation rate in the low-risk score subgroup. The above 
results provide insight into the intrinsic link between 
somatic cell mutations and plasma infiltration in CC 
immunotherapy.

Risk characteristics in the TIME context of CC
The intrinsic connection between PC-based risk score 
and TIC explores the fundamental contribution of a 
risk score to the sophisticated variety of TIME. The 
outcomes demonstrated that risk score was negatively 

correlated with subpopulations of resting T cell 
CD4 + memory cells, B cells, macrophage M2, resting 
myeloid dendritic cells while positively associated with 
plenty of macrophage M1, B PC, T cell follicular helper, 
T cell CD4 + Th1, Tregs, T cell CD4 + Th2, CD8 + (Sup-
plementary file 2: Figure S4). In addition, as shown in 
Fig.  9A, we further analyzed the Spearman associa-
tion of risk score with immune infiltration; the detailed 
results are presented in Supplementary file 1: Table S6.

There was a significant upward trend in stromal 
scores and immune scores in the low-risk group and 
a significant upregulation of ESTIMATE scores in the 
low-risk samples (Fig. 9B).

Fig. 7 Validation of prognostic efficiency of risk signature. A ROC analysis was employed to estimate the prediction value of the prognostic 
signature. B Areas under curves (AUCs) of the risk scores for predicting 1-, 3-, and 5-year overall survival time with other clinical characteristics. 
C Nomogram was assembled by stage and risk signature for predicting survival of CC patients. D One-3–5-year nomogram calibration curves
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Enrichment of signaling pathways in high/low‑risk groups
GSVA was used to explore the biological role of different 
risk groups in tumorigenesis and progression (Fig.  10A). 
Enhanced activity of the CHEMOKINE pathway, JAK/

STAT pathway, T-cell receptor signaling pathway, and B-cells 
receptor pathway were found in the low-risk group. Gene 
with high expression levels was enriched in the P53 pathway, 
INSULIN pathway and PPAR pathway in high-risk groups.

Fig. 8 Validation of prognostic efficiency of risk signature. A ROC analysis was employed to estimate the prediction value of the prognostic 
signature. B Areas under curves (AUCs) of the risk scores for predicting 1-, 3-, and 5-year overall survival time with other clinical characteristics. 
C Nomogram was assembled by stage and risk signature for predicting survival of CC patients. D One-3–5-year nomogram calibration curves

Fig. 9 Estimation of abundance of tumor-infiltrating cells. A Patients in the high-risk group were more positively associated with tumor-infiltrating 
immune cells, as shown by Spearman correlation analysis. B Correlation between prognostic risk signature with hub immune checkpoint genes
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Predicting patients’ clinical outcome to immunotherapy
Next, the response to immunotherapy was further 
explored. Most of the genes associated with ICB 
had important positive associations with risk score 
(Fig. 10B), and the genes with strong correlations were 
PDCD1, CD40LG, CD28, CD27, and BTLA. However, 
the risk scoring system revealed that scores for IPS-
PD1 and CTLA-4 blockers did not significantly differ 
(Supplementary file 2: Figure S5). These results sug-
gested that risk score was potentially associated with 
the response to immunotherapies.

Prediction of response to chemotherapy
The IC50 of 23 chemotherapeutic medicines was esti-
mated in CC patients according to the pRRophetic 
algorithm. These chemotherapeutics revealed higher 
IC50 in lower-risk patients (p < 0.05; Supplementary file 
2: Figure S6), thus suggesting that chemotherapeutic 
agents are more effective in low-risk samples.

Differential expression of CD177 in samples and cells
We performed qRT-PCR validation on five genes and 
found that the expression of the CD177 gene in samples 

Fig. 10 Enrichment pathways of GSVA. A Heatmap showing the correlation of representative pathway terms of KEGG with risk score. Prediction 
of Immunotherapeutic Response. B Correlation of expression level of immune checkpoint blockade genes with risk score

Fig. 11 Expression pattern of CD177 in human colon cancer. A qRT-PCR of CD177 expression in 10 pairs of CC tissues and adjacent nontumour 
tissues. B Western blot of the protein levels of CD177 in normal tissue and cancer tissue
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of tumor and normal tissues was more significant and sta-
ble than the other four genes (Supplementary file 2: Fig-
ure S8A-E). Combined with previous literature studies, we 
further validated and analyzed CD177 [23, 24, 44–46].

Dysregulated expression levels of CD177 were most 
pronounced in these prognostic plasma cell-associated 
genes. Moreover, the biological function of the CD177 
gene in CC was further explored in a subsequent trial. 
As shown in Fig. 11A, we examined 10 pairs of clinical 
samples by qRT-PCR, finding that CD177 expression in 
CC was substantially lower than in the adjacent normal 
tissue. In addition, low CD177 expression was observed 
in six patient cancer tissues from the protein level, 
while normal tissues had relatively high CD177 expres-
sion (Fig. 11B). This indicated more CD177 infiltration 
in normal tissue samples, suggesting CD177 as a poten-
tial target for CC.

Discussion
Due to the metastasis and recurrence of tumors, CC 
has become one of the diseases with a high mortality 
rate [47]. It is well known that gene mutations, genomic 
variants, and the regulation of non-coding RNA [48] and 
EMT [49] are key regulators of CC progression. With 
the development of immunotherapy, immune check-
point immunotherapy has become an important tool 
for anti-cancer treatment [50–52]. Compared to most 
other therapies for metastatic tumors, immunotherapy 
has achieved long-term durable remissions in a subset of 
patients, with promising prospects in treating dMMR–
MSI-H metastatic CC [53].

In the investigation of CC, TIC has been gaining 
increasing importance [54, 55]. Overwhelming evidence 
demonstrated that TIC contributes positively to anti-
tumor immunity. CD138 (syndecan-1) has become the 
most commonly utilized marker for assessing PC infiltra-
tion. In addition, PC has shown that the constant struc-
ture of the IGKC gene encoding the immunoglobulin 
kappa light chain is highly expressed. Thus, compared to 
CD138, IGKC might be more suitable for detecting PC. 
Several previous studies have demonstrated that IGKC 
has a positive prognostic effect on CC [56]. Further-
more, PC produces tumor-specific antibodies that bind 
to tumor cells, inhibiting their target proteins, activat-
ing complement, and promoting antibody-dependent 
cytotoxicity. UCR, lasso, and MCR were performed to 
identify five hub genes, after which the risk score was cal-
culated, and prognostic markers were constructed. K-M 
analysis and ROC curves validated the good predictive 
performance of the risk model. We revealed that the risk 
characteristics could be a good independent prognostic 
predictor in UCR and MCR. In addition, risk character-
istics remained strong prognostic factors in the stratified 

survival curves of clinical variables. The above results 
suggest that five genetic risk markers can be used as inde-
pendent prognostic molecular biomarkers for predicting 
clinical outcomes in CC. In addition, we constructed and 
validated a prognostic risk score-age nomogram to pro-
vide a basis for clinical practice.
CD177 is a glycosylphosphatidylinositol-anchored gly-

coprotein expressed in neutrophils [57]. Zhou et al. found 
that highly increased CD177 expression in CC and UC 
and a higher density of CD177 + neutrophils in CC pre-
dicted a better prognosis for CC patients. In addition, 
CD177 deficiency promotes the inflammatory response, 
proliferation, and tissue remodeling of colonic epithe-
lial cells, which might enlarge tumor size and increase 
tumor formation in CD177-/- mice [58]. Several studies 
reported that the CD177 gene is a candidate gene that can 
predict a good prognosis for CC [59, 60]. Takeshi et  al. 
suggested that the upregulation of CD177 in gastric can-
cer (GC) also predicted a favorable prognosis for these 
patients. In addition, multivariate analysis revealed that 
high CD177 expression in GC could be an independent 
prognostic condition for OS [45]. The biological role of 
CD177 in tumors was investigated using a GSEA enrich-
ment assay, revealing that CD177 with high expression 
was mainly enriched in keratin filament, immunoglobulin 
complex, and regulation of lymphocyte activation. These 
results suggest that CD177 is extensively involved in reg-
ulating tumor immune signaling pathways, thus further 
elucidating the role of CD177 in anti-tumor strategies on 
a computational and bioinformatic basis.

Some clinical data point to an association between 
genetic alterations and responsiveness to immunotherapy 
[61, 62]. TMB, a predictor of immunotherapy sensitiv-
ity, increased significantly with an increasing risk score. 
In this work, the rate of ABCA13 mutations was signifi-
cantly increased in the low-risk score subtypes, while 
the rate of mutations in SMGs of APC was increased in 
high-risk score patients. Research shows that mutation 
of APC conserved domain results in binding one of the 
oligomeric structural domains to IQ-motif-containing 
GTPase activation protein 1 (IQGAP1), PP2A, Asef, 
and KAP3 [63–66]. These interactions largely stimulate 
cell migration and cell adhesion, thus promoting tumor 
metastasis.

We further investigated the biological function of risk 
score in TIME characterization and immunotherapy. 
Our results demonstrated that risk score was positively 
associated with activated CD4 + T cells, B cells, and 
neutrophils, thus suggesting that the immune activa-
tion phenotype of the high-risk subgroup matches the 
OS dominance. Furthermore, the enrichment of higher 
stromal scores in the high-risk group suggested that 
stromal elements were activated, which might inhibit 
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the anti-tumor effects of immune cells. GSVA results 
indicated that the high-risk group was associated with 
the P53 signaling pathway and NOTCH signaling path-
way, while JAK/STAT signaling pathway, MAPK signal-
ing pathway, and mTOR signaling pathway were activated 
in the low-risk group. These results showed a diversity of 
potential molecular mechanisms among the different risk 
samples.

However, IPS-PD1 and CTLA-4 blockers did not sig-
nificantly differ in the risk score system scores. A previ-
ous study of the clinical response of PD1 to the treatment 
of tumors, melanoma, renal-cell cancer, and non–small-
cell lung cancer presented a pronounced objective 
response, whereas no objective responses were observed 
in patients with prostate cancer or CC [67]. Another 
research demonstrated that mismatch repair-deficient, 
locally advanced rectal cancer was highly sensitive to 
single-agent PD-1 blockade, but prolonged follow-up 
is required to evaluate the duration of response [63]. In 
the present study, risk score showed a significant posi-
tive association with ICB-related genes, suggesting that 
high-risk samples were more closely associated with ICB. 
These current measures may have limitations in applica-
bility and should be further investigated.

The present study further elucidated the impact of the 
prognostic properties of CD177 on TIME characteris-
tics and immunotherapy. First, our results showed that 
CD177 had significantly low expression in CC samples, 
thus indicating it could serve as a poor prognostic pre-
dictor in CC. Thus, finding an immune-related biomarker 
to indicate the prognosis of CC is of utmost importance. 
Other studies based on TCGAs analyzed many targets, 
such as CXCL11, CADM3, LEP, CD1B, etc. [68, 69], and 
the advantages of targets from different aspects. How-
ever, in our study, CD177 mRNA levels in the TCGA 
database had more significant differences in mean 
expression in CC samples and normal tissue samples, and 
the immunohistochemical differences were significantly 
better compared with other genes. Secondly, the differen-
tial expression and mutational burden of the CD177 gene 
had a more prominent effect on the prognosis of tumor 
patients. In addition, we performed several experiments 
to verify CD177 expression in CC, including mRNA lev-
els and protein levels, all of which indicated that CD177 
might be an important target of interest. To the best of 
our knowledge, this is the first study that reported CD177 
in CC. This conclusion is expected to provide new tar-
gets and directions for the immunotherapy of CC in the 
future. In summary, the expression pattern of the CD177 
gene may be a promising target for CC therapy.

In conclusion, this study deciphered the TIME landscape 
through different datasets and comprehensive bioinfor-
matics analysis. In addition, PC-based risk score schemes 

supported TIME heterogeneity, mutations, clinical prog-
nosis prediction, and therapeutic response. Furthermore, 
the potential role of CD177 in CC was further elucidated.

The interaction between CC and its tumor microen-
vironment seriously affects tumor evolution, affecting 
subtype classification, recurrence, drug resistance, and 
overall prognosis of patients. Although previous reports 
have provided elegant analysis of how the activation of 
intrinsic genes in tumors shapes the tumor microenvi-
ronment [70], we assessed genes that characterize the 
tumor microenvironment, eventually influencing the 
development of CC and thus contributing to the overall 
survival of patients. Our results may provide additional 
data for decoding the complex interactions of tumors 
with the tumor environment in CC.

However, due to the pandemic, follow-up data for CC 
patients are currently lacking, and we cannot conduct 
more experimental studies on the other four key genes. 
We hope to add these analyses to future work in order 
to collect more clinical data and perform more molecular 
experiments that could further validate reported findings.
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