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Background
The new Esophageal cancer (EC) patients and deaths 
exceed 1,000,000 a year [1, 2]. The treatment for EC typi-
cally focuses on radiotherapy, chemotherapy, chemora-
diotherapy endoscopic resection and surgery. Despite the 
advancements in diagnosis and treatment in recent years 
have improved the clinical outcomes of EC patients, the 
prognosis remained poor. The 5-year survival rate for EC 
is less than 20% [3]. Thus, identifying reliable prognostic 
biomarkers is necessary for the treatment of EC.

The immunity system is relevant to tumor forma-
tion and progression. The tumor microenvironment and 
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Abstract
Background  Identifying reliable biomarkers could effectively predict esophagus carcinoma (EC) patients with poor 
prognosis. In this work, we constructed an immune-related gene pairs (IRGP) signature to evaluate the prognosis of 
EC.

Results  The IRGP signature was trained by the TCGA cohort and validated by three GEO datasets, respectively. Cox 
regression model together with LASSO was applied to construct the overall survival (OS) associated IRGP. 21 IRGPs 
consisting of 38 immune-related genes were included in our signature, according to which patients were stratified 
into high- and low-risk groups. The results of Kaplan-Meier survival analyses indicated that high-risk EC patients had 
worse OS than low-risk group in the training set, meta-validation set and all independent validation datasets. After 
adjustment in multivariate Cox analyses, our signature continued to be an independent prognostic factor of EC 
and the signature-based nomogram could effectively predict the prognosis of EC sufferers. Besides, Gene Ontology 
analysis revealed this signature is related to immunity. ‘CIBERSORT’ analysis revealed the infiltration levels of plasma 
cells and activated CD4 memory T cells in two risk groups were significantly different. Ultimately, we validated the 
expression levels of six selected genes from IRGP index in KYSE-150 and KYSE-450.

Conclusions  This IRGP signature could be applied to select EC patients with high mortality risk, thereby improving 
prospects for the treatment of EC.

Keywords  Esophageal cancer, Prognosis, Immune-related gene pairs, Bioinformatic analysis, Cells lines

A robust immune-related gene pairs 
signature for predicting the overall survival 
of esophageal cancer
Wei Zheng1, Gaofeng Fang2, Qiao Huang3, Dan Shi2* and Biao Xie4*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-023-09496-x&domain=pdf&date_stamp=2023-7-7


Page 2 of 14Zheng et al. BMC Genomics          (2023) 24:385 

immune cells participated in the initiation and deterio-
ration of cancers [4, 5]. Immunotherapy has become an 
effective antitumor strategy of various cancers [6–8]. 
Represented by programmed death ligand-1, immune 
checkpoint inhibitors (ICIs) can restrain tumor growth 
and improve overall survival (OS) through inhibiting 
the immune escape [9, 10]. Esophageal tumor cells pos-
sess the high potential of immune escape because EC 
is characterized by high heterogeneity and high tumor 
mutational burden [11]. A few preclinical studies and 
clinical trials researchers have found that the ICIs pem-
brolizumab, nivolumab, camrelizumab and toripalimab 
can be used as a form of immunotherapy for EC [12–15]. 
However, immunotherapy for EC leads to mixed results. 
Indeed, several patients were shown to deteriorate 
sharply after receiving immunotherapy [16].

Recently, researchers have attempted to study the asso-
ciation between immune-related genes (IRGs) and the 
prognosis of EC [17–21]. For example, Wang and Li et al. 
ascertained the prognostic value of IRGs and infiltrating 
immune cells for EC patients [20, 21]. Some researchers 
used advanced computational tools. For example, Zheng 
et al. identified predictive and prognostic factors for 
esophageal squamous cell carcinoma based on Similar-
ity Network Fusion and Consensus Clustering Analysis 
[22]. A study from China identified CLDN6 as a molecu-
lar biomarker in pan-cancer through multiple omics data 
integrative analysis [23]. Zhang et al. explored the role of 
YTH domain containing 2 in epigenetic modification and 
immune infiltration of pan-cancer [24]. Unsatisfactorily, 
none of these signatures could be translated to clinical 
application due to issues such as technical bias and bio-
logical heterogeneity of different platforms [25, 26]. To 
eliminate the disadvantage of normalization and scale 
transformation, researchers have developed a method on 
the basis of relative rank of gene expression value. This 
new method has been shown to produce robust signa-
tures in prognostic stratification of various tumors [27–
30]. In our study, an immune-related gene pairs (IRGP) 
signature was conducted to estimate the OS of EC.

Materials and methods
Public datasets and study design
The mRNA expression and corresponding clinicopatho-
logic data of EC patients in the Cancer Genome Atlas 
(TCGA) and Gene Expression Omnibus (GEO) were 
acquired. The detail information of these cohorts is 
shown in Table S1. Altogether, four studies were enrolled, 
including TCGA cohort (n = 170), GSE13898 (n = 60), 
GSE19417 (n = 70) and GSE52625 (n = 179). Patients from 
TCGA cohort were allocated to the training set and all 
the patients from three GEO datasets were assigned to 
the meta-validation cohort. Patients without complete 
survival information and clinicopathologic information 

were excluded. In total, 479 patients were included in 
this study. 2483 IRGs were downloaded from ImmPort 
(https://immport.niaid.nih.gov) on 2022.05.01.

Gene expression data processing
The function ‘normalizeBetweenArrays’ of R package 
‘limma’ was first applied for the normalization of gene 
expression profiles, and then log-transformation was uti-
lized for further normalization.

Construction of predictive-related IRGP
Among the 2483 IRGs, only those existed on all platforms 
and with a relatively high median absolute deviation 
(MAD > 0.5) were selected. The IRGP score was obtained 
by contrasting the mRNA level of two paired genes in 
each sample. An IRGP score is assigned to 1 if the value 
of IRG1 was higher than that of IRG2, conversely, the 
IRGP score was 0 [20]. IRGP with steady value in datasets 
were removed. The left IRGP served as initial candidates 
for further analyses.

Prognostic IRGPs were chosen by the following steps. 
First, the association between each initial candidate IRGP 
and patients’ OS in the training dataset was assessed by 
the univariate Cox regression model. After rough filtra-
tion, the LASSO was further carried out to minimize 
overfitting. To improve the robustness of selected IRGPs, 
we randomly divided the training set into new training 
sets and test sets through a ratio of 2:1, and then dupli-
cated this procedure 30 times. The LASSO was then used 
in the 30 training sets to choose those IRGPs with a fre-
quency > 15. Ultimately, we adopted the multivariate Cox 
regression analysis to construct the IRGP-based model, 
which consisted of relevant IRGP index (IRGPI) and 
respective coefficients. The appropriate cut-off of IRGPI 
for the high- and low- risk groups was determined by 
receiver operating characteristic (ROC) curve at 3 years.

Validation of IRGPI
The accuracy of the IRGPI was evaluated in the training 
cohort, independent validation cohorts and meta-val-
idation cohort by log-rank and ROC curve analyses. To 
explore whether the IRGPI was an independent variable, 
it was combined with other clinicopathologic factors 
(age, gender, tumor stage, smoking habits and alcohol 
intake) in multivariate Cox analysis. The prognostic value 
of IRGPI was further verified by log-rank analysis in dif-
ferent subgroups on the basis of clinical characteristics 
including age, sex and stage.

Tumor-infiltrating immune cells
CIBERSORT analysis associated with reference mRNA 
expression values (LM22) were utilized to appraise the 
relative infiltrating level of 22 immune cells [31]. R pack-
age ‘CIBERSORT’ was utilized to analyze. Samples with 

https://immport.niaid.nih.gov
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p-value < 0.05 were remained for the following analysis. 
The discrepant abundances of different immune cells 
between the two risk groups were contrasted through the 
Wilcoxon rank test.

Functional enrichment
Gene ontology (GO) enrichment analysis was imple-
mented with the R package ‘cluster-Profiler’ to explore 
potential biological processes and enrichment pathways 
of the IRGPI. The thresholds were determined by a false 
discovery rate adjusted P-value (FDR) < 0.05.

Construction of an IRGPI-based predictive nomogram
Using IRGPI and clinicopathologic factors (age, gen-
der, tumor stage, smoking habits and alcohol intake), a 
nomogram was employed to evaluate prognostic value at 
1-, 2- and 3- year survival and the prognostic value was 
also verified in the meta-validation cohort. The risk score 
of each factor was computed, and the total score of all 
factors was taken as the sum of each factor’s risk score. 
Ultimately, we generated calibration plots to appraise its 
predictive performance.

Calculation of tumor immune dysfunction and exclusion 
(TIDE) score and small molecule drug analysis
The TIDE score (http://tide.dfci.harvard.edu/, accessed 
on 27 May 2023) was used to evaluate if there were dif-
ferent ICI treatment responses in patients between high-
risk and low-risk groups. The CMAP (Connectivity Map; 
version 1.1.1.43; https://clue.io) database has comprehen-
sive data on the transcriptome of drug interference ther-
apies. We identified potential effective drugs in treating 
EC through this tool (accessed on 28 May 2023).

Cell culture
EC cell line KYSE-150 (TCHu236) was purchased from 
the Cell Bank of the Chinese Academy of Sciences, 
Shanghai, China. EC cell line KYSE-450 (GDC0633) was 
purchased from China Center for Type Culture Collec-
tion, Wuhan, China. Normal esophageal epithelial cell 
line Het-1A (CRL-2692) was acquired from American 
Type Culture Collection. EC cells lines (KYSE-150 and 
KYSE-450) were cultured with 1640 medium (RPMI, 
11875093, Gibco, USA) supplemented with 10% fetal 
bovine serum (10099141C, Gibco, USA). Normal esopha-
geal epithelial cells (Het-1A) were treated with bronchial 
epithelial cell basal medium (CC-3170, Lonza, Switzer-
land). All cell lines were placed in an incubator which 
contains 5% CO2 at 37°C.

Quantitative real-time PCR
As described by our previous research (PMID: 
33440166), total RNA was extracted with TRIzol reagent 
(9109, Takara, Japan). RNA was reverse transcribed 

to cDNA by the High-Capacity cDNA Reverse Tran-
scription Kit (RR047A-5, Takara, Japan). The transcrip-
tion levels of IL13RA2, RORC, IL20, SAA2, FABP6, 
CHGB were measured by Real-time PCR, SYBR 
Green PCR Master Mix (HY-KO511, Takara, Japan). 
Data were analyzed by normalization to the mRNA 
level of human β-actin. The gene primers were as fol-
lows: human β-actin: F primer, CCTGGCACCCAG-
CACAAT, R primer, GGGCCGGACTCGTCATAC; 
IL13RA2: F primer, AAAGTTCAGGA-TATGGATT-
GCGT, R primer, GAAGTACACCTATGCCAGGTTTC; 
RORC: F primer, AGATACCCTCACCTACACCTTG, 
R primer, CCGCTCAGGGCTGTATTCAA; IL20: 
F primer, ATGAAAGCCTCTAGTCTTGCCT, R 
primer, GCCCCGTATCTCAGAAAATCC; SAA2: F 
primer, GCTTCTTTTCGTTCCTTGGCG, R primer, 
GCCGATGTAATT-GGCTTCTCTCA; FABP6: F 
primer, ACCGGCAAGTTCGAGATGG, R primer, 
CCTTTTCGATTACATCGCTGGA; CHGB: F primer, 
CAGCCAACGCTGCTTCTCA, R primer, GGTTCCT-
GTTATCCACTGGCA. Three biological replicates were 
conducted during our qRT-PCR experiment.

Statistical analysis
All analyses were performed with R software (version 
4.0.2). Log-rank test was utilized to contrast the OS 
between different risk groups. The Cox regression model 
was adopted to evaluate the prognostic role of IRGPI. For 
all analysis, two-sided p-value < 0.05 was considered as 
significant.

Results
Construction of IRGPI
In total, 479 EC patients were involved in the study 
(Table 1). Patient data (170 EC patients) of TCGA data-
set were allocated to the training set. Patient data (309 
EC patients) from three independent GEO datasets 
were allocated to the meta-validation cohort (Fig. S1). 
The overview design in this study was shown in Fig.  1. 
In total, 694 of the 2483 IRGs measured by all platforms 
were considered to meet the criteria (MAD > 0.5). Based 
on these 694 IRGs, 240,471 IRGP were established. After 
removing 223,503 IRGP with constant ordering and those 
were not shared in all tested datasets, 16,968 IRGPs were 
retained as initial candidates for subsequent analysis. 
The univariate Cox regression model was implemented 
to accomplish the rough filtration. 912 IRGPs selected by 
Cox regression model were further filtered out by LASSO 
analysis. Finally, 21 IRGPs that arose more than 15 times 
out of 30 LASSO analyses were selected. The 21 IRGPs 
consisted of 38 unique IRGs (Table S2). The results of 
multivariate Cox regression were implemented to confirm 
the IRGP-based prediction and generate IRGPI scores in 
the training cohort. IRGPI = 1.07740610918684*RSAD2_

http://tide.dfci.harvard.edu/
https://clue.io


Page 4 of 14Zheng et al. BMC Genomics          (2023) 24:385 

Table 1  Patients’ demographics and clinicopathologic characteristics in different cohorts
Training cohort Validation cohorts
TCGA (n = 170) GSE13898(n = 60) GSE19417(n = 70) GSE53625(n = 179)

Age.mean 63.11 ± 11.62 63.17 ± 11.63 - 59.35 ± 9.03

Sex

Male 144(84.71%) 55(91.67%) 46(65.71%) 146(81.56%)

Female 26(15.29%) 5(8.33%) 24(34.29%) 33(18.44%)

Pathologic stage

I 18(10.59%) 23(38.33%) - 10(5.59%)

II 72(42.35%) 16(26.67%) - 77(43.02%)

III 50(29.41%) 4(6.67%) - 92(51.40%)

IV 9(5.29%) 4(6.67%) - 0(0%)

Unknown 21(12.35%) 13(21.67%) - 0(0%)

Smoke

Yes 152(89.41%) 43(71.67%) - 114(63.69%)

No 17(10.00%) 17(28.33%) - 65(36.31%)

Unknown 1(0.59%) 0(0%) - 0(0%)

Alcohol

Yes 117(68.82%) 46(76.67%) - 106(59.22%)

No 50(29.41%) 14(23.33%) - 73(40.78%)

Unknown 3(1.76%) 0(0%) - 0(0%)

Fig. 1  The overview design in this study
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1.09793933631461*IL24_IL13RA2. The detailed IRGPI 
construction process was shown in Fig. S2.

Identification of the prognostic ability of IRGPI
The ROC curve analysis at 3 years was utilized to choose 
the optimal cut-off by which EC patients were split into 
two risk groups. To evaluate the clinical outcomes of the 
two risk groups, a log-rank test was implemented and 
the Kaplan-Meier curves indicated that the OS of EC 
patients in the high-risk group were worse than that in 
the low-risk group (Fig. 2a, HR 15.83, 95% CI 7.33–34.21; 
P < 2 × 10− 16). In addition, the relapse-free survival (RFS) 
of patients was also calculated and the result was simi-
lar to that of OS (Fig.  2b, HR 2.91, 95% CI 1.75–4.82; 
P = 2 × 10− 5). To identify the accuracy of the IRGPI in 
prediction, time-dependent ROC curves were analyzed. 
The area under the curve (AUC) of predicting 1-,2- and 
3-year OS in EC patients was 0.918, 0.935 and 0.957, 
respectively (Fig.  2c). We also evaluated the predictive 
ability of IRGPI in various subgroups of patients, which 

were stratified according to different tumor stage (early 
stage and late stage), gender (female and male) and age 
(≤ 60 and > 60). IRGPI also displayed effective predic-
tive value in all these subgroups (Fig. S3). The results of 
multivariate Cox regression indicated that IRGPI was 
an independent prognostic factor when age, sex, stage, 
smoking habits and alcohol intake were adjusted (Table 
2, P = 2.48×10− 9). Similarly, tumor stage was also an inde-
pendent prognostic factor (Table 2). We further accessed 
the prognostic ability of the combination of IRGPI and 
tumor stage. As a result, patients with high IRGPI scores 

Table 2  Identifying the independent prognostic factors through 
univariate and multivariate Cox analyses
Cohorts Univariate analysis Multivariate analysis

Variable HR (95% 
CI)

P Value HR (95% 
CI)

P Value

Training Age 1.02(0.65–
1.62)

0.9 1.06(0.64–
1.75)

0.821

Gender 2.21(0.96–
5.10)

0.06 1.55(0.60–
4.03)

0.365

Stage 3.16(1.87–
5.35)

7 × 10− 6 1.84(1.04–
3.25)

0.036

Smoke 1.68(0.95–
2.98)

0.07 1.17(0.60–
2.27)

0.644

Alcohol 1.26(0.78–
2.04)

0.3 1.46(0.82–
2.59)

0.201

Immune 
risk

15.83(7.33–
34.21)

< 2 × 10− 16 13.95(5.87–
33.19)

2.48 × 10− 9

Meta-vali-
dation

Age 1.55(1.09–
2.19)

0.01 1.45(1.01–
2.10)

0.04569

Gender 1.11(0.79–
1.58)

0.5 1.08(0.62–
1.88)

0.79717

Stage 2.48(1.72–
3.57)

5 × 10− 7 2.73(1.87-
4.00)

2.16 × 10− 7

Smoke 1.14(0.79–
1.64)

0.5 1.13(0.72–
1.78)

0.60276

Alcohol 1.10(0.77–
1.57)

0.6 1.08(0.68–
1.71)

0.74006

Immune 
risk

1.59(1.03–
2.45)

0.04 2.11(1.21–
3.68)

0.00862

Fig. 2  The Kaplan-Meier curves and time-dependent ROC curves in patients of training cohort. (a) OS in patients of training dataset classified by the 
signature. (b) RFS in patients of training dataset classified by the signature. (c) The time-dependent ROC curves of the IRGPI for 1-, 2- and 3-year OS of 
patients in training cohort
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and early stages had the highest OS among all patients 
(Fig. S4a).

Verification of the prognostic ability of IRGPI
We merged the three independent GEO datasets 
(GSE13898, GSE19417 and GSE53625) to a meta-vali-
dation cohort. Patients in the meta-validation set and 
each independent validation set were assigned to high- 
and low-risk groups on the basis of the result of ROC 
curves. The results of log-rank analysis were consistent 
with the findings from the training datasets. The OS in 
EC patients of the high-risk group were worse than that 
of the low-risk group in meta-validation cohort (Fig. 3a, 
HR 1.59, 95% CI 1.03–2.45; P = 0.04), GSE13898 cohort 
(Fig. 3b, HR 3.15, 95% CI 1.25–7.98; P = 0.01), GSE19417 
cohort (Fig. 3c, HR 1.85, 95% CI 1.02–3.38; P = 0.04) and 
GSE53625 cohort (Fig.  3d, HR 2.73, 95% CI 1.32–5.63; 
P = 0.005). In GSE13898 cohort, IRGPI could predict not 
only OS but also RFS (Fig. S4b). In the meta-validation 
dataset, when stratifying patients by sex, age and tumor 
stage, the IRGPI prognostic value remained high for 

patients ≤ 60 years old, patients with late-stage and male 
patients (Fig. S5). IRGPI could independently predict the 
OS of EC patients in the meta-validation cohort after 
adjusting several clinicopathologic factors (Table  2, HR 
2.11, 95% CI 1.21–3.68; P = 0.00862). Patients in the low-
risk group with early-stage cancer have the best OS in the 
meta-validation dataset (Fig. S4c).

Functional enrichment analysis and immune infiltration
To acquire the functional activities of these IRGs, we 
conducted GO analysis and immune infiltration. GO 
analysis revealed that IRGs in our signature were mainly 
contained in the chemotaxis, immune response, immune 
system process, defense response, inflammatory response 
and cytokine activity (Fig. 4, Table S3). ‘CIBERSORT’ was 
applied to calculate the abundances of 22 type immune 
cells in two risk groups. As a result, the number of 
plasma cells, activated CD4 memory T cells and resting 
mast cells were significantly higher in the low-risk group. 
Moreover, the number of activated mast cells and resting 

Fig. 3  Kaplan-Meier curves in patients of validation sets classified by the signature. (a) OS of patients in meta-validation set. (b) OS of patients in GSE13898. 
(c) OS of patients in GSE19417. (d) OS of patients in GSE53625.
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Fig. 4  GO enrichment analysis on IRGs of the signature. The GO terms which were the top 15 ranked by FDR were listed. (a) The GO terms and their genes. 
(b) FDR and count of each GO term
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CD4 memory T cells were higher in the high-risk group 
(Fig. 5).

Integrated prognostic model based on IRGPI and 
clinicopathologic factors
To obtain the IRGPI based prognostic model for 1-, 
2- and 3-year OS rates, we built a nomogram model 
that incorporated IRGPI and clinicopathologic factors 

[(age ≤ 60 or > 60), sex, tumor stage, smoking habits and 
alcohol intake] (Fig.  6a and 6b). The calibration plots 
were utilized to evaluate the predictive accuracy of the 
nomogram. The calibration plots revealed good prognos-
tic prediction performance of nomogram in both training 
dataset and meta-validation dataset (Fig. S6).

Fig. 5  Infiltrating immune cell of the signature. (a) 22 immune cells abundance. (b) The percentage in 22 immune cells of different samples. (c) The im-
mune cells abundance of different risk groups
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The analysis of the TIDE score and small molecule drug 
inference
The TIDE score of different risk groups were calculated 
and high-risk groups showed a significantly lower TIDE 
score (P = 0.0045, Fig.  7), which suggested patients in 
high-risk groups have better immunotherapy responses. 
Moreover, we further identified five potential effective 
drugs in treating EC through the CMap and they were 
serotonin receptor agonist, vitamin D receptor agonist, 
CDC inhibitor, PDGFR receptor inhibitor and leucine 
rich repeat kinase inhibitor (Table 3).

Transcription levels of genes involved in IRGPI
To further ascertain the reliability of this IRGPs signa-
ture, we selected six genes (IL13RA2, RORC, IL20, SAA2, 
FABP6 and CHGB) to conduct qRT-PCR experiments 
in Het-1A cells and EC cells lines (KYSE-150 and KYSE-
450) based on the fold change, p-values between tumor 
and normal tissues gene expression in public databases, 
as well as high-frequency repeat among gene pairs (Table 
S4). The mRNA expressions of the majority of genes, 
including IL13RA2, IL20 and SAA2, were persistently 
higher in tumor cells lines than Het-1A cells (Fig. 8a, 8c 
and 8d). RORC was persistently lower in EC cells lines 
than Het-1A cells (Fig. 8b). Transcription level of FABP6 

Fig. 7  The Correlation analysis between the signature and TIDE score

 

Fig. 6  The Nomogram of OS. (a) training cohort. (b) meta-validation cohort

 



Page 10 of 14Zheng et al. BMC Genomics          (2023) 24:385 

was increased in the KYSE-450 cells but not in the KYSE-
150 cells in relative to the Het-1A cells (Fig.  8e). The 
transcription level of CHGB was only upregulated in the 
KYSE-450 cells (Fig. 8f ).

Discussion
EC, a lethal malignancy, become the sixth leading reason 
of tumor-related death [2]. Despite the improvement in 
therapies, the clinical outcomes of EC patients remain 
poor [4, 5]. Accumulating evidence has verified an asso-
ciation between prognosis and the tumor immune micro-
environment. Immunotherapy has been administrated to 
combat various types of tumors, including EC; however, 
the cost of immunotherapy associated with EC is pro-
hibitive and patient outcome has been mixed. As such, 
it’s essential to recognize credible biomarkers to predict 
EC patients with high risk of mortality or who might 
be sensitive to immunotherapy. Many researchers have 
concentrated on the relevance between IRGs expres-
sion and tumorigenesis and progression. The prognostic 
abilities of IRGs were extensively studied [32–34]. Several 
researches have proposed IRGs-based signatures as prog-
nostic predictors of EC [17–21]. However, the reliability 
of these signatures is limited. Specifically, one common 
drawback of these signatures is the lack of accurate nor-
malization to reduce the biological heterogeneity when 
processing samples measured by different platforms. 
IRGPs signatures are on basis of the relative gene expres-
sion ranking of paired genes in each patient and elimi-
nates the bias of normalization. IRGPs-based signatures 
have been proven to be effective prognostic biomarkers in 
many solid tumors, including gastric tumor, lung tumor, 
colorectal tumor, and renal cell cancer [27–30]. Based on 
the TCGA, GEO and ImmPort datasets, we constructed 
an IRGPs signature using 21 IRGPs. EC patients were 
segmented into two risk groups depending on the IRGPI 

results above, with survival analyses revealing a signifi-
cant difference between different groups. When patients 
were further stratified into different subgroups according 
to age, sex and tumor stage, differences remained regard-
less of these clinicopathologic features. The nomogram 
based on IRGPI and clinicopathologic features including 
age, sex and tumor stages could quantitatively predict the 
OS of patients with EC.

When it comes to the researches identifying cancer 
prognostic biomarkers, all strives aim to obtain robust 
results. To achieve this goal, we had done the following 
four things. Firstly, we validated the expression levels of 
six selected genes from IRGPI in KYSE-150 and KYSE-
450. Our research is a combination of bioinformatics 
and experimentation. Based on these results and related 
literatures which showed that these genes were related 
to tumorigenesis [35–40], we infer that they are associ-
ated with esophageal tumorigenesis. After searching 
literatures in PubMed with “immune-related gene pair 
[Title/Abstract]” as keywords, we found 25 articles and 
none had their own experiments validation. Secondly, 
researches with multiple platforms could obtain rela-
tively robust results [41]. This study included adequate 
external validation datasets with three GEO datasets 
obtained from multiple platforms, as shown in Fig.  3. 
Moreover, its abilities in distinguishing different OS in 
patients with different pathological stages, age and sex 
groups were verified in both the training cohort and vali-
dation cohorts, as shown in Fig. S3 and Fig. S5. Thirdly, 
the signature was developed based on a robust calcula-
tion process. At first, the association between each IRGP 
and patients’ OS in the training dataset was assessed by 
the univariate Cox regression model. After rough filtra-
tion, the LASSO was further carried out to minimize 
overfitting. To improve the robustness of selected IRGPs, 
we randomly divided the training set into new training 
sets and test sets through a ratio of 2:1, and then dupli-
cated this procedure 30 times. The LASSO was then 
used in the 30 training sets to choose those IRGPs with 
a frequency > 15. Then, we adopted the multivariate Cox 
regression analysis to construct the IRGP-based model, 
which consisted of relevant IRGPI and respective coeffi-
cients. Similarly, previous studies have utilized advanced 
machine learning methods to obtain more robust and 
accurate results [42–46]. Zhao et al. investigated car-
diotoxicity related with hERG channel blockers using 
molecular fingerprints and graph attention mechanism 
[42]. Hu et al. conducted the association analysis between 
gene function and cell surface protein based on single-
cell multi-omics data [43]. A study used a deep learn-
ing method to predict metabolite-disease associations 
via a graph neural network [44]. There were also some 
researches which focused on predicting lncRNA-miRNA 
interactions based on graph convolution network with 

Table 3  The list of compounds which could be as potential 
drugs in treating EC.
Rank Score Name Description Target
8549 -87.34 quipazine Serotonin recep-

tor agonist
HTR2A, HTR3A, 
HTR3B, HTR1A, 
HTR1D, HTR2B, 
HTR2C, HTR6, 
SLC6A4

8548 -87.05 calcifediol Vitamin D recep-
tor agonist

VDR

8544 -85.69 KU-C103428N CDC inhibitor NFE2

8540 -83.55 linifanib PDGFR receptor 
inhibitor

CSF1R, KDR, 
PDGFRB, FLT1, 
FLT3, FLT4, 
CSF1, KIT, PDG-
FRA, RET, TEK

8530 -76.3 XMD-1150 Leucine rich 
repeat kinase 
inhibitor

LRRK2
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Fig. 8  Validation of mRNA expression of genes generated from genes pairs. (a-f) Real-time PCR analysis of selected six genes in Het-1 A, KYSE-150 and 
KYSE-450 cells. Data were presented as the mean ± SE.
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conditional random field and network distance analysis 
[45, 46]. These interesting works would provide valuable 
directions for us. Fourthly, biological functions, immune 
infiltration and bioinformatics analysis were combined to 
confirm the reliability of our results. Pathway enrichment 
analysis showed that our signature-related genes were 
mainly involved in immune and inflammatory response, 
cytokine activity and chemotaxis. A significantly higher 
infiltration level of plasma cells and activated CD4 mem-
ory T cells was found in the low-risk group versus the 
high-risk group. Those results could provide clues for our 
future experimental researches.

GO analysis was conducted to obtain the functional 
activities of those IRGs consisting of IRGPs. The path-
ways associated with IRGPs mainly contained in cyto-
kine, chemotaxis, T cell activation, receptor and ligand 
activation, morphogenesis of epithelium and angiogene-
sis (Fig. 4). Namely, most are involved in specific immune 
activities, and a few are receptor and ligand activa-
tion, and tumorigenesis. The results indicated that IRGs 
included in IRGPI participated in some specific immune 
and tumorigenesis activities. The results of immune cell 
abundance analysis revealed that the number of activated 
CD4 memory T cells, plasma cells and resting mast cells 
were significantly higher in the low-risk EC patients. 
Besides, resting CD4 memory T cells and activated mast 
cells have an inverse result. In recent years, evaluation 
of immune activity in multiple cancers has revealed that 
B cells and plasma cells may act as biomarkers to pre-
dict the effectiveness of immunotherapy. Plasma cells 
in tumor microenvironment are related to ameliora-
tive outcomes [31]. Yao et al. also found an association 
between high tumor‑infiltrating plasma cells and favor-
able OS prognosis in EC patients [31]. The results of our 
study were similar to these previous studies, whereby we 
found the abundance of activated CD4 memory T cells 
were lower in the high-risk group. Indeed, activated CD4 
memory T cells was related to favorable outcome in sev-
eral tumors [27, 33]. To a certain extent, the differences 
in immune cells composition in two groups may explain 
the prognostic value of the IRGPI in EC.

To identify the reliability of the IRGPs signature in EC, 
we conducted qRT-PCR to investigate the transcription 
levels of six selected genes. The IL13RA2, SAA2 and 
IL20 have a significantly higher expression level, whereas 
the transcriptional level of RORC was lower, in EC cells 
lines than that in Het-1A cells. IL13RA2 participated in 
the regulation of IL13 and IL4 [32]. IL13RA2 is overex-
pressed in various tumors, such as glioblastoma, pan-
creatic tumor, ovarian tumor and head and neck tumor 
[35, 36, 47, 48]. Thus, we surmise that IL13RA2 possesses 
an essential role in the tumorigenesis of EC, and further 
work is needed to investigate the mechanism of IL13RA2 
in EC. Human SAA1 and SAA2 encode identical proteins. 

The SAA2 protein belongs to the SAA protein [49] and 
participates in the progression of several tumors. It 
is reported that SAA2 is significantly increased when 
renal cell carcinoma (RCC) patients have the highest 
Fuhrman grade [50]. SAA2 could also be a potential pre-
dictor of OS in RCC [50]. Indeed, SAA2 was significantly 
increased in lung cancer and had effective diagnostic 
value in lung, endometrial and colorectal tumors [37, 
38, 51]. Wang et al. showed that SAA levels were related 
with poor survival [41, 52]. According to our results and 
previous studies, it is a reasonable inference that SAA2 is 
related to tumor tumorigenesis and poor survival of EC 
patients. However, this assumption needs further study. 
RORC, a member of ROR subfamily, has been studied 
in various cancer cells and their corresponding tumor 
microenvironment in recent years, with results show-
ing that it might possess effective prognostic value in 
both lung and breast cancers. RORC could also be as a 
promising molecular target for the therapy of prostate 
tumor [39]. The results of our research indicated that 
RORC was downregulated in EC cells when compared 
with Het-1A cells. IL20 is a part of IL10 family and plays 
important roles in various immunopathological diseases 
[53]. Previous studies have indicated that IL20 takes part 
in cancer progression in several tumors [54–57]. How-
ever, researches of IL20 in EC were limited. Increased 
expression of IL20 was found in EC of previous micro-
array analysis [40], but the potential mechanisms of IL20 
in EC is unknow yet. Our in vitro experiment showed 
that IL20 has a significantly higher expression in EC cells 
than in Het-1A cells. This result is in accordance with the 
increased expression of IL20 in several cancers including 
EC. Further study is warranted to explore the role of IL20 
on EC tumorigenesis.

It should be noted that there are some limitations in 
our research. First, despite four unique datasets being 
included, only 479 samples were analyzed and more 
samples are needed for further validation. Second, con-
sidering the results of this study were obtained from 
retrospective analyses, prospective study is required to 
confirm the efficiency of this IRGPs signature model.

Conclusion
In conclusion, The IRGPI, constructed in this study, can 
both stratified EC into different risk groups and predict 
the prognosis of EC, effectively. The results of our study 
provide promising perspectives for selecting patients 
who are sensitive to immunotherapy and pave the way for 
EC treatment.
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Fig. S1. Overview of the construction and validation of immune-related 
gene pairs signature (IRGPI). Four datasets were included in this study. 
TCGA dataset was used for training cohort, and GSE13898, GSE19417, 
GSE53625 were merged to the meta-validation cohort. The training cohort 
was used to build an IRGPI. The IRGPI was verified on the meta-validation 
cohort and independent validation cohorts.

Fig. S2. Flow chart of IRGPI construction. 

Fig. S3. Kaplan-Meier curves in different subgroups’ cases of training set. 
(a) OS of cases with early stage. (b) OS of male cases. (c) OS of cases ≤ 60 
years old. (d) OS of cases with late stage. (e) OS of female cases. (f ) OS of 
cases > 60 years old

Fig. S4. The Kaplan-Meier curves. (a) OS among patients in training cohort 
stratified by IRGPI and tumor stage. (b) Relapse-free survival among 
patients in validation cohort of GSE13898. (c) OS among patients in meta-
validation cohort stratified by IRGPI and tumor stage.

Table S1. Details about datasets used in this study. 

Table S3. The significant biological processes enriched by genes consisted 
in the IRGPI.

Table S2. Model information about the IRGPI 

Table. S4. The expression levels of six genes in training and validation 
dataset. 

Fig. S5. Kaplan-Meier curves in different subgroups’ cases of meta-valida-
tion dataset. (a) OS of cases in early stage. (b) OS of male cases. (c) OS of 
cases ≤ 60 years old. (d) OS of cases in late stage. (e) OS of female cases. (f ) 
OS of cases > 60 years old. 

Fig. S6. Nomogram evaluation for predicting 1-, 2- and 3-year OS. (a-c) 
Calibration plots of the nomogram for predicting the probability of OS at 
1 (a), 2 (b) and 3 years (c) in training cohort. (df ) Calibration plots of the 
nomogram for predicting the probability of OS at 1 (d), 2 (e), 3 years (f ) in 
meta-validation cohort.
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