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Abstract 

Background  Many long non-coding RNAs, known to be involved in transcriptional regulation, are enriched 
in the nucleus and interact with chromatin. However, their mechanisms of chromatin interaction and the served cellu‑
lar functions are poorly understood. We sought to characterize the mechanisms of lncRNA nuclear retention by sys‑
tematically mapping the sequence and chromatin features that distinguish lncRNA-interacting genomic segments.

Results  We found DNA 5-mer frequencies to be predictive of chromatin interactions for all lncRNAs, suggesting 
sequence-specificity as a global theme in the interactome. Sequence features representing protein-DNA and protein-
RNA binding motifs revealed potential mechanisms for specific lncRNAs. Complementary to these global themes, 
transcription-related features and DNA-RNA triplex formation potential were noted to be highly predictive for two 
mutually exclusive sets of lncRNAs. DNA methylation was also noted to be a significant predictor, but only when com‑
bined with other epigenomic features.

Conclusions  Taken together, our statistical findings suggest that a group of lncRNAs interacts with transcriptionally 
inactive chromatin through triplex formation, whereas another group interacts with transcriptionally active regions 
and is involved in DNA Damage Response (DDR) through formation of R-loops. Curiously, we observed a strong pat‑
tern of enrichment of 5-mers in four potentially interacting entities: lncRNA-bound DNA tiles, lncRNAs, miRNA seed 
sequences, and repeat elements. This finding points to a broad sequence-based network of interactions that may 
underlie regulation of fundamental cellular functions. Overall, this study reveals diverse sequence and chromatin 
features related to lncRNA-chromatin interactions, suggesting potential mechanisms of nuclear retention and regula‑
tory function.
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Background
Long non-coding RNAs (lncRNAs) are 200 bp or longer 
transcripts lacking a substantial open reading frame 
(ORF), that have been shown to be functionally signifi-
cant in many different contexts [1]. Cell-type specific-
ity and gene regulatory functions of lncRNAs point us 
to their potential significance in organismal complexity 
[2] and disease [3]. Many lncRNAs are preferentially 
retained in the nucleus where they perform a variety of 
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regulatory functions, and the elucidation of such func-
tions is an important frontier of research today [4].

Mechanisms underlying nuclear enrichment of lncR-
NAs are not well understood and anecdotal evidence 
suggests these are diverse and combinatorial [5]. A 
plausible mechanism is the interaction of lncRNAs 
with nuclear proteins and/or chromatin. This is sup-
ported by reports of direct lncRNA-DNA interactions 
via triplex formation [6] or through R-loops [7], as 
well as indirect interactions mediated by RNA-binding 
proteins (RBPs) or chromatin modifiers [8]. Emerging 
technologies have been used to catalog RNA-chroma-
tin interactions genome-wide [9] and have revealed 
individual lncRNAs to bind to or localize at specific 
genomic regions; such specific localization has in turn 
been linked to the RNA’s biological functions [10, 11]. 
These findings motivate the question: what charac-
terizes the genomic segments that a specific lncRNA 
is found to localize at? Sequence patterns such as 
those found in Alu repeat elements [12] and generic 
sequence properties such as high GA content [13] have 
been reported as characterizing the bound regions. 
However, a thorough examination of the sequence, 
structural and epigenomic signatures distinguishing 

chromatin interaction sites for individual lncRNAs has 
not been undertaken.

Here, we sought to identify properties related to 
sequence or chromatin state that distinguish the genomic 
segments found to interact with specific lncRNAs (Fig. 1). 
We expected statistically identified properties to pro-
vide support for suggested as well as novel mechanisms 
of lncRNA-chromatin interaction, ultimately shedding 
light on lncRNA nuclear retention and functions. We 
analyzed RNA-chromatin interaction data from mouse 
embryonic stem cells (mESC), obtained using GRID-seq 
[14] and RADICL-seq [15] technologies and representing 
dozens of lncRNAs. We trained machine learning mod-
els to distinguish the lncRNA-interacting DNA regions 
from carefully selected non-interacting regions for each 
lncRNA. This classification task was defined in a way that 
forces models to focus on distinguishing features other 
than distance to the lncRNA gene, the predominant fac-
tor influencing chromatin localization. The models lev-
erage information from lncRNA and DNA sequence 
as well as a broad range of experimental measurements 
from mESC. Sequence information includes counts of 
all 5-mers as well as computationally predicted binding 
sites of transcription factors (TFs) or RBPs and presence 

Fig. 1  Study overview. This study analyzes RNA-chromatin interaction maps (top left) obtained from publicly available RADICL-Seq and GRID-Seq 
experiments conducted on mouse embryonic stem cells. We segmented the mouse genome into non-overlapping 1 kb tiles, identified 28 lncRNAs 
that interact with at least 1000 unique tiles, and focused on these lncRNAs. To learn about the distinguishing characteristics of lncRNA-interacting 
DNA tiles, we set up a classification task aimed to discern such tiles from the ones in their proximity that do not interact with a lncRNA (top 
middle). We employed Random Forest (RF) classifiers using families of features characterizing the tiles’ sequence and cellular context (bottom left). 
We ranked features and feature families based on their average contribution to the predictive power of the classifier (bottom middle). Feature 
importance analysis focused on lncRNAs for which cross-validation revealed predictive accuracy (bottom right) above a pre-set threshold
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of repeat elements. Experimental measurements used by 
the models include binding profiles of DNA-binding pro-
teins, chromatin marks, transcription measurements as 
well as methylation and accessibility profiles from mESC. 
We systematically examined the contribution of each 
of thousands of features, as well as families of features, 
to the predictive ability of the models. Our analysis was 
carefully designed to account for the extensive correla-
tions known to be present among different epigenomic 
features and the partially causal relationship between 
sequence and epigenomic states.

The studied lncRNAs fell into two broad categories: for 
one category, transcription-related features are highly 
predictive of chromatin interactions, while for the other 
the triplex-formation potential between the RNA and 
DNA is a strong predictor. DNA methylation-related 
information, when combined with other epigenomic 
features, was also noted to be a significant marker of 
lncRNA localization. Sequence footprints were highly 
informative for the classification task, with the most use-
ful features representing protein-DNA and protein-RNA 
binding, triplex formation, and specific repeat elements. 
Curiously, we observed a persistent association between 
microRNA seed sequences and lncRNA-chromatin inter-
action, suggesting that mechanisms similar to “compet-
ing endogenous RNA” [16] may be involved in nuclear 
retention as well. Finally, we noted several predictive 
features used by the models as being related to DNA 
Damage Response, supporting the broad role played by 
non-coding RNAs in this process [10, 17]. In summary, 
our work presents a systematic and extensive catalog of 
potential mechanisms underlying chromatin localiza-
tion of a diverse compendium of lncRNAs and highlights 
broader patterns of mechanisms shared across lncRNAs.

Results
The lncRNA‑chromatin interactome: dominance of cis 
interactions
We collected data from GRID-Seq [14] and RADICL-Seq 
[15] experiments conducted in mouse Embryonic Stem 
Cells (mESC). LncRNA-chromatin interactions were 
extracted from both data sets to account for their com-
plementary strengths and biases. These data included 
751,893 interactions between lncRNAs and distinct 1 kb-
long DNA tiles, the majority of which are mediated by 
relatively few lncRNAs (Fig.  2a). We focused on the 28 
lncRNAs that interact with at least 1000 unique 1  kb 
DNA tiles and together mediate 68% of all interactions, 
involving 180,220 unique tiles whose genomic distribu-
tions are shown in Fig. 2b. We noted that Malat1 binds to 
far greater number of DNA tiles compared to other lncR-
NAs – 110,183 unique 1-kb tiles, more than six times as 
many tiles as any other lncRNA. Furthermore, Malat1 is 

the only lncRNA among the 28 with “trans” interactions, 
i.e., interactions with DNA regions not located on the 
same chromosome as the lncRNA gene. In cases where 
a chromosome harbors more than one of the considered 
lncRNAs (e.g., Platr28, Gm45846, and Kcnq1ot1 located 
on chromosome 7), we observed each lncRNA to inter-
act with DNA regions closer to its gene. In fact, within 
this data set, if a DNA tile is known to be bound by some 
lncRNA in cis, the interacting lncRNA can be identified 
accurately merely based on distance to lncRNA genes 
(Fig. 2c). This striking predominance of proximal interac-
tions might be explained by the generally low expression 
of lncRNAs and the resulting concentration gradient in 
their cellular microenvironment [18].

Machine Learning framework to identify mechanisms 
of lncRNA‑chromatin interactions
We found above that lncRNAs generally bind DNA in 
the vicinity of their respective genes. However, not all 
neighboring DNA tiles are bound by the lncRNA. This 
raises the possibility that factors besides distance affect 
the interaction. We hypothesized that sequence charac-
teristics of the DNA tile (“sequence features”) or features 
obtained from various experimental measurements in 
mESCs (“cell-context features”) might be predictive of 
lncRNA-chromatin interactions. Identifying distinc-
tive characteristics of adjacent but differentially bound 
DNA tiles might shed light on the mechanisms involved 
in lncRNA-chromatin interaction and provide clues 
about the functional role of such interactions in cellular 
processes.

Classification, features and feature importance
Features used to describe each DNA tile (Table 1) fall into 
two main categories – sequence features and cell-context 
features – with each category comprising five families of 
features, and each family comprising between one and 
701 features (see Methods for details). Most features cap-
ture information about the DNA tiles alone, but some 
capture information specific to a lncRNA-tile pair. We 
used the full set of 1613 features to train a Random For-
est (RF) classifier for each lncRNA. The classifier distin-
guishes the DNA tiles interacting with a specific lncRNA 
from non-interacting ones (details below). We evaluated 
its predictive ability on unseen test sets of DNA tiles 
(details below). We assessed the importance of each fea-
ture family by comparing the predictive performance of 
models that differ only in the inclusion or exclusion of 
that family (Methods). Finally, we cataloged the impor-
tance of individual features to the predictive ability of the 
classifier for each lncRNA (Fig. 1 and Methods).



Page 4 of 21Tabe‑Bordbar and Sinha ﻿BMC Genomics          (2023) 24:395 

Choice of “positive” and “negative” sets for classification
Positive examples for a specific lncRNA are the DNA tiles 
interacting with that lncRNA. For negative examples, DNA 
tiles that do not interact with the lncRNA are selected, 
but they are strategically positioned near the positive tiles. 
Essentially, our objective was to choose positive and nega-
tive examples that cannot be easily distinguished based on 
the genomic distance from the lncRNA gene. To accomplish 
this, we sampled negative tiles in a way that their distribu-
tion of distances from the lncRNA gene closely resembled 
the distribution observed for positive tiles (see Fig. 2d).

Model evaluation
To assess the predictive capability of models that 
make genomic predictions in a single cell type, 

cross-chromosomal evaluation is a commonly used 
method. In this version of the "k-fold" Cross-Validation 
(CV) strategy, the genomic regions on a chromosome 
are combined to create the test set for a CV "fold" or 
iteration. This CV strategy is known to provide more 
realistic estimates of model generalizability [22]. How-
ever, our analysis revealed that the majority of the con-
sidered lncRNAs interact exclusively with tiles located 
on a single chromosome, rendering cross-chromosomal 
CV ineffective for our purposes (as depicted in Fig. 2b). 
Nonetheless, drawing inspiration from it, we devised a 
new CV approach called "block CV." In this approach, 
we divide all the tiles on a chromosome into contigu-
ous blocks, ensuring that tiles within a block remain 
together as part of either the test set or the training 

Fig. 2  a Cumulative distribution of unique interactions. For any x (number of lncRNAs), the corresponding y indicates the percentage 
of interactions spanned by the top x lncRNAs (sorted by number of interactions). Dashed red line indicates the number of lncRNAs considered 
in this study. The selected 28 lncRNAs form about 68% of all interactions. b Interaction frequency matrix, representing the number of interactions 
formed by each lncRNA (rows) with all 1 Mb-DNA regions (columns). Bottom row (and dashed orange line) indicates the origin of biosynthesis 
(gene) for the considered lncRNAs. c Performance (i.e., sensitivity) comparison of random (“Random”) and distance-based (“Nearest”) classifiers 
that identify, for each lncRNA-interacting DNA tile, the lncRNA it interacts with, among all lncRNAs originating from the same chromosome. 
Distance-based classifier assigns each lncRNA-bound DNA tile to the lncRNA whose gene is located closest to that tile, while the random classifier 
makes the assignment by selecting one at random among all the cis-located lncRNAs (i.e., lncRNAs originating on the same chromosome 
as the DNA tile). d Each Q-Q plot compares lncRNA-bound (“Positive”) and unbound (“Negative”) DNA tiles in terms of their distance (in bp) 
from their interacting lncRNA’s origin of biosynthesis. The two plots represent all data-points (green) or the subset of data-points provided 
to the classiffiers (blue), respectively. e Visual comparison of Random and Block cross-validation schemes for Malat1-chromatin interactions, 
focusing on a region of chromosome 11. Vertical lines represent tiles subjected to classification. The height of vertical lines indicates their label (tall 
for positive, short for negative) and their color specifies the partition to which they belong in a five-fold cross validation setup
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set in any CV fold. We evaluated all the trained models 
using fivefold block CV, as well as a fivefold random CV 
where tiles are randomly assigned to the training and 
test sets regardless of their block identity. An example 
of both CV strategies is illustrated in Fig. 2e.

Full models predict chromatin interactions for a majority 
of lncRNAs
To assess the overall predictive power of the defined fea-
tures, we used all feature families together to train an 
RF model for each lncRNA. Figure  3a shows block and 
random CV test performance of the trained full model 
for each lncRNA. Random CV generally provides a 
more optimistic estimate of performance as compared 
to block CV. It is notable that models trained for major-
ity of the considered lncRNAs, including Malat1 and 
Neat1, performed considerably better than a random 
classifier (expected AUROC = 0.5) in either CV scheme. 
Gm14820 interactions are particularly well-predicted 
(block AUROC = 0.81, averaged across the 5 folds) by 
the model. ROC and PR curves for the prediction of 
Gm14820-interacting tiles, from one of the block CV 
partitions, are reported in Fig. 3b and c, respectively. An 
example of model predictions for this lncRNA is shown 
in Supplementary Fig. S1. We set block test AUROC of 

0.6 (average across five folds) as the predictability thresh-
old and chose to focus on the 15 lncRNAs (of the initially 
considered 28) that pass this threshold, to better under-
stand the most predictive features.

Transcription and triplex formation potential are predictive 
of chromatin interactions of two distinct groups of lncRNAs
Two main mechanisms of lncRNA-chromatin interac-
tion [8] are (1) indirect interactions mediated by chroma-
tin modifiers and proteins with dual DNA/RNA binding 
capacity, and (2) direct interactions, either through tri-
plex structures formed between single stranded RNA 
and double stranded DNA, or through R-loop formation. 
We hypothesized that these and other mechanisms will 
be reflected in the predictive power of specific feature 
families used by our classifiers. Cognizant of the inter-
dependence and correlation among various features, we 
devised the following approach to assess the predictive 
power of each family of features for a given lncRNA. We 
first train RF models using all possible combinations of 
feature families: given n feature families, we train 2n—1 
models each including a unique combination of feature 
families. (A feature family being included means that all 
features in that family are included in the model.) Next, 
to identify the predictive ability of a feature family, we 

Table 1  Features and feature families, belonging to sequence category or cell-context category, used to describe each DNA tile

Family Features

Sequence k-mer frequency 512 features, each representing the count of a 5-mer (and its reverse complement) in the DNA tile.

Motif scan 701 features obtained by counting matches to TF motifs (623) or RBP motifs (78) in a DNA tile or its putative 
transcript respectively. TFs and RBPs are known to mediate lncRNA-chromatin interactions [8] and the “motif 
scan” feature family may capture such factors using their nucleic acid binding preferences.

Repeat element count 60 features, 59 of which represent the number of times a tile overlaps with one of 59 different repeat ele‑
ments obtained from RepeatMasker [19]. The last feature in this family, named “repeat-pair”, is the count 
of distinct repeat elements that overlap with both the DNA tile and lncRNA. Repeat elements have been 
proposed to play a role in nuclear localization of lncRNAs [12], motivating our use of this family of sequence 
features.

Triplex formation potential Four features quantifying the triplex formation potential as predicted by the Triplexator tool [20], based 
on the sequence of DNA and lncRNA. LncRNAs have been observed to form triplex structures with double 
stranded DNA by forming Hoogsteen bonds [6].

Shared motifs Three features, viz., “TF-pair”, “RBP-pair”, and “PPI-pair”. Each feature is the count of proteins of a specific class 
(TFs, RBPs) or of protein complexes that have motif matches to both the DNA tile and the lncRNA sequence. 
These features quantify the number of potential mediators for a DNA-lncRNA interaction.

Cell Context DNA accessibility Two features reflecting DNase-Seq and ATAC-Seq accessibility profiles in mESC.

DNA methylation Single feature obtained from a Whole Genome Bisulfite Sequencing (WGBS) assay conducted on mESC.

Chromatin marks 48 features corresponding to ChIP-Seq profiles of distinct histone modifications in mESC, as such modifica‑
tions are known markers and/or determinants of genome function. The family includes an additional feature 
called “chromatin-pair” that quantifies the chromatin state similarity (number of shared chromatin marks) 
between the lncRNA gene and DNA tile, motivated by reports of similar chromatin state at interacting 
chromatin domains [21].

TF ChIP 275 features quantifying the binding of TFs and other DNA-binding proteins to each DNA tile in mESC, 
as well as a feature that reflects the number of proteins observed to bind both the lncRNA gene 
and the DNA tile.

Transcription Five features describing the nascent and processed transcription levels at the DNA tile, as well as RNA-pol II 
binding profile.
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compare the CV test AUROC between pairs of models 
that differ only in inclusion of that feature family. The 
performance boost gained by the addition of a particular 
feature family to any baseline model provides us with a 
measure of predictive value of that family, and we call its 
average, over all choices of the baseline model, the “Mar-
ginal Predictive Value” (MPV) for that feature family. This 
approach is inspired by a recently developed model inter-
pretation framework, called SHAP [23]. Catav et al. [24] 
suggest the use of maximum (as opposed to average) gain 
of performance achieved by addition of a feature, as its 
marginal contribution. Following their work, we repeated 
our analyses with Maximal Predictive Value (MxPV, see 
methods) in place of MPV, and noted the overall trends 
to remain unchanged. Hence, we only report the results 
from MPV analysis here.

DNA sequence has been demonstrated to be predic-
tive of various contextual features, such as epigenetic 
marks and TF binding profiles, in a given cellular context 
[25], and hence context category of features are causally 
dependent on sequence category of features. In light of 
this, we categorized sequence features as "primary" fea-
tures, while cell context features, such as epigenomic 
and transcriptomic features, were considered "second-
ary" features in our analysis. When evaluating the MPV 
(Mean Predictive Value) of sequence category feature 
families, we excluded secondary features from the mod-
els. Conversely, when assessing the MPV of cell context 
feature families, we included all sequence feature families 
in the models (see Fig. 3d). In other words, we employed 
"sequence-only" models to evaluate the MPV of sequence 
category feature families, whereas "sequence + context" 
models were used to calculate the MPV of cell context 
feature families. As mentioned earlier, there are five fea-
ture families within both the sequence and cell-context 

categories. Consequently, the set of sequence-only mod-
els consists of 31 models, covering all combinations 
of feature families in the sequence category. Similarly, 
there are 32 "sequence + context" models, each contain-
ing a lower dimensional representation of the full set of 
sequence feature families along with a combination of 
context feature families.

Figure 3e illustrates the calculation of MPV of feature 
families for prediction of Malat1-chromatin interactions. 
Each box represents the distribution of performance 
(block CV AUROC) differences between models trained 
using feature sets that differ only by a specific feature 
family. The average of the depicted distribution is the 
MPV of that feature family. We see that transcription is 
the dominant discriminative feature family in predict-
ing Malat1-chromatin interactions: regardless of other 
feature families included in the models, including the 
transcription family increases the AUROC by ~ 0.05 on 
average. This is consistent with the localization of Malat1 
to nuclear speckles and their known association with 
transcriptional activity [26, 27]. We repeated the same 
procedure for all 15 lncRNAs and report the MPVs as 
a heatmap in Fig.  3f. (Supplementary Fig. S2 shows the 
corresponding heatmap generated using MxPV val-
ues). We found the “Transcription” family of features 
to be predictive (MPV ≥ 0.01) for 9 lncRNAs, which are 
henceforth referred to as “Transcription-associated lncR-
NAs” or “TA lncRNAs”. The strongest example of this 
is the lncRNA Trerf1, for which the Transcription fam-
ily has an MPV of 0.1. Figure  3g compares the ROC of 
a baseline sequence-only classifier (that includes all five 
sequence feature families) of Trerf1 interactions with 
that of a classifier that also includes the Transcription 
feature family, with the AUROC increasing by 0.11, from 
0.66 to 0.77 as a result. Two other lncRNAs for which 

Fig. 3  Model performance and feature family analysis. a Bar chart illustrates the test performance of the RF classifier using all features, for each 
lncRNA in random/block cross-validation settings. b and c illustrate PR and ROC curves respectively, quantifying the test performance of RF models 
trained to predict Gm14820-chromatin interactions. d Schematic representation of the Marginal Predictive Value (MPV) evaluation framwork. 
The toy example is a scenario with two primary and two secondary families of features. The MPV of a feature family is quantified as the average 
difference in test performance of pairs of models that have been trained using feature sets that only differ in the inclusion of that feature family 
(see Methods). e Boxplots (median and quartiles) show the contributions of feature families to the prediction of Malat1-chromatin interactions. 
Each boxplot corresponds to one feature family and depicts the distribution of 16 points representing pairwise differences in performance 
of models differing only in inclusion of that particular feature family. f Heatmap shows MPV of feature familes (columns) for all lncRNAs (rows). 
Row label colors show lncRNA group (TA and non-TA lncRNAs shown in gold and navy, respectively). g Black line shows the test ROC of a classifier 
that uses sequence features only, whereas the green line shows the test ROC of a classifier that uses the transcription family of features in addition 
to sequence features to predict Trerf1-chromatin interactions. h ROC curve shows the performance of a classifier that uses triplex feature family 
to predict chromatin interactions for Rian. i Boxplots illustrate the MPV for Triplex and Transcription feature families grouped by lncRNA type. * 
indicates Mann–Whitney p-value of 0.01. j ROC curves showing performance of models trained to predict Gm14820 chromatin interactions. k 
Average complementarity scores for 16 top-scoring pairs of feature families are shown. Chrom: Chromatin marks; Methyl: Methylation. l ROC 
curves of models trained to predict Neat1-chromatin interactions using DNA methylation alone (black), Histone marks alone (green), or both (blue) 
as predictors. m Boxplots indicate the performance of models trained using methylation and chromatin mark features for all lncRNAs grouped 
by their type

(See figure on next page.)
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the Transcription family has similarly high MPVs are 
Platr16 and 5830418p13rik (Supplementary Fig. S3). The 
remaining six lncRNAs (rows labeled in navy, Fig. 3f ) are 
henceforth referred to as “non- Transcription-associated 
lncRNAs” or “non-TA lncRNAs”. Among the context fea-
ture families, transcription is by far the most predictive 
feature (average MPV of 0.03 across all lncRNAs) while 
other feature families have relatively low predictive ability 
(average MPV < 0.01). Note that the low MPV assigned 
to ChIP profiles and chromatin marks might be due to 

their dependence on sequence features – our evaluation 
procedure is insensitive to the importance of cell-context 
features that are predictable from sequence. On the other 
hand, the high MPV attributed to Transcription family of 
features suggests that this feature family may bear infor-
mation complementary to sequence features for predic-
tion of lncRNA-chromatin interactions.

Interestingly, Fig. 3f suggests that the triplex family of 
features is predictive for several of the non-TA lncRNAs. 
A strong example of this is the lncRNA Rian, for which 

Fig. 3  (See legend on previous page.)
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inclusion of this family increases the AUROC of various 
baseline models by 0.07 on average; the ROC of a classi-
fier that only uses this feature family is shown in Fig. 3h 
(AUROC 0.65). The triplex family has significantly higher 
MPVs for non-TA (mean 0.04) versus TA lncRNAs (mean 
0.008, Mann–Whitney test p-value = 0.01, Fig. 3i). These 
findings suggest the existence of two distinct classes of 
lncRNAs: those interacting with chromatin through tri-
plex structure formation and those interacting through a 
transcription-coupled mechanism. Figure 3f also suggests 
k-mer frequency, motif scan, and to a lesser extent repeat 
feature families to be useful predictors overall, with aver-
age MPVs of 0.03, 0.02, and 0.01 respectively. For some 
lncRNAs, two or more feature families were predictive 
(MPV >  = 0.01), an example being Gm14820, for which 
the families “Motif scan”, “k-mer frequency” and “Repeat 
element count” in the sequence category have MPVs of 
0.05, 0.06 and 0.05 respectively, and the Transcription 
family is also predictive with an MPV of 0.04. Figure 3j 
depicts the ROC of classifiers using each of the above-
mentioned sequence feature families, a classifier that uses 
all five sequence families, as well as the effect of including 
the Transcription feature family alongside sequence fea-
tures. It shows how prediction of interacting tiles for this 
lncRNA benefits from sequence features as well as cell 
context-specific transcription information.

Combination of DNA methylation and other epigenomic 
features is informative of lncRNA‑chromatin interactions
We designed the MPV score to capture the predic-
tive value of a feature family in a way that is not overly 
dependent on whether another feature family is also 
included in the model or not. As a result, this approach 
may not detect the predictive value of feature families 
that are only informative when considered together with 
another family. To address this issue, we assessed the 
degree of complementarity among feature families for 
a given lncRNA, by comparing the predictive ability of 
a pair of feature families to that of either feature family. 
Specifically, we compared the average block CV AUROC 
of the model trained using a pair of feature families, with 
the maximum AUROC achieved using either of the fea-
ture families as the sole predictor. A gap in the compared 
AUROC values argues for the complementarity of infor-
mation encoded by the pair of families. Hence, we call 
the calculated difference in AUROCs the “complementa-
rity score” of the examined feature family pair. The result 
of this analysis for the family pairs with highest mean 
complementarity score, averaged over all considered 
lncRNAs, is reported in Fig. 3k. (Also see Supplementary 
Fig. S4.a.) The three highest scoring pairs were (Meth-
ylation, Chromatin marks), (Methylation, TF ChIP) and 

(Methylation, Accessibility), each involving Methylation 
and another epigenomic feature family. An example of 
such complementarity is shown in Fig. 3l, which depicts 
ROCs for models predicting Neat1-chromatin interac-
tions using DNA methylation or chromatin marks only 
or using both feature families. The AUROC increases by 
0.09 (to 0.73) when using both features together (see Sup-
plementary fig. S4 b,c, for additional examples). Interest-
ingly, DNA methylation and Chromatin marks together 
predict chromatin interactions of TA lncRNAs signifi-
cantly better than that of non-TA ones (Wilcoxon p-value 
3e-5, Fig.  3m). These observations suggest that DNA 
methylation, in combination with other chromatin states, 
may play an important role in lncRNA-chromatin inter-
actions (see Discussion). Note that DNA methylation was 
not found to be informative from MPV analysis (Fig. 3f ) 
and its combination with other features was crucial in 
recognizing its potential role.

Fine grained analysis of predictive features suggests global 
mechanisms of lncRNA‑chromatin interaction
We next sought to identify features predictive of 
lncRNA-chromatin interactions at the finest resolution, 
going beyond feature families such as “TF ChIP” to indi-
vidual features such as a particular TF’s DNA-binding 
(ChIP) profile. To rank the features of each model by 
their importance, we used the “Gini-index”, commonly 
used with RF models. Since we had trained numerous 
RF models (classifiers) for each lncRNA, using differ-
ent combinations of feature families, we now considered 
only the top 20 percentile of all models (by accuracy), and 
extracted a feature’s rank by its importance for each of 
these models. This yielded a distribution of importance 
ranks for each feature, in the context of each lncRNA. 
The importance ranks of sequence and context features 
were obtained separately from the sequence-only models 
and the “sequence + context” models respectively, and are 
not comparable across the two feature categories.

Figure 4a,b show the 20 sequence and cell-context fea-
tures respectively with highest median rank for the pre-
diction of Malat1-DNA interactions. Prominent among 
the predictive sequence features are putative binding sites 
(motif scans) for SP family of TFs (Sp1, Sp2, Sp3) and the 
RBP Rbmx (also known as HnRNPG), as well as CG-rich 
k-mers, suggesting mechanisms related to transcription 
[28, 29]. This is consistent with the literature reports that 
Malat1 is localized to nuclear speckles [26] and interacts 
with nascent RNA through protein complexes [30]. The 
highest-ranking context features include PRO-Seq, GRO-
Seq and RNA-Seq measurements at the tiles, further sup-
porting a role for transcription in chromatin interactions 
of this lncRNA (see Discussion for comments on other 
high-ranking features).
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Figure 4c,d illustrate the median importance rank of a 
selected group of features from sequence and cell-con-
text categories respectively, for each lncRNA. Among 
sequence features informative (top 10 of 1,280, by impor-
tance) for all lncRNAs, we find features that couple the 
sequence information of lncRNA and DNA tiles: “PPI-
pair” (number of protein complexes with predicted 
sequence affinity for both DNA tile and lncRNA) and 
“TFscan-pair” (number of TFs with predicted sequence 
affinity for DNA tile and lncRNA gene). This suggests a 
shared affinity of lncRNA and the DNA tile for individual 
proteins or protein-complexes as a potential mechanism 
mediating their interaction [31]. Another interaction 
mechanism suggested by this analysis is triplex forma-
tion, which is among the sequence features informative 
for all lncRNAs. Triplex formation has been noted pre-
viously as a likely chromatin-interaction mechanism for 
a variety of lncRNAs [6, 32]. The only other sequence 
feature that is important for every considered lncRNA 
is the predicted affinity of the theoretical transcript cor-
responding to the DNA tile for the RBP Rbmx. Rbmx is 
known to function in multiple cellular processes includ-
ing RNA splicing, miRNA processing, methylation and 
DNA Damage Response (DDR) [33–37]. It is known as 
a reader of m6A, an abundant RNA modification [38]. 
Malat1 harbors m6A modification and interacts with 
Rbmx in a way that is dependent on the status of this 
RNA modification [29]. Rbmx has been shown to inter-
act with the lncRNA NORAD and that interaction is 
important for the role of NORAD in maintaining genome 
stability [39]. Among the consistently informative cell-
context features (among top 10 of 333, for each lncRNA), 
marked with *** in Fig.  4d, we find features associated 
with transcriptionally active states including PRO-Seq, 
GRO-Seq, RNA-Seq, and H3K4me1, supporting a strong 
connection between lncRNA-chromatin interaction and 
transcriptional activity.

Considering the observed importance of triplex for-
mation potential (as captured by triplex sequence fea-
ture) and nascent transcription (as captured by PRO-Seq 
context feature) for all lncRNAs, we investigated their 
distribution in DNA tiles bound by TA lncRNAs as com-
pared to non-TA lncRNAs. Figure  4e reveals that DNA 
tiles bound by non-TA lncRNAs exhibit significantly 
higher triplex formation potential with their correspond-
ing lncRNAs (Kolmogorov–Smirnov test, p-value < 2.2 
e-16). Conversely, tiles bound by TA lncRNAs give rise 
to significantly higher number of nascent transcripts 
as compared to the tiles bound by non-TA lncRNAs 
(Fig.  4f, p-value < 2.2 e-16). These observations reaffirm 
similar findings reported above using feature family-level 
analysis and complementary statistical methods. (Com-
parisons for all other sequence and context features are 
reported in Supplementary Figs. S5 and S6, respectively.)

Going beyond features informative for all or most 
lncRNAs, we noted several C/G-rich 5-mers are predic-
tive (among top 10 by importance rank) for two or more 
lncRNAs (Fig.  4c). The six 5-mers with highest average 
importance across considered lncRNAs are CTGCC, 
CTGGG, GCTGG, GGCTG, CCTGG and GCCTG, each 
composed of four C/G nucleotides and one A/T nucle-
otide while lacking the CG dinucleotide. Interestingly, 
such a k-mer composition has been observed in RNA 
sequences involved in RNA nuclear localization [40–42], 
but in our analysis the pattern was found to distinguish 
bound and unbound DNA tiles. Inspired by this finding, 
we explored the relationship between lncRNA and DNA 
tile sequences. As shown in Fig. 4g, for all of the consid-
ered lncRNAs, we found a significant negative correla-
tion (Spearman p-value < 2.2e-16) between the frequency 
of 5-mers in lncRNA sequence and their importance 
ranking in prediction of chromatin interactions of that 
lncRNA. Identification of the same patterns on nucleus-
enriched lncRNAs and their bound DNA tiles is intrigu-
ing: a possible explanation is that nuclear localization of 

(See figure on next page.)
Fig. 4  Individual feature importance analysis. a Importance ranks of top 20 sequence features for prediction of Malat1-chromatin interactions. 
Each boxplot shows the distribution of importance ranks of a feature across a set of models. The selected models are the best performing 
sequence-only models. b Importance ranks of top 20 context features according to the best performing sequence-context models trained 
to predict Malat1-chromatin interactions. c Heatmap illustrates the median importance rank of sequence features (rows) for all lncRNAs (columns) 
in sequence-only models that achieve top 20 percentile test performance. Side-bar colors distinguish the family of the shown features. d 
Similar to c, heatmap illustrates the median importance ranking of context features in models that achieve top 20 percentile test performance. 
As an example, the median values of the boxes shown in panel b are used to populate the column corresponding to Malat1. Features that are 
among the ten most important for all lncRNAs are marked with ***, whereas the features that are only important for at most three lncRNAs 
are marked with *. Additionally, features with significantly different rankings (Wilcoxon rank sum test p-value < 0.05) between TA and non-TA 
lncRNAs are marked with †. Panels e, f illustrate the distribution of Triplex (e) and PRO-Seq (f) feature values in tiles bound by lncRNAs, grouped 
by the lncRNA type. In both cases, a p-value of less than 2.2e-16 is obtained by Kolmogorov–Smirnov test. g Correlation analysis between number 
of occurrences of 5-mers in a lncRNA’s sequence and the importance rank of the 5-mer as obtained by the Random Forest classifier. Panels h, 
i, j, and k illustrate q-q plots comparing the distribution of R-loops in tiles bound (y-axis) versus unbound (x-axis) by Malat1, Neat1, Gm14820, 
and D030068K23Rik, respectively. l Comparison of R-loop distribution in tiles bound by TA lncRNAs versus the ones bound by non-TA lncRNAs. 
A p-value of less than 2.2 e-16 is obtained by Kolmogorov–Smirnov test. m Correlation analysis between average density of k-mers in consensus 
repeat element sequences obtained from Dfam and the importance rank of the 5-mers as obtained by the Random Forest classifier
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Fig. 4  (See legend on previous page.)
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these lncRNAs is mediated by proteins that bind to the 
specific sequence pattern in the lncRNA as well as nas-
cent transcripts on chromatin [43]. This explanation is 
supported by the consistently high importance rank-
ing obtained for ‘PPI pair’ and ‘TFscan pair’ features 
that belong to ‘Shared motif ’ family (Fig.  4c). Another 
possible explanation for this finding is the formation of 
R-loops between lncRNAs and template DNA through 
sequence complementarity [44]. To test this explana-
tion, we compared the distribution of R-loops between 
bound and unbound tiles using publicly available DRIP-
Seq data on mESC from [45]. Figure  4h-k illustrate a 
pronounced difference in the distribution of R-loops in 
bound vs unbound tiles for Malat1, Neat1, GM14820, 
and D030068K23Rik. This statistical trend was observed 
consistently, with significant (Kolmogorov–Smirnov test, 
adjusted p-value < 2.2e-4) differences between bound and 
unbound tiles for 15 out of 16 considered lncRNAs. We 
also noted that consistent with the reported association 
R-loops with transcription [46], tiles bound by TA lncR-
NAs have significantly higher levels of R-loop formation 
as compared to non-TA ones (Fig. 4l).

We observed above in Fig.  4c that the occurrence of 
repeat elements Alu and L1 is informative about chroma-
tin interactions of a subset of lncRNAs, including Neat1, 
Malat1, and Rian. Alu element has been previously 
linked to nuclear retention of lncRNAs [41]. This find-
ing, together with the predictive value of other repeat ele-
ments for lncRNAs, such as the importance of MalR and 
ERVK long terminal repeats (LTRs) in predicting Malat1 
interactions, led us to further investigate the relation-
ship between repeat elements and lncRNA-chromatin 
interactions. Figure  4m shows the correlation between 
average density of 5-mers in all Dfam consensus repeat 
elements [47] and their importance ranking in prediction 
of chromatin interactions; the correlation values are sta-
tistically significant (p-value < 2.2e-16) for every lncRNA 
examined.

The importance of a feature as determined by the RF 
models does not inform us about the enrichment versus 
depletion of that feature in lncRNA-bound DNA tiles. 
To address this, we directly inspected their distribution 
in bound versus unbound tiles (see Supplementary Fig. 
S7 and Supplementary Note 1). We noted, as expected, 
that nascent transcription (represented by PRO-Seq fea-
ture) is enriched in the DNA tiles bound by TA lncRNAs 
Malat1, Neat1, Gm14820, and Trerf1, and depleted in the 
tiles of non-TA lncRNAs Gm53 and D0300068k23Rik. 
Interestingly, the Alu and Line-1 repeats, both found to 
be important features in Fig. 4c, show trends opposite to 
each other, with enrichments in regions bound by TA and 
non-TA lncRNAs respectively. Line-1 repeats present 
an intriguing case: they emerged as the most important 

sequence feature for Malat-1 (Fig.  4a), a TA lncRNA, 
but are otherwise enriched in interactions of non-TA 
lncRNAs.

In summary, our fine-grained feature importance anal-
ysis suggests global mechanisms, including transcription, 
triplex/R-loop formation, and protein binding, likely to 
be involved in chromatin interactions of many lncRNAs.

Feature analysis links lncRNA‑chromatin interactions 
to DNA methylation and DNA Damage Response
We noted above (Fig.  4c) that a set of 5-mers are pre-
dictive of chromatin interactions of multiple lncRNAs. 
These 5-mers include the CAG/CTG trinucleotide while 
lacking the CG dinucleotide. CAG trinucleotides are 
prone to non-CpG methylation and are observed to be 
particularly methylated in neurons and ESCs [48, 49]. 
This raises the possibility of DNA methylation being 
involved in lncRNA-chromatin interactions, a hypothesis 
further supported by the observation that experimentally 
measured DNA methylation is important to classifiers for 
all lncRNAs (Fig. 4d).

The above-mentioned 5-mers (GCTGG, CCTGG, etc.) 
are not only methylation related, they are also hotspots 
of DNA recombination [50–52] and associated with 
DNA Damage Response (DDR). Cytosine methylation 
and DDR are closely related processes and DNA methyl-
transferases have been implicated in DDR [53]. A closer 
examination of the important features (Fig. 4c,d) revealed 
several additional features related to DDR to be differ-
entially present in bound versus unbound tiles of mul-
tiple lncRNAs (Supplementary fig. S8, Supplementary 
Note 2). These include the histone mark H2A.Z, known 
to be required for double strand break repair [54], his-
tone modifications H3K27me3 and H2AK119Ub that are 
associated with DDR [55, 56], DNA binding affinity for 
Pparγ, a nuclear receptor TF involved in DDR [57], the 
RBP Rbmx that was recently found to be essential to DDR 
[33], among others. A DDR-related TF named Mecp2 
was found to have its predicted binding sites (motif 
scan feature) enriched in positive versus negative tiles 
of Malat1 (p-value < 2.2e-16) and Neat1 (p-value 1e-4). 
Mecp2 has been reported to interact with Neat1 [58] 
and Malat1 [59] among other lncRNAs, and is known to 
bind methylated cytosine, specifically in non-CpG con-
text [49]. Other proteins involved in methylation and/
or DDR, including Asxl1 [60, 61], Pcgf1 [62], Rad21 [63] 
and Tdg [53] were noted as having enrichment of binding 
(TF ChIP feature) in positive versus negative DNA tiles of 
Malat1, Neat1 and other lncRNAs.

In other words, our analyses identified several fea-
tures, from both the sequence and cell-context cat-
egories, implicating methylation and components of 
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the DNA damage repair program in lncRNA-chromatin 
interactions.

MicroRNA seed sequences distinguish lncRNA‑associated 
DNA segments
Further investigation of the 5-mers identified as impor-
tant for prediction of lncRNA-chromatin interactions 
revealed that several of these 5-mers appear in seed 
sequences of mouse miRNAs. This observation intrigued 
us, as lncRNAs are known to function, in some cases, 
by binding to miRNAs and sequestering them away 
from their regulatory targets (“competing endogenous 
RNA” [16]). Similar to the above-mentioned correla-
tions between importance rank of k-mers and their den-
sity in lncRNAs (Fig. 4g) and repeat elements (Fig. 4m), 
we noted a high correlation between the number of 
times a 5-mer appears in miRNA seed sequences and its 
importance rank in our lncRNA-chromatin interaction 
prediction models (Fig.  5a). To further investigate this 
phenomenon, we directly quantified the relative enrich-
ment of the 5-mers comprising miRNA seed sequences 
in bound versus unbound DNA tiles of each lncRNA, 
by computing a measure called “signed K-S statistic” 
(see Methods). In Fig.  5c, we illustrate this measure for 
a selection of miRNAs known to be expressed in mESC 
[64]. Hierarchical clustering of the heatmap depicts two 
main groups of miRNAs, with G/C-rich and A/T-rich 
seed sequences respectively (motifs shown in figure). 
These two groups of miRNA seed sequences are statisti-
cally associated with two distinct groups of lncRNAs in 
terms of their utility for predicting lncRNA-chromatin 
interactions.

Figure  5b illustrates the relationship between impor-
tance rank of k-mers to lncRNA-chromatin interactions 
and their density in lncRNAs, miRNA seed sequences, 
and repeat elements. The significant correlation between 
all pairs of the considered entities is intriguing and may 
point to a network of nucleic acid interactions centered 
around specific k-mers that are enriched in non-coding 
RNAs and repeat elements.

Taken together, the results above suggest that sig-
natures of miRNA-mRNA interaction (miRNA seed 
sequences) are also associated with lncRNA-chroma-
tin interactions. Such an association is not necessar-
ily expected to result from the widely studied ceRNA 

mechanism, since lncRNA-miRNA interactions in this 
mechanism are not localized at the chromatin. We 
believe it to be evidence of mechanisms involving physi-
cal interactions among miRNAs, lncRNAs and DNA, 
that merit future investigation.

Discussion
In light of the RNA-world hypothesis [65], it is conceiva-
ble for RNAs to play major roles in the most primary cel-
lular functions including organization, transcription, and 
maintenance of DNA. Such fundamental roles have been 
identified for several RNA species. For example, X chro-
mosome inactivation was found to be carried out in part 
by a lncRNA, named XIST [66]. Many other lncRNAs are 
found to be enriched in the nucleus and interact with the 
chromatin. Interactions between RNA and chromatin 
have recently been recognized to serve a variety of func-
tions including regulation of transcription and splicing, 
as well as chromatin organization [31, 67–69]. However, 
neither the underlying mechanism nor the precise func-
tion of specific RNA-chromatin interactions is resolved. 
In this work, we examined genome-wide RNA-chromatin 
interaction data through machine learning techniques, 
to identify distinctive patterns characterizing the RNA-
interacting genomic regions.

The first methodological challenge we faced was that 
interactions are predominantly limited to regions near 
the lncRNA gene and a standard classification frame-
work would mainly rely on this signal (and other locally 
frequent features) to achieve high discriminative power. 
We used a carefully defined negative set and a specialized 
cross-validation scheme to force the models to reveal 
additional signals. We then considered a multitude of fea-
tures describing genomic regions and attempted to carve 
out the most informative of these features at different 
levels of granularity. We grouped individual features into 
feature families reflecting the nature of their information 
(e.g., TF ChIP-seq or repeat element counts), and further 
categorized the feature families depending on whether 
they provide information on sequence or the cellular con-
text. To quantify the relevant information content of each 
feature family, we trained Random Forest models to pre-
dict RNA-chromatin interactions using each feature fam-
ily in presence or absence of every other one. In this way, 
the predictive value of feature families is quantified while 

Fig. 5  Potential role of miRNAs in lncRNA-chromatin interactions. a Correlation analysis between number of miRNAs whose seed sequence 
contains the 5-mer and the importance rank of the 5-mer as obtained by the Random Forest classifier for a specific lncRNA. b Each scatter plot 
corresponds to the pair of entities indicated in left-most and lower-most panels. In all panels except rightmost panel in the middle row, each point 
represents a 5-mer-lncRNA combination. In rightmost panel in the middle row each point represents a 5-mer. Spearman correlation is shown 
at the top of each panel. c Signed Kolmogorov–Smirnov statistic heatmap for a selection of miRNAs known to be expressed in mESC. Each row 
represents a lncRNA and each column represents a miRNA. Sequence logo indicating the seed sequence composition of each of the two top-level 
clusters of miRNAs is drawn on the dendrogram

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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accounting for their interdependence. This approach is 
inspired by recent advances in techniques for quantifying 
feature importance in machine learning models [23, 24], 
and was necessitated in our analyses by the extensive cor-
relations among different epigenomic features. Our cat-
egorization of features into “primary” (sequence-based) 
and “secondary” (contextual) was motivated by the fact 
that sequence at least partially determines epigenomic 
states, and predictive contextual features may thus be 
redundant with their underlying sequence footprints. 
Finally, the best performing models were dissected using 
standard machine learning techniques to identify the 
most informative individual features.

We found the feature families of transcription, k-mer 
frequencies and triplex formation potential to have the 
most predictive value overall (Fig.  3f ), whereas DNA 
methylation was found to contain predictive informa-
tion complementary to that of chromatin marks, TF 
binding and DNA accessibility (Fig.  3k). We also note 
that while DNA methylation emerged as an impor-
tant feature in the assessment of individual features, 
it was not revealed as important in the MPV-based 
analysis. This is due to the conceptual differences in 
the two analysis: the MPV-based analysis may underes-
timate the significance of a feature (or feature family) 
if it is informative only when considered together with 
another feature. This limitation of the MPV approach, 
notwithstanding its other strengths, led us to explore 
and discover the complementarity between methylation 
and other features such as chromatin marks, TF ChIP 
and accessibility. At the same time, the methylation 
feature, defined here as a simple sum of the methyla-
tion scores of all cytosines in a segment, is admittedly 
a simplistic one, given that the impact of methylation 
can be context-dependent. Future studies may explore 
use of richer representations of local DNA methyla-
tion in assessing the latter’s role in lncRNA-chromatin 
interactions.

K-mer frequencies were predictive of interactions for 
all considered lncRNAs, consistent with reports that 
functionally related lncRNAs have similar k-mer pro-
files [70]. In contrast, transcription and triplex forma-
tion potential were found to predictive only for distinct 
groups of lncRNAs, which we termed transcription-
associated (TA) and non-TA groups respectively. This 
finding suggests distinct mechanisms of action for the 
two groups: non-TA lncRNAs putatively bind to DNA 
and inhibit transcription by forming stable triplex struc-
tures, whereas TA lncRNAs are involved in transcription 
in a sequence-dependent way. The interaction between 
non-TA lncRNAs and chromatin may be partly medi-
ated by specific protein complexes, as evidenced by a 
significantly higher importance rank for the “ChIP-Pair” 

feature (Fig. 4d) as well as high importance ranks for pro-
tein complexes such as Gli1/2 for this group of lncRNAs. 
On the other hand, interactions of TA lncRNAs may in 
part be mediated through formation of R-loops between 
GC rich sequences in transcriptionally active genomic 
regions and their complementary sequences on the 
lncRNA. This is supported by significant enrichment of 
experimentally profiled R-loops (DRIP-seq) in lncRNA-
bound regions, especially for TA lncRNAs (Fig. 4h-l).

Investigating sequence features at a higher resolution 
(i.e., individual feature analysis), we found shared motifs 
(PPI-pair, TFscan-pair) to be an important feature for 
all the considered lncRNAs (Fig.  4c). This is consistent 
with the enrichment of classifier-identified informative 
k-mers in lncRNA sequences (Fig. 4g), and both point to 
a sequence-based interaction mechanism. This mecha-
nism could be directly mediated through formation of 
R-loops (mainly for TA lncRNAs) or be indirectly medi-
ated by protein complexes present in the microenviron-
ment (both TA and non-TA lncRNAs).

Formation of trans R-loops between lncRNA and tran-
scribed DNA has been previously reported [7, 44]. This 
phenomenon may be a mechanism for the known locali-
zation of certain lncRNAs, notably Malat1 and Neat1, 
to membrane-less organelles such as nuclear speckles 
and paraspeckles [71]. For instance, the functional link 
between MALAT1 and nuclear speckles — alternative 
splicing — is dependent on G quadruplex (GQ) structures 
in the 3’ region of MALAT1 [72], and genomic regions 
enriched with GQs are known to preferentially give rise 
to R-loops [73]. Also, there is emerging evidence that 
several proteins that interact with R-loops, and contain 
Intrinsically Disordered Regions (IDR), undergo liquid–
liquid phase separation characteristic of membrane-less 
organelles in the cell nucleus [74]. Interestingly, we also 
found putative examples of lncRNA-chromatin interac-
tions mediated by RBPs, many of which, including Rbmx 
(one of our most informative features, Fig.  4c) harbor 
IDRs [75]. In light of the above observations, we speculate 
that membrane-less organelles are at least in part shaped 
through trans R-loop formation between transcribing 
DNA and lncRNAs, and further stabilized through multi-
valent interactions mediated by IDR-containing RBPs 
recruited by the lncRNAs. Moreover, the model-pre-
dicted importance of features such as nascent transcrip-
tion (e.g. GRO-Seq, PRO-Seq), count of recombinogenic 
5-mers (e.g. GCTGG, CCAGG [76]), and markers of 
DNA repair (e.g., H2AZ [54], H2AK119Ub [77] and com-
ponents of NuRD complex [78]) suggests that lncRNA-
chromatin interactions may carry out functions (or form 
the scaffold of a microenvironment) related to transcrip-
tion, recombination, and DNA repair, all of which are 
associated with R-loops [79, 80].
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We found that 5-mers prone to Double Stranded Break 
(DSB) – C[C/G][A/T]GG – are enriched in lncRNA 
sequences, lncRNA-interacting DNA segments, as well 
as miRNA seed sequences. This observation does not 
have an obvious explanation, as the well-known lncRNA-
miRNA relationships (an aspect of competing endog-
enous RNAs) do not demand sequence footprints in the 
DNA. Interestingly, a DNA repair mechanism has been 
identified involving miRNA-sized DNA Damage RNA 
(DDRNA) and lncRNA-sized damage-induced lncR-
NAs (dilncRNAs), and interactions between DDRNA 
and dilncRNAs seem to be essential in the repair pro-
cess [81–83]. Taken together, perhaps these findings and 
our statistical observations point to a role for specialized 
miRNAs and lncRNAs in counteracting the frequent DSB 
at genomic locations harboring these particular k-mers.

The blocked structure of enrichment of miRNA seed 
sequence 5-mers in tiles bound by lncRNAs (Fig. 5c) was 
a surprising observation. It reveals distinct groups of 
miRNAs and corresponding groups of lncRNAs such that 
the miRNA seed sequences in each group are enriched in 
the DNA tiles bound to lncRNAs in the matching group 
but depleted in (tiles of ) the other group of lncRNAs. 
This may hint at competing modules of interacting enti-
ties (miRNAs, lncRNAs, DNA segments), each regulating 
the formation of microenvironments suited for specific 
functions such as transcriptional response to environ-
mental stimuli. Speculating further, one possibility is that 
particular miRNAs have evolved to counteract the R-loop 
formation by binding to lncRNAs, in a way similar to the 
sponging phenomenon observed in ceRNA mechanism, 
and de-activating the lncRNA, hence, preventing the 
formation of R-loops. In this way lncRNAs and miRNAs 
may together regulate transcription and DNA repair by 
regulating the formation of R-loop in particular genomic 
regions (e.g., repetitive elements) that are enriched in the 
same k-mers.

We identified nascent transcription as one of the most 
important features in predicting lncRNA-chromatin 
interactions. One possible role for transcription-asso-
ciated interactions is the formation of context-specific 
transcription factories [84]. LncRNAs together with IDR-
containing RBPs (e.g., Rbmx) may act as scaffolds bring-
ing together a specific set of TFs and the transcription 
machinery.

It is interesting that methylation is relatively higher in 
tiles bound by TA lncRNAs as compared to non-TA ones 
(Fig. S5), since DNA methylation is generally associated 
with decreased expression. However, non-CpG methyla-
tion is observed to be associated with increased expres-
sion in neuronal cells [49]. It is interesting to note that 
CC[A/T]G[G/C] is known as the best substrate for non-
CpG methylation in ESC and neuronal cells [51]. (This 

is almost identical to the DSB-prone 5-mer noted above 
as being enriched in lncRNAs, their interacting tiles as 
well as miRNA seed sequences.) Hence the higher meth-
ylation rate in tiles bound by TA-associated lncRNAs 
maybe due to non-CpG methylation. Indeed, lncRNA 
and miRNAs are disturbed in diseases related to meth-
ylated cytosine [59], particularly in Rett’s syndrome and 
other diseases related to Mecp2 which is known as the 
exclusive reader of non-CpG methylation [85]. Another 
possible explanation of the greater methylation levels 
in tiles bound by TA lncRNAs is that these tiles include 
gene bodies, which are known to be associated with high 
methylation levels [86].

One caveat of our analysis is that GRID-Seq and 
RADICL-Seq experiments capture protein mediated 
interactions through crosslinking and hence direct RNA–
DNA interactions (i.e., those not mediated by proteins) 
are not captured by these methods [13]. This limits the 
mechanistic and functional insights accessible by our 
analyses, although we were still able to recover a strong 
role for triplex formation and R-loop formation. It is also 
noteworthy that at least one of the analyzed lncRNAs 
– Neat1 – is not yet fully active at this embryonic stage 
and its wide range of trans interactions often observed in 
other cell-types are absent in the data analyzed by us.

We note that our analysis focused on determinants 
of lncRNA-chromatin interaction from the perspective 
of the genome, i.e., why certain segments are lncRNA-
bound while others are not. Since each classifier was 
trained for a single lncRNA, we did not stand to gain 
from utilizing information on the lncRNA’s expression 
level. Such information can be useful in understanding 
lncRNA mechanisms and functions, as is evidenced from 
prior studies on lncRNA co-expression networks [87]. 
For instance, in light of the observed potential role for 
miRNAs in lncRNA-chromatin interactions, investigat-
ing the correlations between expression levels of lncRNA 
and miRNAs with similar sequence features (e.g., 5-mer 
frequencies) may shed light on the nature of their poten-
tial interactions.

We relied on Random Forests as classifiers in this study 
because of their general reputation for good performance 
in a variety of contexts and relative ease of interpreta-
tion of trained models. Exploration of alternative clas-
sification models in the future may result in better fits 
and potentially new insights into the factors underlying 
lncRNA-chromatin interactions.

We finally note that the cell-context features found to 
be important in this study only apply to embryonic stem 
cells. A more comprehensive study of lncRNA-chromatin 
interaction across multiple cell types might reveal more 
insights into the context determinants of lncRNA-chro-
matin interactions.
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Methods
Features used in classification
We aimed to perform an unbiased investigation to 
uncover characteristics that distinguish DNA tiles that 
interact with a particular lncRNA. The following families 
of features were used to describe each DNA tile.

Sequence category:

•	 k-mer frequency: Consists of 512 features describing 
the DNA tile, each specifying the number of times a 
5-mer or its reverse complement occur in the 1-kb 
DNA tile. We used Jellyfish [88] to obtain the count 
of all 1024 possible 5-mers on every tile.

•	 Motif scan: We used PWMScan [89] to scan the 
mouse genome, tiled into 1-kb long segments, for 
hits of directly identified (as opposed to inferred) 
mouse TF (623 unique TFs from [90] were consid-
ered) and RBP (78 unique RBPs from [91] were con-
sidered) PWMs from Cis-bp database. Motif hits 
with p-value larger than 1e-4 were filtered out. For 
each DNA binding protein, overlapping motif hits 
from all its different motifs were merged using bed-
tools “merge” command with distance threshold set 
to 1 bp [92]. The number of motif hits after merge for 
each DNA/RNA-binding protein was used as its fea-
ture value. Note that the tile’s putative transcript was 
scanned for RBP motifs.

•	 Triplex formation potential: Triplexator [93] was 
used to compute the triplex formation potential 
between a given lncRNA and any DNA tile. Param-
eters were chosen based on recommended settings in 
[94]. We used the summary output (–output-format 
2), comprised of four values describing the relative 
triplex formation potential between each lncRNA 
and DNA tile, as features in our models.

•	 Shared motifs: This family comprises three features. 
“TF pair” indicates the number of unique TFs with 
at least one motif hit on both the lncRNA gene and 
the DNA tile. Similarly, “RBP pair” is the number of 
unique RBPs with at least one motif hit on the puta-
tive transcript of the DNA tile as well as the lncRNA. 
Finally, “PPI pair” is based on mESC specific protein–
protein interaction network obtained from Escape 
database [95]. This feature represents the number 
of unique interacting protein-pairs such that one 
of the interacting proteins is predicted to bind the 
lncRNA and the other is predicted to interact with 
the DNA tile or its putative transcript). For example, 
if a lncRNA is predicted to bind a particular RBP that 
interacts with a TF with putative binding sites on a 
DNA tile, the RBP-TF pair is counted in calculating 
the ‘PPI pair’ feature. The motifs used in this analy-
sis and the motif scanning method are described in 

“Motif scan” section above. Shared motifs feature 
family is meant to capture the number of potential 
mediators for the interaction between a given pair of 
lncRNA and DNA tile.

Cell context category:

•	 DNA accessibility: Consists of DNase Hypersensitiv-
ity profile and ATAC-seq profile of mESC obtained 
from ChIP-Atlas [96] and GSE113592, respectively. 
Maximum score of peaks overlapping the DNA tile 
was used as its score.

•	 DNA methylation: Processed data (in bedgraph for-
mat) from whole genome bisulfite sequencing experi-
ment was obtained from [97]. Sum of the methyla-
tion score of all cytosines within a tile was used as the 
methylation score of the tile.

•	 Chromatin marks: ChIP-Seq data from 48 unique 
histone marks profiled in mESCs was obtained from 
ChIP-Atlas [96]. Downloaded from: http://​dbarc​hive.​
biosc​ience​dbc.​jp/​kyushu-​u/​mm9/​allPe​aks_​light/​allPe​
aks_​light.​mm9.​05.​bed.​gz on Aug 27, 2020. ChIP peak 
scores from multiple experiments with the same anti-
gen were combined by identifying peaks overlapping 
with each DNA tile and assigning the maximum of 
their scores to the tile.

•	 TF ChIP: ChIP-Seq profiles of 275 proteins in mESC 
obtained from ChIP-Atlas dataset. Processed ChIP-
Seq data for mESC cell line was downloaded from 
ChIP-Atlas database: http://​dbarc​hive.​biosc​ience​
dbc.​jp/​kyushu-​u/​mm9/​allPe​aks_​light/​allPe​aks_​light.​
mm9.​05.​bed.​gz. ChIP signals from multiple experi-
ments with the same antigen were combined as 
described above.

•	 Transcription: Transcriptomic profile of mESC 
obtained from GRO-Seq [98], PRO-Seq [99], RNA-
Seq [100], CAGE [101], and RNA pol II ChIP-Seq 
[96] experiments. GRO-Seq and PRO-Seq data were 
obtained as processed bigwig files. Sum of the score 
of nucleotides forming the1-kb DNA tile was used as 
its score. RNA-Seq data was downloaded as bigwig 
files from https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​
acc.​cgi?​acc=​GSE29​184 on Aug 12, 2020. Maximum 
score of windows overlapping a DNA tile was used to 
determine feature value. Processed CAGE data was 
obtained from Supplementary Dataset 2 reported in 
[101]. Maximum score of CAGE peaks overlapping 
a DNA tile was used as the CAGE feature score for 
the tile. RNA pol II ChIP-Seq data was processed the 
same as TF ChIP features.

•	 Paired context features: ChIP-pair and Chromatin-
pair features belong to TF ChIP, Chromatin marks 
family of features, respectively. ChIP-pair quanti-

http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/allPeaks_light/allPeaks_light.mm9.05.bed.gz
http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/allPeaks_light/allPeaks_light.mm9.05.bed.gz
http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/allPeaks_light/allPeaks_light.mm9.05.bed.gz
http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/allPeaks_light/allPeaks_light.mm9.05.bed.gz
http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/allPeaks_light/allPeaks_light.mm9.05.bed.gz
http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/allPeaks_light/allPeaks_light.mm9.05.bed.gz
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29184
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29184
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fies the number of potentially interaction-mediating 
proteins: counts unique proteins with ChIP peak 
detected both on the lncRNA gene and the DNA 
tile. Chromatin-pair captures chromatin context 
similarity between the DNA tile and lncRNA gene: 
counts the number of unique chromatin marks with 
ChIP profiles overlapping both the DNA tile and the 
lncRNA gene.

Choice of negative examples
To form the negative set of datapoints for the classi-
fication task, each negative tile (i.e., tiles that do not 
interact with the lncRNA) in the genome was assigned 
to its closest positive tile. Next, negative tiles were fil-
tered such that the number of negative tiles with the 
same assigned unique closest positive tile is limited to 
one hundred. This constraint limits the concentration 
of negative tiles in vicinity of any particular positive 
tile. Next, the distribution of distances for all positive 
tiles to the lncRNA gene was computed. This distribu-
tion was used to construct the sampling probability 
vector for the negative tiles based on their distance 
to the lncRNA gene. The number of negative tiles 
was limited to five times the number of positive tiles 
(except for Malat1, with negative tiles being twice the 
number of positive tiles). The number of positive and 
negative tiles chosen for each lncRNA is reported in 
Supplementary Table 1.

Block cross‑validation
Random and block CV strategies were applied for 
dividing tiles into five non-overlapping partitions. 
In block partitioning mode, first all negative points 
were assigned to their closest positive example. Next, 
a number of seed positive examples were randomly 
selected to form the initial points of each partition. We 
put together each seed positive tile with a number of 
its neighboring positive tiles. The set of all seed tiles 
and their neighboring positive tiles form the positive 
examples of this partition. All the negative examples 
assigned to the selected positive examples complement 
the partition with negative tiles.

Visualization
ggplot2, ggplots, and Gviz [102] packages in the R statis-
tical software were used for visualizations.

Random forest
R package ranger [103] was used for Random Forest 
classification. Probability trees with mean leaf node size 
of 10 were used. Maximum tree depth was set to 10 and 

square root of the number of features was used as the 
“mtry” parameter. Each forest consisted of 1000 trees. 
Up-sampling was performed to deal with class imbal-
ance. Note that in training Sequence-Context models, 
sequence features are represented using their first 100 
principal components (PCs). PCs are computed using R 
irbla package.

Marginal predictive value computation for feature families
Considering feature families A1, . . . ,An , we train 2n − 1 
Random Forest models with all possible combinations 
of feature families where at least one feature family is 
included. The set of 2n−1 models whose training features 
included family Ai is denoted as Ei . w(U) indicates a Ran-
dom Forest model that is trained with features included 
in set U, and Mk(U) denotes the test performance (block 
AUROC) of w(U) on cross validation fold k.

where P(S) is the power set of set S . We calculate Mar-
ginal Predictive Value (MPV) Vi of feature family Ai as 
follows:

where K  is the number of cross-validation partitions.
However, in the presence of redundant features, Vi of 

all feature families in the redundant set decreases with 
increasing size of the redundant set. To gain a comple-
mentary view of the performance improvement caused 
by Ai , we also compute MxPV, denoted here as V ′

i and 
computed as follows.

Figure 3d illustrates an example scenario with two pri-
mary (A and B) and two secondary (C and D) families of 
features. To evaluate the MPV of a primary feature fam-
ily, models are trained with all possible combinations 
of primary features (i.e., MA, MB, MAB), and the MPV is 
calculated by averaging over the differences in test per-
formance of models that differ only on that particular 
primary feature. (For instance, MABC—MAB is the differ-
ence in test performance of a model trained with A,B,C 
as features and a model trained with A,B as features.) 
MPV evaluation of a secondary feature family follows a 
similar but slightly different process, the difference being 
that all the primary features are included in all the mod-
els trained for the purpose of secondary feature MPV 
evaluation.

Ei = {w(Ai ∪ B)|B ∈ P(A1, . . . ,Ai−1,Ai+1, . . . ,An)}

Vi =
1

2n−1

U∈Ei

1

K

K

k=1

Mk(U)−Mk(U − Ai)

V
′
i = max

U∈Ei

1

K

K∑

k=1

Mk(U)−Mk(U − Ai)
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Signed K‑S statistic
Two-sample Kolmogorov–Smirnov (K-S) Test was per-
formed with a two-sided alternative hypothesis. K-S test 
statistic is computed as the maximum absolute difference 
in the cumulative curve of the two samples. However, in 
order to gain information on the direction of difference 
between the two samples, we computed Signed K-S sta-
tistic as the maximum absolute difference in the cumula-
tive curves multiplied by the sign of the difference.
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