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Abstract 

Background Preterm labor syndrome is associated with high perinatal morbidity and mortality, and intra-amniotic 
infection is a cause of preterm labor. The standard identification of causative microorganisms is based on the use 
of biochemical phenotypes, together with broth dilution-based antibiotic susceptibility from organisms grown in cul-
ture. However, such methods could not provide an accurate epidemiological aspect and a genetic basis of antimi-
crobial resistance leading to an inappropriate antibiotic administration. Hybrid genome assembly is a combination 
of short- and long-read sequencing, which provides better genomic resolution and completeness for genotypic 
identification and characterization. Herein, we performed a hybrid whole genome assembly sequencing of a patho-
gen associated with acute histologic chorioamnionitis in women presenting with PPROM.

Results We identified Enterococcus faecium, namely E. faecium strain RAOG174, with several antibiotic resistance 
genes, including vancomycin and aminoglycoside. Virulence-associated genes and potential bacteriophage were 
also identified in this genome.

Conclusion We report herein the first study demonstrating the use of hybrid genome assembly and genomic analy-
sis to identify E. faecium ST17 as a pathogen associated with acute histologic chorioamnionitis. The analysis provided 
several antibiotic resistance-associated genes/mutations and mobile genetic elements. The occurrence of E. faecium 
ST17 raised the awareness of the colonization of clinically relevant E. faecium and the carrying of antibiotic resistance. 
This finding has brought the advantages of genomic approach in the identification of the bacterial species and antibi-
otic resistance gene for E. faecium for appropriate antibiotic use to improve maternal and neonatal care.
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Background
Preterm labor is the leading cause of perinatal morbid-
ity and mortality worldwide [1–8]. Two-thirds of pre-
term deliveries occur after the spontaneous onset of 
preterm labor, with either intact or ruptured membranes 
[7, 9–11]. Intraamniotic infection is causally linked to 
spontaneous preterm delivery/PPROM [12–16]. One 
of every three preterm infants is born to a mother with 
intraamniotic infection that is largely subclinical [12–16]. 
Microorganisms isolated from the amniotic fluid are sim-
ilar to those found in the lower genital tract; therefore, 
an ascending pathway is considered the most frequent 
route of infection [17]. The most common microorgan-
isms identified in the amniotic cavity in women present-
ing with preterm labor/PPROM include Ureaplasma 
urealyticum, Mycoplasma hominis, Bacteroides spp., 
Gardnerella vaginalis, Neisseria gonorrhoeae, Chlamydia 
trachomatis, Trichomonas vaginalis, and group B hemo-
lytic streptococci [18]. In 30% of cases with intraamniotic 
infection, bacteria are identified in fetal circulation [19], 
resulting in FIRS [20, 21]. Such fetuses have multi-organ 
involvement and are at risk for long-term complications, 
such as cerebral palsy and chronic lung disease, under-
scoring that complications of infants born preterm are 
not only due to immaturity but also to the inflammatory 
process responsible for preterm labor [14, 21, 22]. There-
fore, accurate identification of a causative pathogen is 
essential for the eradication of microbial invasion of the 
amniotic cavity with antibiotics [23–32].

In clinical medicine, identification of the presence of 
bacteria and bacterial species is based on cultivation and 
the use of biochemical phenotypes, together with broth 
dilution-based antibiotic susceptibility. However, such 
methods are time-consuming, and they could not provide 
the epidemiological aspect and genetic basis of antimi-
crobial resistance [33, 34]. Knowledge of the presence of 
specific bacterial species and AMR genes can guide deci-
sion-making to deliver or to treat intraamniotic infection 
with a particular antibiotic. In addition, the understand-
ing of the specific microorganism and the AMR gene 
profile could be helpful to the neonatologist to tailor anti-
microbial agents appropriate for each newborn [35, 36].

Our group recently reported the use of the 16S nano-
pore sequencing method, a long-read sequencing, for 
rapid identification of intraamniotic infection in patients 
with PPROM [37]. This method allows identification 
of bacteria at the species level within 5–9  h from DNA 
extraction, demonstrating that this sequencing tech-
nique is effective for clinical use in a timely manner. We 
have extended the study by performing whole genome 
sequencing since whole genome sequencing and com-
parative genomic analysis allow insightful information, 
i.e., microbiological diagnosis and infectious outbreak 

investigations [38–40]. Several studies utilize whole 
genome sequencing to identify causative pathogens from 
clinical specimens [39, 41]. Hybrid genome assembly, 
which is a combination of short- and long-read sequenc-
ing, provides better genomic resolution and complete-
ness for genotypic identification and characterization 
[42]. A recent study demonstrated that hybrid assem-
bly using Illumina and Nanopore sequencing elucidated 
genomic insight of multidrug-resistant bacteria and pro-
vided epidemiological data of the pathogen [43]. Herein, 
we performed hybrid whole genome assembly sequenc-
ing of a pathogen associated with acute histologic chorio-
amnionitis in women presenting with PPROM.

Results
During the clinical microbiological laboratory investiga-
tion, the sample of the chorioamniotic membranes was 
cultured under an aerobic condition. When the culture 
was negative on day-3 after cultivation, the placental tis-
sue was then cultured under an anaerobic condition. The 
bacteria were finally recovered and identified as E. fae-
cium by conventional phenotypic methods on the  10th 
day after anaerobic cultivation (13th day after specimen 
collection). However, antibiotic susceptibility test was 
not performed because the susceptibility test of anaero-
bic culture was done by request only according to our 
hospital protocol. The colonies were also collected for 
genomic DNA extraction. This isolate was listed as the E. 
faecium RAOG174 strain.

Whole genome sequencing was performed on colonies 
recovered from the anaerobic culture of chorioamniotic 
membranes. ONT sequencing and assembly delivered a 
total number of 3,150,009  bp, comprised of 11 contigs, 
largest contigs of 2,852,659 bp, N50 of 2,852,659 bp, and 
GC content of 37.8%. Genome annotation of E. faecium 
RAOG174, using Dfast software [44], resulted in 3,038 
CDSs, 18 rRNAs, and 67 tRNAs. Species identification, 
using a whole genome sequence, agreed with E. faecium 
with ANI of 98.98%, calculated by fasANI. Additional 
whole genome analysis was performed to illustrate the 
molecular identification (Supplementary Figures.  1 and 
2). The isolate was assigned to ST17, based on MLST 
scheme. Global genetic epidemiological analysis of E. 
faecium using bacWGSTdb 2.0 provided MLST-based 
typing similar to a previous analysis (ST17),however, the 
most closely related isolate was not available.

Genome features
Resistance
Potential antibiotic resistance genes were predicted 
with CARD and ResFinder 4.1. Genes included several 
resistance mechanisms to beta-lactam, quinolone, ami-
noglycoside, macrolide, tetracycline, and vancomycin 
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(Table 1). Mutations in pbp5, parC and gyrA genes were 
considered intrinsic resistance. The others were consid-
ered acquired resistance (Table  1 and Supplementary 
Table 1).

Detection of mobile genetic elements and phages
Using Mobile Element Finder, a total number of 61 IS 
elements were predicted (shown as the black arc in Sup-
plementary Figure 2). The most abundant type of IS was 
identified as ISEfa11, followed by ISEfa5 and ISEnfa3. 
PHASTER identified 7 phage regions on the chro-
mosome: 2 intact regions (PHAGE_Lister_2389 and 
PHAGE_Lister_LP_101) (red arcs in Supplementary 
Figure  1), 4 incomplete regions (PHAGE_Paenib_Xenia, 
PHAGE_Lactoc_bIL311, 2 regions of PHAGE_Bacill_
vB_BtS_BMBtp14), and 1 questionable region (PHAGE_
Entero_EFAP_1). CRISPRCasFinder identified 1 region 
that was similar to the CRISPR-Cas region, but it was cat-
egorized into “level 1,” which is unlikely.

Virulence
For the virulence-associated genes, the VFanalyzer and 
Virulence Finder identified a total of 22 virulence genes 
(Table 2). Of them, 12 genes were previously described in 
E. faecium DO. The other 10 genes were similar to previ-
ously defined virulence genes in other genera, including 
Streptococcus, Staphylococcus, Listeria, and Vibrio.

Discussion
This study demonstrates the first use of hybrid genome 
assembly to identify the potential virulence, the AMR 
gene profile, and the sequence type of bacterial patho-
gen associated with acute histologic chorioamnionitis 
in women presenting with PPROM. Identification of a 
causative pathogen is the key for obstetricians to admin-
ister proper antibiotics to the mother in order to eradi-
cate intraamniotic infection or to prevent postpartum 
infectious complications such as endometritis and pel-
vic abscess [45]. Currently, cultivation-based species 

identification generally takes 48 h (including biochemical 
assay and antibiotic susceptibility test). Whole genome 
sequencing using nanopore method could reveal the 
result by, at least, 2 h with more informative data, includ-
ing sequence type, antibiotic resistance-associated genes 
and virulence genes. In addition, an understanding of the 
accurate bacterial species and its genomic information is 
essential for neonatologists to initiate appropriate antibi-
otic agents to the neonate. This work demonstrates that 
the potential causative pathogen carried several genes 
associated with antibiotic resistance and that proper anti-
biotic selection was crucial in an individual case.

In this study, the patient presented with PPROM and 
suspected intraamniotic infection. The definite diagnosis 
of intraamniotic infection was difficult due to anhydram-
nios; therefore, the microbiologic work-up from amniotic 
fluid was unsuccessful. However, there was evidence of 
maternal systemic inflammation as shown by the ele-
vated WBC and CRP as well as acute histologic chorio-
amnionitis and acute funisitis. The latter two represent 
the placental histologic landmarks of intraamniotic infec-
tion and FIRS [46]. Microbiological identification eventu-
ally recovered E. faecium from the anaerobic culture of 
chorioamniotic membranes.

Enterococcus species are gram-positive bacteria that are 
abundant in the gastrointestinal tract of a wide range of 
animals [47]. In humans, Enterococci are one of the earli-
est colonizers in the gut. Currently, more than 50 species 
of Enterococcus have been identified. However, a few spe-
cies are clinically important, including E. faecium [48]. In 
general, E. faecium is a commensal and does not harm a 
healthy host, but it becomes pathogenic when the host 
is immunocompromised [49]. This bacterium is associ-
ated with urinary tract and surgical site infections and 
bacteremia, especially in a hospital-acquired setting [50]. 
In pregnancy, Enterococcal infection is uncommon; how-
ever, it has been identified in the amniotic fluid of women 
diagnosed with clinical chorioamnionitis [51]. Ncib 
et al. demonstrated that the presence of vaginal-derived 

Table 1 The presence of genetic basis of antimicrobial resistance-associated genes in the E. faecium AOG174 genome

Antibiotic class Genetic mechanism Resistance mechanism Genetic localization

Beta-lactam Pbp5 mutation Target modification Intrinsic

Aminoglycoside aac(6’) Drug modification Acquired

Fluoroquinolone parC and gyrA mutation
efm

Target modification
Efflux pump

Intrinsic
Acquired

Tetracycline Tet (O) gene Target protection Acquired

Glycopeptide vanHAX gene Target modification Acquired

Macrolide erm gene
efm gene
msr(C) gene

Target modification
Efflux pump
Efflux pump

Acquired
Acquired
Acquired
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Enterococcus spp. is associated with recurrent pregnancy 
loss [52], PPROM [53], and bacterial vaginosis in preg-
nant women [54]. Seliga-Siwecka and Kornacka reported 
that the presence of E. faecalis in amniotic fluid signifi-
cantly increases the risk for acute placental inflammation, 
necrotizing enterocolitis, and bronchopulmonary dyspla-
sia in neonates [55, 56].

To investigate genomic insight of the bacteria, hybrid 
assembly, using ONT and Illumina sequencing, was 
then performed to obtain the complete genome, which 
was matched to E. faecium with a high similarity index 
(ANI = 98.98%). Genome assembly resulted in a genome 
size of 2.8 Gbp and the GC content of 37.8%, similar to 
the previously reported genome characteristic of E. fae-
cium (2.5–2.9 Gbp for genome size and 37.8–38.5% for 
GC content) [57]. Whole genome sequencing has been 
used as a diagnostic tool for clinical microbiology to 
understand genomic insight of the pathogen and has 
become a “gold standard” technique [58, 59]. In micro-
bial genomics, hybrid genome assembly utilizes short- 
and long-reads to construct the complete or nearly 
complete genome with better resolution and less error 
[60–62]. Hybrid assembly uses long reads as scaffolds for 
short read-based contigs to be rearranged into a correct 

direction [63]. Khezri et  al. demonstrated that hybrid 
genome assembly has better performance in construct-
ing the complete genome, more accurately resulting 
in the identification of genes associated with virulence 
and drug resistance [42]. By incorporating the sequence 
information from both generations of sequencing, hybrid 
assembly can provide the sequence with the following 
improvements: reducing error rates, minimizing gaps, 
and unveiling sequences that are not covered by short-
read sequencing alone [64].

It has been demonstrated that hybrid assembly could 
provide genomic importance for epidemiological study, 
particularly antibiotic resistance genes [65, 66]. The in 
silico sequence typing, using pubMLST, revealed that 
the E. faecium strain RAOG174 belongs to ST17. E. fae-
cium ST17 is clinically relevant [67, 68] and is defined as 
an ancestor of CC17 [69]. The CC17 belongs to clade A, 
which is associated with human infection (as opposed to 
clade B, which is the commensal clade) [70, 71], however, 
it is later identified in non-clinical specimens, including 
wastewater and domestic animals [69]. The characteris-
tics of CC17 are ampicillin and quinolone resistance, and 
most isolates have a putative pathogenicity island har-
boring the esp gene, which was also present in the isolate 

Table 2 List of predicted virulence-associated genes in E. faecium RAOG174, compared to the E. faecium DO genome

VF class Virulence factors Related genes E. faecium
RAOG174 
(Prediction)

E. faecium strain DO

Adherence Acm acm  + HMPREF0351_12281

Ebp pili ebpA  + HMPREF0351_11394

ebpB  + HMPREF0351_11393

ebpC  + HMPREF0351_11392

srtC  + HMPREF0351_11391

EcbA ecbA  + HMPREF0351_11828

EfaA efaA  + HMPREF0351_10500

Esp esp  + -

Scm scm  + HMPREF0351_12673

SgrA sgrA  + HMPREF0351_11523

Streptococcal lipoprotein rotamase A (Streptococcus) slrA  + -

Anti-phagocytosis Capsule cpsA/uppS  + HMPREF0351_11682

cpsB/cdsA  + HMPREF0351_11681

Biofilm formation BopD bopD  + HMPREF0351_10415

Enzyme Hyaluronidase Undetermined  + -

Serine-threonine phosphatase (Listeria) stp  + -

Immune evasion Capsule (Staphylococcus) capL  + -

Capsule (Streptococcus)  + -

rgpG  + -

Iron uptake Periplasmic binding protein-dependent ABC transport 
systems (Vibrio)

vctC  + -

Protease Serine protease (Streptococcus) htrA/degP  + -

Surface protein anchoring Lipoprotein diacylglyceryl transferase (Listeria) lgt  + -
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RAOG174 (Table 2) [72]. Some isolates additionally carry 
the vanA gene conferring vancomycin resistance [71]. 
The vanA typically situates in vanHAX gene clusters 
where vanH, vanA, and vanX encode for D-alanyl-D-
lactate ligase, α-keto acid reductase, and Zn2 + -depend-
ent d-Ala-d-Ala dipeptidase, respectively [73]. The isolate 
RAOG174 is likely ampicillin- and vancomycin-resist-
ant due to the presence of pbp mutation and vanHAX, 
respectively (Table 1), although vanA-positive vancomy-
cin-susceptible E. faecium was also previously identified 
[74, 75].

Our work revealed that IS and phages were predicted 
in the E. faecium RAOG174 genome. E. faecium is highly 
evolved and adaptable, as previously illustrated by its 
open pan-genome [76]. With this genomic characteris-
tic, E. faecium can receive and donate genetic elements, 
including antibiotic resistance genes, with other cells 
or environments. In this study, major antibiotic groups, 
including beta-lactam, glycopeptide, aminoglycoside, 
fluoroquinolone, and macrolide, were predicted. AMR 
gene analysis identified point mutations and genes that 
are associated with antibiotic resistance, and these genes/
mutations indicated intrinsic resistance and acquired 
resistance. E. faecium has been known to exhibit several 
antibiotic resistance phenotypes.

“Empirical antibiotics with ampicillin and erythromycin 
was administered for prolong latency period in women 
with preterm PROM. Postpartum period was unevent-
ful. Neonate was diagnosed with suspected sepsis based 
on mother’s history (preterm PROM) and was adminis-
tered with routine antibiotics (ampicillin and gentamicin) 
for 7 days.” The standard management of clinical chorio-
amnionitis is the administration of antibiotics and aug-
mentation of labor [45, 77–79]. The American College of 
Obstetricians and Gynecologists recommended the use 
of ampicillin and gentamicin (ampicillin 2 g IV every 6 h 
combined with gentamicin 5 mg/kg every 24 h) whenever 
an intraamniotic infection is suspected or confirmed [80]. 
Such antibiotics would not have been effective against 
the E. faecium reported herein. For the neonates, antibi-
otic prescription is recommended only in symptomatic 
neonates and in neonates with risk of early-onset sepsis 
due to an avoidance of inappropriate antibiotic exposure 
[81, 82] with the standard regimen of ampicillin and gen-
tamicin [83]. Interestingly, a case of early-onset sepsis 
caused by vancomycin-resistant E. faecium in a newborn, 
who was born from a mother without any sign of clinical 
chorioamnionitis, has been reported. The newborn was 
initially diagnosed with meconium aspiration syndrome 
and neonatal sepsis and then was treated with the stand-
ard antibiotic regimen for early-onset neonatal sepsis. 
Then antibiotic-resistant E. faecium was identified from 
the blood culture of the baby. Subsequently, the antibiotic 

was changed to linezolid according to its antibiotic sus-
ceptibility. The neonate was discharged in normal condi-
tion after receiving linezolid for 2 weeks [84].

The vanA-positive E. faecium is mostly associated 
with hospital-acquired infection. The carriage rates in a 
given community vary from 0%- to -13% depending on 
the geographic region [85–90], and community-acquired 
infections are rare. In our study, we could not identify the 
source of E. faecium. Our hospital has a standard proto-
col for regular surveillance of VRE. We confirmed that 
VRE was not detected in the clinical microbiology lab 
and the ward (where the patient stayed) during the dura-
tion of sample collection and patient’s hospitalization.

In general, VRE should not be identified in the labour 
room, according to the hospital’s infection control sur-
veillance. According to the history that documented the 
patient had been previously admitted at her provider 
hospital prior to transferring to our hospital, the patient 
could have contracted VRE colonization from the pre-
vious hospital. As E. faecium is one of the colonizers in 
human gastrointestinal tract, the bacteria could migrate 
from maternal gut to maternal blood stream and then 
enter the chorioamniotic membranes transplacentally 
[91–93].

Alternatively, samples with low bacterial biomass, such 
as the amniotic fluid and placenta, are commonly vulner-
able to bacterial contamination from the environment 
[94]. VRE is one of the most common laboratory contam-
inants, and the prevalence of VRE contamination ranges 
from 10%- to -60% [95, 96]. The most common contami-
nated sites are the work surface and the hands of the 
healthcare worker [97]. However, in our case, we believed 
that this is a true pathogen, as the patient had clear evi-
dence of systemic maternal inflammatory response and 
her placenta showed acute chorioamnionitis as well as 
acute funisitis. In addition, she had a history of multi-
ple hospital admissions prior to the last visit. Therefore, 
despite the possibility of lab contamination, the VRE 
strain RAOG174 could be the true pathogen associated 
with acute chorioamnionitis.

Our results suggest that the precise identification of 
a pathogen and its antibiotic susceptibility is essential 
for administration of appropriate antibiotics since the 
routine antibiotic regimen for chorioamnionitis is not 
effective against this microorganism. Whole genome 
sequencing, together with an established bioinformatic 
analysis pipeline, could provide more robust bacte-
rial identification of causative pathogens. Importantly, 
one study illustrated that the whole genome sequenc-
ing approach took approximately 36 to 42  h, compared 
to conventional (cultivation-based) identification in 48 
to 72  h [39]. It is important to note that the nanopore 
sequencing achieved nearly 30 × coverage of the VRE 
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genomes within a sequencing run of only 40 min. With 
this depth of coverage, we were able to obtain similar 
contigs as observed in the hybrid assembly. Furthermore, 
the advantage of the long-read assembly lies in its rapid-
ity. Our results show that the long-read assembly method 
can deliver results swiftly, suggesting its potential for 
future applications in clinical testing. These advantages 
may lead to appropriate antibiotic use that may enhance 
maternal and neonatal care by reducing identification 
time and by providing more precise microorganism 
determination.

Conclusions
Chorioamnionitis is a global health care problem, and 
the accurate identification of the causative pathogen 
is beneficial for the pregnant woman and her neonate. 
This study is the first to demonstrate the use of hybrid 
genome assembly and genomic analysis to identify E. fae-
cium ST17 as a pathogen associated with acute histologic 
chorioamnionitis. The analysis provided several antibi-
otic resistance-associated genes/mutations and mobile 
genetic elements. Although the source of infection could 
not be identified, the occurrence of the vancomycin-
resistant gene carrying E. faecium ST17 raised awareness 
of the colonization and the infection of highly resistant 
bacteria in a pregnancy-related setting in which resist-
ance identification is critical. This finding spotlights the 
advantages of the hybrid genome assembly approach in 
bacterial species and in antibiotic-resistance gene identi-
fication for appropriate antibiotic use to improve mater-
nal and neonatal care.

Methods
Patient history and clinical information
A 39-year-old para 0 at  30+5  weeks of gestation, pre-
sented to the Labor and Delivery Unit at our hospi-
tal due to leakage of fluid and the onset of abdominal 
cramps every 5 min. At  28+5 weeks of gestation, she had 
an episode of vaginal bleeding and was diagnosed with 
placenta previa. The patient was admitted for 3  days at 
her provider hospital and vaginal bleeding was less-
ened. At 30  weeks of gestation, she was re-admitted at 
her provider hospital due to a second episode of vagi-
nal bleeding. Five days later, she experienced rupture of 
membranes and was transferred to our hospital. Upon 
arrival, her vital signs were normal without a fever or 
tachycardia. Transabdominal ultrasound demonstrated 
a single viable fetus with an estimated fetal weight of 
1,507  g (percentile 50–90) and anhydramnios. The 
patient’s laboratory examination showed anemia (Hb 
8.7 g/dL) and an elevated white blood cell (WBC) count 
as well as C-reactive protein (CRP) [WBC 29,990 cells/
microliters (neutrophils 91%) and CRP 138.35 mg/L]. The 

diagnosis was PPROM, placenta low-lying with preterm 
labor. Expectant management was undertaken with the 
administration of steroids to promote fetal lung maturity, 
antibiotic agents (ampicillin and erythromycin) to pro-
long the latency period, and magnesium sulfate for toc-
olysis. Five days after admission, the patient developed 
regular uterine contractions every 5 min. A Cesarean sec-
tion was performed due to preterm labor with placenta 
previa. A female fetus was delivered. The neonate was 
diagnosed with suspected sepsis (according to mother 
history) and was administered ampicillin and gentamicin 
for 7 days. Placental histopathology demonstrated acute 
histologic chorioamnionitis with acute funisitis. The pla-
cental chorioamniotic membranes culture demonstrated 
Enterococcus faecium (E. faecium). This enrollment 
and the use of clinical specimens of this patient were 
approved by the Institutional Research Board of the Fac-
ulty of Medicine, Ramathibodi Hospital, Mahidol Univer-
sity (COA.MURA2021/254 and COA.MURA 2022/675).

Placental cultivation
Placental tissue derived from the chorioamniotic mem-
branes was obtained after cesarean delivery with an 
aseptic technique and kept in a sterile, capped container 
within the sterile operating field. The placental sample 
was then brought directly to a biosafety cabinet located 
at the microbiology unit in the same building by using 
a standard transportation process. The placental tissue 
was divided into approximately 1  cm2 in size and inocu-
lated on blood agar, MacConkey agar, and chocolate agar 
under an aerobic condition and on thioglycolate broth 
under an anaerobic condition.

Isolation and sequencing
Bacteria were recovered from the placental tissue by cul-
tivating under aerobic and anaerobic conditions, using 
an aseptic technique throughout the processes. Genomic 
DNA was extracted from bacterial colonies obtained 
from the anaerobic culture. The purity of the extracted 
DNA was observed by a Nanodrop Spectrophotometer 
(Thermo Fisher Scientific, USA), and the quantity was 
checked by a Qubit® 4.0 Fluorometer (Invitrogen, USA). 
Whole genome sequencing was conducted with single 
molecular sequencing (ONT UK) and Illumina short-
read sequencing. Briefly, DNA library preparation was 
performed by using the Rapid Barcoding Sequencing Kit 
(SQK-RBK004; ONT). A total of 200 ng of genomic DNA 
was cleaved with transposase enzyme to produce chemi-
cally modified ends and a barcode was added to each 
DNA sample, finally ligated with an adapter. The library 
was loaded into the R9.4.1 flow cell (FLO-MIN106 ver-
sion; ONT) and sequenced with the GridION device 
(ONT) with 72-h sequencing. For Illumina short-read 
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sequencing, 150-bp paired-end libraries were prepared 
with a TruSeq DNA PCR-free Kit and sequenced with 
the Illumina™ Novaseq sequencer (Illumina Inc., San 
Diego, CA, USA). To obtain high-quality reads, adapter 
sequences were trimmed by using Skewer v0.2.2. The 
sequence data from both platforms were combined for 
hybrid genome assembly. This protocol was approved 
by Institutional Biosafety Committee of the Faculty of 
Medicine at Ramathibodi Hospital, Mahidol University 
(RAMA-IBC 2022–009).

Assembly and annotation
A hybrid genome assembly approach was selected to 
produce a de novo assembly of the E. faecium genome. 
This approach involved the use of Illumina short-read 
and Nanopore long-read sequencing technologies to 
produce a complete and accurate genome assembly. The 
hybrid genome assembly procedures were depicted as 
a series of flowing steps. For short reads QC, we used 
the Fastp v0.20.1 tool to trim sequencing adapters and 
low-quality reads, followed by quality assessment with 
FastQC v0.11.8 (http:// www. bioin forma tics. babra ham. 
ac. uk/ proje cts/ fastqc/). For long reads, raw signals were 
processed, demultiplexed, and adapter trimmed, using 
Guppy v6.2.1 with the super accurate model (–c dna_
r9.4.1_450bps_sup.cfg -r –trim_barcodes –barcode_kits 
SQK-RBK004) and Porechop v0.2.4 (https:// github. com/ 
rrwick/ Porec hop). The quality of the ONT raw reads 
was assessed by using NanoPlot v1.28.1. The reads were 
filtered by NanoFilt v2.5.0 [98], based on a mean qual-
ity score of 9, and only reads with a length of 1,000 bases 
were retained for the de novo assembly. Finally, we con-
structed the genomes with Unicycler v0.4.8 [63], which 
incorporates hybrid assembly, correction, circularization, 
and rotation to produce high-quality genome assemblies. 
Gene annotation was performed in Dfast [44]. MLST 
assignment was performed by using FastMLST software 
[99]. Analysis of mobile genetic element, phage, potential 
antimicrobial resistance genes, and virulence-associated 
genes was executed by using the Mobile Element Finder, 
PHASTER, ResFinder version 4.1, CARD and MLST ser-
vice, respectively [100–103]. CRISPRCasFinder was used 
to determine potential CRISPR-Cas region on the chro-
mosome [104]. Virulence-associated genes were obtained 
by using VFanalyzer [105] and Virulence Finder [106]. As 
E. faecium is clinically important, especially in hospital-
associated infection, genomic epidemiology analysis was 
performed via web-based platforms in bacWGSTdb 2.0 
[107]. The visualization of comparative genomics analy-
sis was completed in BRIG [108]. Phylogenetic tree was 
constructed by using PhyML with 1000 bootstrap repeats 
[109] and visualized with Figtree version 1.4.4 (http:// tree. 
bio. ed. ac. uk/ softw are/ figtr ee/). The tree was constructed 

using type strains: Enterococcus thailandicus DSM 21767 
(Accession no:SAMN03267187), Enterococcus ratti 
DSM 15687 (Accession no:SAMN03267184), Enterococ-
cus mundtii DSM 4838 (Accession no:SAMN03267178), 
Enterococcus xinjiangensis JCM 30200 (Accession 
no:SAMD00255146), Enterococcus lactis DSM 23655 
(Accession no:IMG ID 2928549275), Enterococcus lactis 
CCM 8412 (Accession no:SAMD00255145), Enterococcus 
villorum NBRC 100699 (Accession no:SAMD00166261), 
Enterococcus porcinus ATCC 700913 (Accession 
no:SAMN02596958), Enterococcus hirae ATCC 9790 
(Accession no:SAMN02604142), Enterococcus canis 
NBRC 100695 (Accession no:SAMD00046312), Ente-
rococcus casseliflavus NBRC 100478 (Accession 
no:SAMD00045727), Enterococcus durans NBRC 100479 
(Accession no:SAMD00045728), Enterococcus fae-
cium NBRC 100486 (Accession no:SAMD00045730), 
Enterococcus gallinarum NBRC 100675 (Accession 
no:SAMD00045734).
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