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Abstract 

Comprehensive analysis of multiple data sets can identify potential driver genes for various cancers. In recent years, 
driver gene discovery based on massive mutation data and gene interaction networks has attracted increasing atten‑
tion, but there is still a need to explore combining functional and structural information of genes in protein interac‑
tion networks to identify driver genes. Therefore, we propose a network embedding framework combining functional 
and structural information to identify driver genes. Firstly, we combine the mutation data and gene interaction 
networks to construct mutation integration network using network propagation algorithm. Secondly, the struc2vec 
model is used for extracting gene features from the mutation integration network, which contains both gene’s 
functional and structural information. Finally, machine learning algorithms are utilized to identify the driver genes. 
Compared with the previous four excellent methods, our method can find gene pairs that are distant from each other 
through structural similarities and has better performance in identifying driver genes for 12 cancers in the cancer 
genome atlas. At the same time, we also conduct a comparative analysis of three gene interaction networks, three 
gene standard sets, and five machine learning algorithms. Our framework provides a new perspective for feature 
selection to identify novel driver genes.
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Introduction
Cancer is one of the main causes of morbidity and mor-
tality of human beings and seriously endangers human 
healthy [1]. It is caused by some somatic mutations, 
which destroy the normal growth of cells, leading to 
abnormal proliferation and tumor development [2]. The 
Cancer Genome Atlas (TCGA) [3] and the International 
Cancer Genome Consortium (ICGC) [4] have generated 

and evaluated cancer genetic data [5]. The key challenge 
in cancer genomics is to analyze, utilize and integrate 
this information in the most effective and meaningful 
way, which can contribute to the development of cancer 
biology directions and then translate this knowledge into 
clinical practice that can help a larger number of people 
[6, 7]. It plays a causal role in the occurrence or devel-
opment of cancer, which is called "driver" mutation [8]. 
One of the main goals of cancer research is to identify all 
genes carrying mutations, which can drive the carcino-
genesis in different tumor types [9]. However, the analysis 
of individual omics data is limited to exploring the under-
lying surface biological mechanisms and can only explain 
their molecular domains in isolation [10]. As a result, 
combining gene functional and structural information at 
different levels can help researchers better comprehend 
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overall disease changes, with significant implications for 
cancer analysis, diagnosis, and treatment [11].

In the last decade, researchers have proposed several 
methods to identify potential cancer driver genes based 
on some typically commonly used public data. Among 
them, somatic mutations are very effective and are almost 
the basic type of data for prioritizing driver genes. In 
general, the easiest way to identify driver genes is to clas-
sify mutated genes according to the recurrence of cancer. 
In other words, the most frequent mutations are more 
likely to be the driver [12] and use the background muta-
tion rate to identify the genes with significant mutations. 
Many calculation methods based on mutation frequency 
identification have been widely used in driver mutations 
and driving genes, such as MutSigCV [13]. Based on 
recurrence information, MutSigCV considers heteroge-
neity from three aspects of sample, gene, and mutation 
type, and assumes that background mutation rates are 
inconsistent for each cancer type. OncodriveFML detects 
both coding and non-coding cancer drivers by analyzing 
the functional impact of gene alterations [14]. Two-stage-
vote based on mutation information, gene networks, 
and voting methods, the ensemble model is developed 
to identify driver genes of 33 kinds of cancer [15]. Driv-
erML [16] uses supervised machine learning to analyze 
the functional effects of mutations to identify cancer 
drivers. MoProEmbeddings developed an innovative 
node embedding program to achieve the supervised clas-
sification of cancer driver genes through an unsupervised 
process [17]. deepDriver is proposed by performing con-
volution on mutation-based features of genes and their 
neighbors in the similarity networks. The method allows 
the convolutional neural network to learn information 
within mutation data and similarity networks simultane-
ously, which enhances the prediction of driver genes [18]. 
But cancer drivers in many methods will not be found 
because they are highly heterogeneous in the population 
[19]. The above method only takes into account the adja-
cent genes and does not take into account the informa-
tion between genes that are far away. Most approaches 
identify driver genes based on the characteristics of genes 
surrounding or closer to the node [17].

The main objective of this study is to propose the 
incorporation of topological information into gene inter-
action networks that are more likely to contribute to the 
identification of cancer driver genes. Topological infor-
mation is structural information, and if two nodes are 
in the same order, they are more similar in structure. In 
this work, we propose a network embedding framework 
that combines functional and structural information to 
discover driver genes. Firstly, the mutated genes are com-
bined with the protein interaction network to construct 
the mutation integration network using the network 

propagation algorithm. Secondly, the struc2vec model is 
used for extracting gene features from the mutation inte-
gration network, which can find gene pairs with long-dis-
tance but similar structures. Therefore, the gene features 
have more comprehensive information, which contains 
both gene’s functional and structural information and 
is more conducive to identifying potential cancer driver 
genes. Finally, machine learning algorithms are utilized 
to predict genes, and the top-ranked mutated genes are 
considered as the driver genes. In this paper, useful func-
tional and structural information is extracted from muta-
tion data and gene interaction networks. We performed 
a comprehensive evaluation of the framework based on 
TCGA data on somatic mutations in 12 cancers, using 
three well-known cancer gold standards sets for compari-
son, such as Cancer Gene Census(CGC) [20], Network of 
Cancer Genes (NCG) [21] and Integrative Onco Genom-
ics (IntOGen) [22]. We also compare the framework with 
other methods and analyze the cancer driver genes iden-
tified by the framework.

Material and methods
Mutation data representation
The TCGA data included 12 cancer types with 11,565 
genes from 3,110 samples, and Table 1 details the num-
ber of samples contained in each cancer type. This data 
is from the TCGA website (https:// portal. gdc. cancer. 
gov/) and the Catalogue of Somatic Mutations in Cancer 
(COSMIC) [23].

Gene interaction network reconstruction
Three protein–protein interaction networks are used 
in this paper: HINT + HI2012 [24], iRefIndex [25] and 
InBio Map PPI network [26]. Hint + hi2012 combines the 
hint network and hi-2012, a group of protein–protein 

Table 1 12 cancer types and corresponding sample numbers

Cancer types Patient 
number

BLCA Bladder urothelial carcinoma 87

BRCA Breast invasive carcinoma 763

COAD Colon adenocarcinoma 89

GBM Glioblastoma multiforme 290

HNSC Head and neck squamous cell carcinoma 293

KIRC Kidney renal clear cell carcinoma 417

LAML Acute Myeloid Leukemia 195

LUAD Lung adenocarcinoma 186

LUSC Lung squamous cell carcinoma 160

READ Rectum adenocarcinoma 104

OV Ovarian serous cystadenocarcinoma 316

UCEC Uterine corpus endometrial carcinoma 210

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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interactions, consisting of 40,783 interactions among 
10,008 proteins. InBio Map PPI network has collected 
the data information of histone protein interaction, con-
sisting of 612,997 interactions among 17,429 proteins. 
This large-scale data resource has been able to clarify 
the impact of multiple genes on disease development. 
IRefIndex is calculated by processing protein interac-
tion records from databases such as BIND, BioGrid, and 
IntAct, among others, consisting of 91,872 interactions 
among 12,338 proteins.

Cancer gene benchmarks
In the absence of a universally accepted gold standard 
set, it is difficult to determine which predicted genes 
performed well and which predictive tools performed 
adequately in previous studies [23, 27, 28]. To provide 
a comprehensive evaluation of our approach, several 
benchmark measurements were used to evaluate known 
driving datasets, Such as CGC, NCG, IntOGen. The 
CGC database manually compiled a list of 723 commonly 
used genes whose mutations have a causal link to cancer. 
It is generally accepted that a higher percentage of pre-
dictions in a CGC database indicates better performance. 
Apart from the CGC database, we also consider the NCG 
7.0 database, which contains 2757 cancer genes from 
manually curated articles. Aside from these two datasets, 
the IntOGen database recently announced a fresh batch 
of 568 driver genes. A benchmark for cancer driver genes 
is overlap with the CGC, NCG, and IntOGen gene lists.

In this work, we use the mutation matrix A to repre-
sent the mutation data of cancer types, which is a binary 
matrix with m samples as rows and n genes as columns, 
respectively. We use three reference gene interaction net-
works that all treat them in the same way. The mutation 
matrix and sequence are integrated with the protein net-
work and put into our framework for operation.

Methods
In this work, the network propagation approach [29] and 
the struc2vec [31] model are used as the basis. We pro-
pose a network embedding framework that combines 
functional and structural information to identify driver 
genes. We combine the mutated gene and protein–pro-
tein interaction network to construct a mutation inte-
gration network using a network propagation algorithm. 
Then, the struc2vec model is used to extract functional 
and structural information of genes from the mutation 
integration network. Finally, we learn the constructed 
features by machine learning method, and the top-
ranked mutated genes are considered as the driver genes. 
To identify more cancer driver genes, an overview of our 
approach is shown in Fig. 1.

Constructing mutation integration network
In this work, we integrate the mutant gene and pro-
tein interaction network and use network propagation 
embedding to overcome population-level heterogene-
ity. Because network propagation can enlarge the weak 
similarity between genes in protein networks of different 
patients [29]. This functional similarity can successfully 
obtain the functional link between the driver gene and 
any mutation, especially if the gene has a small number 
of mutations.

We use the network propagation algorithm to smooth 
the effect of mutation on the protein–protein interaction 
network of each sample [30]. For sample s ∈ S , the net-
work propagation function is a random traversal based 
on the following function:

where F0 = Y is a row of the mutation matrix A corre-
sponding to s,t represents the time of update iteration, Y  
represents a vector of gene expression for sample s.W′ is 
the protein–protein network as a degree adjusted adja-
cency matrix. α is a parameter that regulates the similar-
ity between networks. The network propagation process 
is carried out iteratively until F t converges, and the con-
vergence condition is ||Ft − Ft−1||2 < 10−6 . The result-
ing matrix F t is the propagated mutation profile for the 
sample s.

Our model runs with an unweighted network, which 
is obtained by cutting a threshold of similarity score. The 
threshold α for cutting the similarity score is discussed 
with the step size of 0.1. Then we consider the similarity 
score with the largest precision for detecting driver genes 
as the threshold. At last, 0.5 is selected as the threshold, 
which means the edges between each two gene with simi-
larity score > 0.5 are reserved. And the detailed discussion 
is in the Supplementary 1.

Network embedding
In this work, nodes in similar networks represent genes, 
and edges represent that the two genes have similar rela-
tionships. To better mine the characteristics of genes in 
the network, we use the network embedding method 
to learn a vector to represent the genes in the network. 
Node2vec model is a classical network embedding 
method, but it has a fatal disadvantage [31]. It is unable to 
effectively simulate long-distance nodes with structural 
similarities due to the restricted sampling length of walk-
ing. In order to overcome this shortcoming, we adopt 
the struc2vec model for the vectorization process of the 
newly constructed network nodes [32]. The Struct2vec 
model encodes structural similarity by constructing mul-
tilayer graphs to generate structural contexts for nodes. 
Compared with most algorithms, it can find gene pairs 

(1)F ′ = aW ′Ft−1 + (1− a)Y
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with long-distance but similar structures. Therefore, the 
struc2vec model is used for extracting gene features, 
the gene features have more comprehensive informa-
tion, which contains both genes functional and structural 
information and is more conducive to identifying poten-
tial cancer driver genes. As a general rule, two nodes are 
more similar in structure if they have the same order. In 
other words, the structure of the two nodes should be 
more similar if all neighboring nodes of both nodes also 
have the same degree.

The structural similarity of node x and node y is defined 
as follows:

(2)fk
(

x, y
)

= fk−1

(

x, y
)
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y
)))

where Rk(x) is the set with a distance of k from the 
node x , and s(Rk(x)) represents the ordered sequence, 
Rk(x) arranged according to the degree of nodes. 
g s(Rk(x)), s Rk y > 0 is the distance function that 
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 , and f−1 = 0.
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 are different, 
we use Dynamic Time Warping (DTW) [33] to measure 
the distance between the two sequences:

The similarity of degree distributions among all node 
pairs in the network is calculated, and the similarity is 
used to generate a multilayer weighted graph. The edge 
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Fig. 1 Overview of the network embedding framework by considering functional and structural information to identify driver genes
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weight between nodes x and y in the same layer is defined 
as:

where k∗ is the diameter of a similar network. The same 
nodes belonging to different levels are connected by 
directed edges. For each node x in the k layer, it is con-
nected to k − 1 and k + 1 layers. The weight of the edge 
between different layers is defined as:

where Ŵk(x) is the number of edges connected to x in 
layer k and the weight is greater than the average weight.

We use the biased random walk to carry out random 
walk in the weighted multi-layer graph to generate a node 
sequence. It is assumed that the walk takes place in the 
current layer with the probability of q and jumps to other 
layers with the probability of (1− q) . If it is determined 
to walk in the current layer, let it be in the layer k , then 
the probability from node x to node y is defined as:

where zk(x) =
∑

y�=x e
−fk (x,y) is the normalization factor 

of a node x in the k-layer.
Through the random walk algorithm, each sampling 

gene is more inclined to select genes with highly similar 
gene structures to the current. If the jump is made, the 
probability of jumping k + 1 and k − 1 is as follows:

In this study, we begin at the bottom layer and travel 
through the randomly chosen nodes. the length of each 
random walk sequence is set to 80, and each node gener-
ates 20 random walk sequences. we embedded each gene 
as a 128-dimensional vector. When generating the node 
sequence, the skip-gram model [34] is used to train the 
node sequence.

Detection method
To better identify potential cancer driver genes, we inte-
grate mutant gene vectors. For patients with different types 
of cancer, we predict genes based on structurally similar 
and functionally identical features. For each patient, we 
take the mutant gene vector to generate a new 128-dimen-
sional feature. Then we use five machine learning algo-
rithms including K-Nearest Neighbor (KNN) [35], Logistic 

(4)ωk(x, y) = e−fk (x,y), k = 0, 1, · · · , k∗

(5)ω
(

xk , xk−1

)

= log(Ŵk(x)+ e)

(6)pk
(

x, y
)

=
e−fk(x,y)

Zk(x)

(7)pk(xk , xk+1) =
ω(xk , xk+1)

ω(xk , xk+1)+ ω(xk , xk−1)

(8)pk(xk , xk−1) = 1− pk(xk , xk+1)

Regression(LR) [36], XGBoost(XGBT) [37], Support Vec-
tor Machine(SVM) [38], and Random Forest(RF) [39] to 
predict cancer driver genes. We find that the XGBoost 
approach is the best.

XGBoost is a gradient boosting decision in which each 
time a tree is added, a new function is learned to fit the 
residuals of the previous prediction. After training is com-
plete, each tree learns a correlation score based on the 
properties of the driving genes. Finally, the scores of each 
tree are simply summed to obtain the predicted value 
based on the target function gene. The objective function 
of XGBoost(XGBT) is as follows:

where T  is the number of leaves in the tree, y is the label, 
l is the module square of the score,w of the leaf node in 
the tree.

Fivefold cross‑validation
Cross-validation is an evaluation method that aims to 
obtain a stable result. Therefore, we process datasets using 
fivefold cross-validation to create a stable and dependable 
supervised prediction model. In this work, to address the 
problem of unbalanced cancer gene datasets, we replaced 
oversampling, which tends to cause overfitting, with 
undersampling. Oversampling is not used because it is 
prone to over-fitting. Therefore, we repeatedly did under-
sampling 10 times to make effective use of the data. 80% of 
the genes are randomly selected as the training set and the 
remaining 20% as the test set. The average of the results of 
100 runs is the final result. Through experiments, among 
32 dimensions, 64 dimensions, and 128 dimensions, we 
find that the model learning 128 dimensions features has 
the best performance.

Evaluation metrics
We use three gene standard sets to identify cancer driver 
genes. Evaluate the model’s performance using five-folded 
cross-validation tests and a variety of commonly used met-
rics, including Receiver Operating Characteristic AUC 
(ROC-AUC), accuracy, precision, recall, specificity, and 
the F1 metric. The AUC value, namely the area under the 
receiver operating characteristic (ROC) curve, was selected 
as the evaluation index to judge the classification perfor-
mance. We calculated the true positive rate (TPR) and the 
false positive rate (FPR) by changing the threshold to obtain 
the ROC curve. Several indicators are introduced below.
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ROC curve according to the following equation:

where True Negative (TN), True Positive (TP), False 
Negative (FN), and False Positive (FP), respectively, are in 
Eqs. 10– 14.

Results
In this paper, we comprehensively evaluate mutation data 
from all 12 cancers from TCGA using multiple bench-
mark metrics, and we also perform individual analyses 
for each cancer. First, we compare the impact of data 
with and without mutation signatures on identifying 
driver genes. Then, we analyze the gold benchmark driver 
set and other algorithms from two different perspectives. 
We perform enrichment analysis on the detected genes 
to verify their biological functions. In addition, we sum-
marize the new list of predictive driver genes and study 
several of them in depth.

Comparison of algorithms in pan‑cancer
We identify cancer driver genes from the whole pan-
cancer through five models to discuss which model per-
formed better. Discuss and analyze according to the data 
downloaded from TCGA. We used CGC as the gene 
standard set because the general CGC dataset is com-
monly used by everyone. The HINT + HI2012 network is 
integrated with mutation data and incorporated into our 
framework to predict potential cancer driver genes [23].

(11)Precision =
TP

TP + FP

(12)Recall =
TP

TP + FN

(13)F1− score=2
Precision× Recall

Precision+ Recall

(14)

{

TPR = TP
TP+FN

FPR = FP
TN+FP

}

As shown in Fig. 2, our framework analyzes the ROC 
curves of five models. ROC curve can easily find out the 
recognition ability of cancer-driver genes at any limited 
value. We run 100 fivefold cross-validations and averaged 
the results to get the final AUC value. In the same coor-
dinate axis, by calculating the area under the ROC curve 
of each experiment, it is clear to see from Fig. 2 that the 
area under the ROC curve of XGBT is as large as 0.7492, 
which is better than the other four machine learning 
models. In other metrics, XGBT is higher than the other 
methods, except in the F1-score, which is slightly lower 
than the other methods (Table S1).

Comparison of algorithms in each cancer
We also use five machine learning models to identify 
cancer driver genes among 12 cancers to discuss which 
model has good performance metrics under our frame-
work. We use CGC as the gene standard set, combine 
the HINT + HI2012 network with mutation data, and 
integrate it into our framework to forecast possible can-
cer driver genes, similar to Pan-cancer. In 12 cancers, 
our framework analyzes four indicators of five models 
in each cancer. As shown in Fig.  3, it can be seen that 
the prediction model of XGBT is relatively good in each 
index. In the accuracy metric, XGBT outperforms almost 
every other algorithm, except in KIRC and COAD, where 
XGBT does not perform as significantly. In the recall 
metric, XGBT outperforms almost other algorithms, 
except in BRCA, UCEC, and LUAD, where XGBT does 
not perform as significantly. In the F1-score, it is obvious 
to see that XGBT is the most algorithm and superior to 
other algorithms, except that the effect of OV is not so 
obvious. In the precision metric, the XGBT method also 
outperforms other methods in most data sets.

Impact of mutation data
We detect driver genes from data with and without 
mutation information to discuss which is most effective. 
As important information to prioritize driver genes, 
we also study the impact of three individual networks 

Fig. 2 Comparison of ROC curves of five machine learning algorithms in the whole pan‑cancer
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on effectiveness. We take CGC as the optimal XGBT 
model under the gene standard set. As shown in Fig. 4, 
in our framework, the network with mutation features 

predicted four higher performance metrics than the 
network without mutation features. We find that muta-
tion information is an important factor in promoting 

Fig. 3 Comparison of four metrics of five machine learning algorithms in each cancer. The accuracy, Precision, Recall, and F1‑score of the five 
algorithms were compared. In each figure, the X‑axis represents each cancer type. Y‑axis represents the value of Accuracy, Precision, Recall, 
and F1‑score respectively
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cancer development. By processing three networks, we 
find that the graph obtained by HINT + HI2012 con-
tains fewer edges than the latter two networks, which 
makes our model more suitable for sparse networks. 
It can also be seen that the HINT + HI2012 network 
is also better than the other two networks under vari-
ous indicators, although it is not very obvious. Note 
that the gene interaction network selected here is the 
same as the mutant genes in the experimental data set 
of Pan-cancer. Therefore, this does not mean that the 
original reference network is sparse. We find that driver 
genes are more likely to be detected in data with muta-
tion information compared to data without mutation 
information.

Comparison of driver gene detection methods
In this paper, we compare our method with four excel-
lent algorithms: MoProEmbeddings [17], MutSigCV [40], 
OncodriveFML [14], and Two-stage-vote [15]. Their pre-
diction of driver genes came from DriverML. As shown 
in Fig.  5, it can be seen that the proportion of driver 
genes predicted in CGC, IntOGen, and NCG of 12 can-
cers in the TCGA database. Each panel represents a tool 
and is ranked according to the median score of the pre-
dicted driver genes in the above three gene standard sets. 
For a specific tool, the drivers of its prediction are dif-
ferent in different cancer types in three benchmark data 
sets. Our method ranks first. 59%, 61% and 78% of the 
predicted candidate driver gene belong to CGC, IntO-
Gen, and NCG respectively. In CGC and NCG data sets, 

Fig. 4 Under the optimal model XGBT model, the comparison of four indexes of data with and without mutation information

Fig. 5 In three benchmark driver sets, we compared with four algorithms. Each group of panels corresponds to a particular benchmark driver set, 
and each box contains findings from each of the 12 different forms of cancer and represents one algorithm
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it can be seen that our method describes the discrete dis-
tribution of data in a relatively stable way. In the IntO-
Gen dataset, there is an outlier in MoProEmbeddings, 
OncDriveFML, and our method. However, using Mut-
SigCV and OncDriveFML, the predicted driver scores in 
the three databases are usually < 40%. In conclusion, our 
method successfully identifies a large number of cancer 
driver genes, and we believe it works well across a wide 
range of prevalent cancer types.

Our framework can find high-order neighbors in the 
network, and can also find gene pairs with long-distance 
but similar structures, which is more conducive to the 
identification of potential oncogenes. MutSigCV [40] 
method based on mutation frequency identification has 
been widely used in driver mutations and driving genes. 
OncodriveFML [14] uses the functional impact of gene 
mutations to reveal differences in coding and non-coding 
cancer drivers. The ensemble model is a Two-stage-vote 
[15] based on mutation information, gene networks, and 
a voting method that is created to find driver genes for 33 
types of cancer. To enable supervised prediction, MoPro-
Embeddings [17] uses the knowledge of common cancer 
driver genes. Our framework outperforms other methods 
in some performance evaluations.

Our method is compared with four driver gene pre-
diction algorithms using four metrics: Recall, AUPRC, 
F1-score, and Precision. As shown in Table  2, it can be 
seen that our method outperforms other methods in 
terms of recall metrics with the highest performance 
(0.746), followed by two-stage voting (0.739), MoPro-
Embeddings (0.436), and OncodriveFML (0.341). In the 
AUPRC metric, our method is the best performer, reach-
ing (0.740), while the second-ranked Two-stage-vote 
method has a value of 0.658. In terms of index F1-score, 
our method is the best performer, reaching 0.679 higher. 
When comparing Precision, Two-stage-vote performs 
best, and the method ranks second in precision, the dif-
ference between the two is only 0.01.

Analysis of driver genes
It is important to identify potential cancer driver genes, 
which can also be predicted by several other methods. As 
the number of tools to identify these genes increases, the 

likelihood of predicting driver genes associated with can-
cer also increases. False positives in one tool may result 
in these genes being discarded by other identified tools. 
Five machine learning algorithms are used in this frame-
work to detect known and unidentified cancer genes [41] 
(Table S2). We take the new genes predicted by these 
five machine learning methods and take the same ones 
and ranked them at the top. For these newly identified 
driver genes, using CarcerMine [42], a literature min-
ing driver database, several significant genes are studied 
based on current literature reports. In general, each gene 
plays a different role, and even the dysregulation of cer-
tain essential genes can lead to cell death, so these genes 
play an even more important role in life activities. As 
shown in Fig. 6, it can be seen that the overlap of the five 
machine algorithms’ predictions for cancer genes on the 
pan-cancer data.

The discovery of missense variants in PLEC that affect 
AF, combined with the recently identified variants of 
the muscle group genes MYH6 and MYL4, suggest that 
myocardial structure plays an important role in the 

Table 2 Comparison of five methods of performance evaluation

Method Recall F1‑score Precision AUPRC Algorithms

Our 0.746 0.679 0.781 0.740 XGBoost

MutSigCV 0.236 0.33 0.552 0.312 Logistic regressors

Two‑stage‑vote 0.739 0.635 0.782 0.658 Two‑stage‑vote

MoPro Embeddings 0.436 0.343 0.636 0.437 Gradient boosting

OncodriveFML 0.341 0.665 0.367 0.441 Functional impact

Fig. 6 Venn diagram of known cancer genes predicted by different 
machine learning algorithms
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pathogenesis of the disease [43]. ACVR1B expression 
levels are nominally significantly associated with emphy-
sema distribution. It is associated with tumors through 
its interaction with activin A [44]. RASA1 expression is 
significantly reduced in KRAS wild-type colon cancer 
cells, indicating that miR-21 activates the RAS signal-
ing pathway by downregulating RASA1 expression [45]. 
SMARCC2 is not among the CancerMine genes, but we 
find some research through a searchable comprehensive 
database GeneCards [46], which provides comprehensive 
information on all annotations and predictions of human 
genes. Frameshift alterations in colorectal and gastric 
cancers have been reported to cause the early arrest of 
amino acid synthesis of SMARCC2 protein, similar to 
the typical loss of function mutations. Surprisingly, the 
tumor-suppressive activity of SMARCB1 has been dem-
onstrated, and this gene has been added to the CGC 
databases. To summarize, SMARCC2 needs more inves-
tigation as a potential cancer driver gene [47]. ZMYND8 
is also involved in transcription regulation during normal 
cellular growth, which when disrupted increases cellular 
processes that lead to cancer start and development [48].

We also did positive control data from well-known driver 
genes found in different cancer types. We have selected 
three of these cancers for analysis. The well-known driver 
genes we identified from BRCA of breast cancer include 
AKT1, CDKN1B, ESR1, GATA3, MAP3K13, TP53, etc. 

Well-known driver genes identified from pancreatic cancer 
included AKT2, DAXX, FAT4, KRAS, etc. LUAD included 
ARAF, EED, GPC, TP53, etc. The rest of the cancers were 
also analyzed and can be seen in Table S3.

Enrichment analysis
In our framework, the top 100 genes in each method are 
mapped to GO terms such as molecular function (MF), 
cellular component (CC) and biological processes (BP), 
and pathways in KEGG, and statistically significantly 
enriched GO terms or pathways are detected and counted. 
The driver genes detected by five machine learning algo-
rithms are analyzed by Gene Set Enrichment Analysis 
(GSEA) [49] (http:// www. gsea- msigdb. org/ gsea/ msigdb/ 
annot ate. js) and Enrichr [50, 50] to investigate their sta-
tistical significance and biological relevance. We select the 
top 100 gene ontology terms with P value < 0.05 after each 
driver gene set enrichment analysis (Table S4 and Table 
S5). The driver gene sets predicted by five methods have 
23 common GSEA gene ontology terms (Table S4), such 
as GOBP_PROGRAMMED_CELL_DEATH, GOCC_
CHROMOSOME, GOBP_POSITIVE_REGULATION_
OF_MOLECULAR_FUNCTION and so on. The driver 
gene sets predicted by five methods have 20 common 
Enrichr terms (Table S5), such as Epstein-Barr virus infec-
tion, Chronic myeloid leukemia, MAPK signaling pathway, 

Fig. 7 The 10 most significantly enriched pathways of GO pathways are ranked by P‑value

http://www.gsea-msigdb.org/gsea/msigdb/annotate.js
http://www.gsea-msigdb.org/gsea/msigdb/annotate.js
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and so on. We analyzed the predictive genes in the KEGG 
[51] data to understand the significantly altered metabolic 
pathways, which are particularly important in the mecha-
nism study. As shown in Fig. 7 and Fig. 8, we rank the top 
10 pathways in order of their P-values. And the p-value is 
transformed to be − log10 (p− value) . Overall, the major-
ity of prevalent gene ontology concepts are linked to cell 
death, cell differentiation, cellular proliferation, cell activa-
tion, the immune system, and other biological processes, 
all of which play essential roles in cancer formation.

Conclusions
In order to detect potential cancer driver genes in cancer, 
we propose a network embedding framework that com-
bines functional and structural information in this work. 
The mutation integration network is constructed by 
combining mutated genes with protein interaction net-
works using a network propagation algorithm. Using the 
struc2vec model to extract gene features from the muta-
tion integration network, gene pairs with long distances 
but a similar structure can be found. Finally, machine 
learning algorithms are used to predict genes. Therefore, 
our framework takes into account more comprehensive 
information, including functional and structural informa-
tion about genes, which is more conducive to identify-
ing potential cancer driver genes. At the same time, we 
also compare and analyze three gene standard sets, three 
gene interaction networks, and various machine learning 
algorithms. In addition, our method outperforms other 

methods such as MoProEmbeddings, MutSigCV, and 
OncodriveFML. Our method can more accurately pin-
point potential cancer-causing genes.

However, our framework has some challenges. In future 
work, two aspects can be improved. On the one hand, 
our framework mainly uses the functional and structural 
features of genes, and can also take more features into 
account. On the other hand, in clinical practice, we can 
discuss the inclusion of more histological features to iden-
tify cancer driver genes in precision medicine and person-
alized medicine.
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