
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Oliveros et al. BMC Genomics          (2023) 24:427 
https://doi.org/10.1186/s12864-023-09520-0

Introduction
Research has shown that gut microbiota and their metab-
olites influence the overall health of animals, including 
physiology, nutrition, immunology, and behaviour (e.g., 
[1]). It is understood that the composition of the micro-
biome (bacteria, archaea, viruses, fungi, and protists) 
is shaped by the genes and the environment of animals 
[2, 3]. Together these factors contribute to maintain-
ing homeostasis, which is paramount to host fitness [4, 
5]. An imbalance in the composition of the bacterial gut 
communities (i.e., dysbiosis) can be linked to numerous 
host diseases (e.g., cancer, malnutrition, and increased 
severity of SARS-CoV-2 infection) [6]. Changes in fungal 
abundance can also compromise animals’ health [7, 8]. 
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Abstract
Background The study of the host-microbiome by the collection of non-invasive samples has the potential to 
become a powerful tool for conservation monitoring and surveillance of wildlife. However, multiple factors can bias 
the quality of data recovered from scats, particularly when field-collected samples are used given that the time of 
defecation is unknown. Previous studies using scats have shown that the impact of aerobic exposure on the microbial 
composition is species-specific, leading to different rates of change in microbial communities. However, the impact 
that this aging process has on the relationship between the bacterial and fungal composition has yet to be explored. 
In this study, we measured the effects of time post-defecation on bacterial and fungal compositions in a controlled 
experiment using scat samples from the endangered koala (Phascolarctos cinereus).

Results We found that the bacterial composition remained stable through the scat aging process, while the fungal 
composition did not. The absence of an increase in facultative anaerobes and the stable population of obligate 
anaerobic bacteria were likely due to our sampling from the inner portion of the scat. We report a cluster of fungal 
taxa that colonises scats after defecation which can dilute the genetic material from the autochthonous mycoflora 
and inhibit recovery.

Conclusion We emphasize the need to preserve the integrity of scat samples collected in the wild and combat the 
effects of time and provide strategies for doing so.
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For instance, overgrowth of Candida albicans is a major 
cause of morbidity and death in critical care settings not 
only for humans [9] but also for other mammals such as 
koalas (Australia Zoo Wildlife Hospital, personal com-
munication). As such, the study of gut microbiomes is 
becoming an essential component of conservation biol-
ogy [2, 4].

Health parameters are increasingly being used to moni-
tor populations, yet they should accurately describe the 
characteristics of the specific population (health status, 
fitness, or population trends). Understanding the driv-
ers of host-microbiome variations can inform wildlife 
conservation and management by identifying baseline 
population characteristics. Studies such as Littleford-
Colquhoun et al.[10] highlight the need to use micro-
biome composition and structure alongside traditional 
indices in future research, potentially identifying high-
quality habitats for threatened species.

Building on the importance of microbiome research 
in conservation and the role of health parameters, diet 
plays a vital role in shaping the gut microbiome [11–16], 
making microbiome studies informative for translocat-
ing or reintroducing endangered species[10, 16–18]. As 
gut bacterial communities have coevolved with their host 
to maximize digestion [16–18], translocated individuals 
may need to adjust their microbiome to a new diet post-
translocation. Feeding subjects with a diet from the new 
habitat while in care can be highly beneficial [16]. Yao et 
al. [16] demonstrated that monitoring host’s microbiota 
before, during, and after translocation can guide adapta-
tion to a new diet, improving translocation or reintroduc-
tion projects and individuals’ health/adaptation capacity 
in the wild.

As studies into host-microbe communities uncover 
factors that drive the population’s health and fitness, 
incorporating microbial analysis into conservation moni-
toring and surveillance becomes increasingly valuable. 
Previously, accessing a host’s microbiome relied purely 
upon invasive methods [19, 20], which can be more chal-
lenging than acquiring other types of baseline data on 
endangered individuals. As a result, non-invasive sam-
pling, where DNA is obtained from the species’ scats, 
feathers, or hair [19, 20], has risen in popularity over 
the last decade. This sampling method is facilitating a 
more cost-effective, accessible, large-scale approach for 
the monitoring and surveillance of the current state of 
wildlife populations [15, 20–23]. This combination of 
non-invasive sampling and molecular analysis of the host 
microbiome in the wild, termed conservation metage-
nomics [22], offers promising ways of monitoring wild 
populations using non-invasive sampling methods, gen-
erating an accessible baseline even for threatened species, 
and uncovering quantifiable measurements such as pop-
ulation health, density, and dispersal [15, 22, 23]. Thus, 

metagenomics provides highly informative data to assess 
the state of a population and the effects of conservation 
strategies being implemented.

Despite the advantages of using non-invasive samples 
like faecal matter, this approach presents specific chal-
lenges that must be addressed. This is because multiple 
factors can bias the quality of the non-invasive metage-
nomic sample. There is an ongoing effort to establish 
proper methods and best practices to ensure the quality 
of the sample, such as sample collection methods, freez-
ing methods, sequencing methods, and DNA extraction 
[24, 25]. Yet, it seems that a crucial step has been over-
looked; if we aim to develop this approach, it is essential 
to acknowledge that DNA recovered from non-invasive 
samples are often poor quality due to environmental deg-
radation [21]. The integrity of a scat sample will degrade 
with time due to the environmental forces changing the 
characteristics of the sample. This presents an important 
challenge for non-invasive metagenomic sampling as a 
tool for conservation since it is impossible to know for 
how long a sample has been exposed to the environment 
before collection.

Although little is known of the effects of the exposed 
sample to environmental degradation, few studies have 
started investigating the impact of scat sample age in the 
study of the gut microbiome in wildlife [26–29]. These 
studies argue that bacterial communities in the scat sam-
ple will likely change from anaerobic to aerobic as the 
sample is exposed to air [26–29]. For instance, Wong et 
al. [27] showed that the bacterial composition in faecal 
cowpat samples shifted after only two days as Clostridia 
and Bacteroidia disappeared from the faecal cowpats, 
given that they are obligate anaerobes. The authors also 
documented an increase in Actinobacteria and Pro-
teobacteria over time as they are facultative anaerobes. 
Together, these studies argue that the susceptibility of 
scat samples to the impact of oxygen exposure will be 
host species-specific [26, 27, 29], given that sample expo-
sure to oxygen will vary depending on its size and shape. 
Thus, the compositional changes in the microbiome of 
the scat samples need to be evaluated for each host spe-
cies before accurate interpretations of a scat sample can 
be used for monitoring purposes [26, 27, 29]. For this 
reason, there is a need to ensure that differences between 
individuals or populations are not a consequence of the 
age of the scat sample post defecation. All studies thus far 
on wildlife have only measured the effect of scat sample 
age on bacterial communities. If we take into account 
that the fungal sub-kingdom is known as one of the most 
abundant and diverse decomposers on earth [8], it can be 
considered fundamental to include the mycobiome in our 
analyses of how scat samples’ age influences the compo-
sition. Furthermore, expanding the microbial toolkit to 
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other kingdoms is essential as these taxa may also play a 
vital role in host fitness [4, 7].

Koalas have historically been costly and challenging 
to study due to their cryptic behaviour and low density. 
However, while they may be hard to find, they are known 
to defecate frequently. This makes studying the koala 
gut microbiome through the acquisition of non-inva-
sive faecal samples a potentially cost-effective approach. 
Incorporating the study of the gut microbiome to koala 
conservation could assist its management in several ways. 
First, with loss of habitat and its fragmentation, conser-
vation programs are increasingly looking at translocation 
as an important means to conserve koalas. Given that 
each koala has a gut microbiome highly specialised to its 
local diet [13], its study would be very helpful in ensur-
ing translocations are successful. Second the microbi-
ome has been shown to contain important information 
about population substructures which could not be iden-
tified via population genetic analyses of the koala DNA 
[10]. Third, the faecal microbiome of koalas may contain 
important health bio-markers which would help in (a) 
identifying populations (or individuals) in need of medi-
cal intervention and (b) build a better understanding of 
the link between environmental conditions and health 
allowing us to identify high-quality habitats for koalas.

To address these challenges, our study aims to mea-
sure the effects of scat aging on the koala microbiome, 
as the quality of metagenomic samples depends on the 
stability of the microbial composition and abundance. 
Understanding these changes is critical, as any altera-
tions introduced by the scat aging process could impede 
the use of scat samples as reliable proxies for the koala 
gut microbiome. This study aims to track changes in 
the bacterial and fungal composition of koala scats over 
time, providing insights into the factors affecting micro-
bial communities in scat samples. We predicted that 
the microbial communities contained in the koala scats 

would change in composition over time and that the 
change would be more pronounced as the scat aged.

Materials and methods
Experimental design and sample processing
Fresh koala scats were collected from the cages of five 
individual koalas held for veterinary checks at Endeavour 
Veterinary Ecology Clinic in Toorbul, Queensland under 
animal ethics approval from the University of the Sun-
shine Coast. The koalas came from different locations, 
which we note may influence the microbial composition 
of their scat microbiomes. Additionally, it is important to 
note that Koala 1 had been exposed to antibiotics (chlor-
amphenicol) for Chlamydia treatment, which may also 
have affected its microbiome. Further details on the koa-
las’ locations and health notes can be found in Table 1.

Following transport to campus in sterile tubes open 
to the air, one scat pellet from each koala was processed 
for DNA extraction immediately. An additional five scat 
pellets for each koala were then mounted on toothpicks, 
suspended on Styrofoam trays, and placed into meshed 
enclosures (to prevent insects or other animal activity 
from damaging the scat samples) and aged under natural 
conditions in a remnant patch of forest on campus (Sup-
plementary Fig. 1). One scat pellet from each koala was 
recovered and processed at 24 h, 48 h, 72 h, 5 days, and 
10 days post initial collection (Fig. 1). This resulted in six 
time-points for five koalas, totalling 30 scat samples. The 
core of the scat sample was then extracted to minimize 
the impact of oxygen exposure using the QIAamp Pow-
erFecal Pro DNA Kit (Qiagen), following the manufactur-
er’s protocol, with the following variations: after adding 
CD1 buffer, samples were incubated at 65° C for 1 h and 
vortexed for 7 min at maximum speed using Genie 2 Vor-
tex Mixer (Scientific Industries). The DNA was eluted in 
a final volume of 100 µl of C6 buffer and stored at -80 °C.

Sequencing
DNA samples were sequenced targeting both the bacte-
rial and fungal communities. To identify bacteria, the V3 
to V4 region of the 16 S rRNA gene was targeted using 
the universal primers 341  F (CCTAYGGGRBGCAS-
CAG) and 806R (GGACTACNNGGGTATCTAAT) [30]. 
To identify fungal communities, the internal transcribed 
spacer (ITS)1-F and ITS2 regions were targeted using 
the forward primer (CTTGGTCATTTAGAGGAAG-
TAA) and the reverse primer (GCTGCGTTCTTCATC-
GATGC) [31]. Library preparation was performed using 
Nextera XT dual-index barcodes using a two-step pro-
tocol to firstly amplify the 16 S/ITS region then add the 
indexes. Libraries were then pooled in equimolar ratios. 
Bacterial and fungal libraries were sequenced on separate 
flow cells on the Illumina MiSeq platform using 300 bp 
paired-end reads. All library preparation steps and 

Table 1 Metadata table: In November, 2020, scats were 
collected in 50ml centrifuge tubes and covered with gauze to 
allow the escape of volatile compounds
Koala 
ID

Location Cage 
time

Sex Health Notes

1 Hidden Vale, 
QLD

12 pm F Treated for Chlamydia with 
chloramphenicol. Last dose 
on 19/11/2020

2 Petrie, QLD 3 pm M Held for a vet exam. No 
signs of disease

3 Gympie, QLD 5 pm F Female mother with joey. 
Held for a vet exam

4 Petrie, QLD 5 pm M Has a broken arm and is on 
pain relief. No sign of disease

5 Gympie, QLD 3 pm M No signs of disease. Held for 
a vet exam
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sequencing was undertaken at the Australian Genome 
Research Facility (AGRF). Basecalling was performed in 
real time by the MiSeq Control Software (v3.1.0.13) and 
Real Time Analysis (v1.18.54.4), running on the instru-
ment computer. Then the Illumina DRAGEN BCL Con-
vert 07.021.624.3.10.8 pipeline was used to generate the 
sequence data. The demultiplexed raw reads were primer 
trimmed and quality filtered using the Cutadapt plugin 
followed by denoising with DADA2 [32] (via q2-dada2). 
Quality control metrics are shown in Supplementary 
Tables 1 and 2.

Data analysis
Diversity analysis
Diversity analysis was performed using QIIME 
(v2021.4.0) [33]. For fungi (ITS1 and ITS2), we rarefied 
to 5000 reads per sample. For bacteria (V3 and V4), we 
rarefied to 76,000 reads per sample. This was done con-
sidering rarefaction curves using the diversity alpha-rar-
efaction plugin [33]. Our goal was to minimise data loss 
while maintaining a sufficient number of reads. Once the 
data was filtered, we measured alpha and beta diversity 
metrics.

Alpha diversity was estimated to assess the diver-
sity of microbial communities within each scat pel-
let sample. The alpha diversity measurements for both 
bacteria and fungi were evaluated based on observed 
Amplicon Sequence Variants (ASVs), representing ASV 
richness, Pielou’s Evenness, and Shannon indexes using 
the QIIME diversity core-metrics plugin [33, 34]. To visu-
alize how scat aging influenced microbial diversity over 
time, Shannon Entropy plots were generated using the 
QIIME longitudinal volatility plugin [33]. We performed 
the Friedman test, a nonparametric statistical test for 

repeated measurements, to assess the impact of time on 
the Shannon index.

To identify differences in microbial composition among 
scat samples, beta diversity was calculated. This was 
achieved by analyzing patterns in principal-coordinate 
analysis (PCoA) plots based on Jaccard and Bray-Curtis 
distances. The diversity core-metrics plugin of QIIME, 
as described by Bolyen et al. [33], was used to generate 
these plots using non-phylogenetic metrics. The reason 
for this is that the ITS region used to sample the fungal 
community is not appropriate for phylogenetic analysis 
[35]. However, we also generated phylogenetic metrics 
(unweighted and weighted UniFrac) for the bacterial 
community. These results can be found in the Supple-
mentary Fig. 2. To generate the phylogenetic metrics, we 
constructed a phylogenetic tree using QIIME fragment-
insertion plugin [33] based on Silva 128 SEPP reference 
database download from https://docs.qiime2.org/2022.2/
data-resources/ [32, 36].

Effect of time on bacterial beta diversity metrics
To better understand and describe these dynamics, it is 
important to define our sample and establish clear ter-
minology for comparing differences within and between 
koalas. A sample is defined as a scat pellet microbial 
community extraction. Each koala provided six scat pel-
lets, with one processed at T0 and the others allowed to 
age and processed at different times. Moving forward, we 
will use the term “inter-koala differences” to denote the 
differences between all time points related to one koala in 
comparison to other koalas. When discussing a specific 
time, we will specify it such as “inter-koala differences 
at T0.“ On the other hand, “intra-koala differences” will 
be used to describe the changes observed in a particular 

Fig. 1 Diagram of scat aging experiment: Fresh koala scat samples were collected from five koalas. One scat pellet for each koala was processed for 
DNA extraction immediately after defecation. Five scat pellets for each koala were then placed on toothpicks in outdoor meshed enclosures aged under 
natural conditions. After the following time points, one scat pellet for each koala was collected and processed for DNA extractions at: 24 h, 48 h, 72 h,5 
days, and 10 days

 

https://docs.qiime2.org/2022.2/data-resources/
https://docs.qiime2.org/2022.2/data-resources/
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koala’s scat pellet microbial communities across different 
time points.

As part of our study, we analyzed the impact of time 
on the first five axes of Principal Coordinates Analysis 
(PCoA) in all four beta diversity metrics measured in 
bacteria. These first five axes of PCoA are independent 
of each other and are arranged based on the variance 
they represent, with the first axis capturing the greatest 
variance. To determine the effect of time on these axes, 
we first calculated all possible absolute inter-koala dif-
ferences at T0 which represented the “true differences”. 
We then computed the absolute difference between each 
koala at T0 and the remaining time points, which rep-
resented intra-koala differences with T0. Only when the 
intra-koala differences were greater than the inter-koala 
differences at T0, we consider time to have an impact on 
an axis. By comparing the true inter-koala differences 
with the variance introduced by time, we were able to 
evaluate the effect of time on these axes in all four beta 
diversity metrics.

We also performed the Friedman test on the same five 
axes of PCoA in all four beta diversity metrics to test 
for the significance of time in each axis, followed by a 
post hoc analysis comparing ranks between T0 and the 
remaining time points. These methods aim to discern 
the differential impacts of time on various aspects of 
the microbial communities. Each metric reveals differ-
ent aspects of the bacterial communities present in the 
samples [37]. By evaluating the effect of time on these 
distinct beta diversity metrics - presence/absence met-
rics like Jaccard, abundance metrics like Bray-Curtis, 
and phylogenetic metrics like UniFrac - we can be better 
equipped to detect nuanced shifts in the microbial com-
munity structure during the scat aging process. Presence/
absence metrics are sensitive to changes in which ASVs 
are present, while abundance metrics provide insights 
into variations in the relative quantities of these mem-
bers. Phylogenetic metrics add another layer of complex-
ity by considering the evolutionary relationships between 
these members. The differential responses of these met-
rics to aging give us a holistic view of the dynamics at 
play within the microbial communities of koala scats.

ASV relative abundance analysis was undertaken to 
track changes through time. To do so, we normalised 
abundance data to reads per million using the raw reads 
(input reads, Supplementary Table 1), which prevents the 
loss of data that occurs through rarefying. To assess the 
variation in ASVs (presence/absence and abundance) for 
both intra-koala differences and inter-koala differences, 
we utilized R (v4.1.0) [38]. In addition to the basic statisti-
cal tools that R provides, we also used the package micro-
biome [39]. Our objective was to evaluate the stability of 
ASVs over time, as well as the variation in their abun-
dance for both intra-koala differences and inter-koala 

differences. These results were compared with the alpha 
and beta diversity profiles to check for consistency 
between the two analyses. We calculated the logarithmic 
base 10 ratio of anaerobes to facultative anaerobes of the 
27 (95% of the total reads) most abundant bacteria at the 
family taxonomic level. This was done by assigning a res-
piration profile to each taxonomic family (Supplementary 
Table  3) with the exception of Oxalobacteraceae, which 
present an ambiguous respiratory profile ranging from 
obligate aerobes to obligate anaerobes.

Taxonomic classification
Retrieval and utilization of bacterial databases
Several approaches were employed to assign taxonomy 
to each ASV sequence. For bacteria, the 16 S V3 and V4 
ASVs were classified against three databases: [1] SILVA; 
[2] GTDB; [3] NCBI nucleotide database. QIIME format-
ted SILVA reference sequence (silva-138-99-seqs.qza) 
and taxonomy (silva-138-99-tax.qza) were downloaded 
from https://docs.qiime2.org/2021.8/data-resources/ 
[40]. We also used the GTDB FASTA file containing 
16  S rRNA sequences (ssu_all_r202.tar.gz) from https://
data.gtdb.ecogenomic.org/releases/release202/202.0/
genomic_files_all/.

Retrieval and utilization of fungal databases
For fungi, the ITS ASVs were classified against three data-
bases: [1] UNITE; [2] RefSeq; and [3] NCBI nucleotide 
database. The QIIME release UNITE database was down-
loaded from https://doi.org/10.15156/BIO/1264708. For 
this analysis, we used version 8 released on 10/05/2021 
clustered at 99% identity. After downloading the FASTA 
file and the taxonomy rank attached to the accession 
numbers file, we used a customized R script to remove 
repeated sequences and replace unidentified fungi in the 
UNITE database with accession numbers. These were 
imported to QIIME. The RefSeq target loci fungal ITS 
database was downloaded from https://ftp.ncbi.nlm.nih.
gov/refseq/TargetedLoci/Fungi/. We used a customized 
R script to remove repetitive sequences and transform 
these files to QIIME-compatible format for taxonomic 
classification. This script can be found in the Supplemen-
tary Data.

Identifying bacteria and fungi through NCBI nucleotide 
database by a blast search
For BLAST searches against the NCBI nucleotide data-
base, ASVs were classified to the first hit of the BLAST 
search and further filtered if that hit did not correspond 
to the ITS region for fungi and 16 S V3 and V4 for bacte-
ria. The percentage identity was kept as a record of trust 
in taxonomic classification. The BLAST search was per-
formed for both bacteria and fungi. We also used several 
QIIME plugins to perform the taxonomic classification: 

https://docs.qiime2.org/2021.8/data-resources/
https://data.gtdb.ecogenomic.org/releases/release202/202.0/genomic_files_all/
https://data.gtdb.ecogenomic.org/releases/release202/202.0/genomic_files_all/
https://data.gtdb.ecogenomic.org/releases/release202/202.0/genomic_files_all/
https://doi.org/10.15156/BIO/1264708
https://ftp.ncbi.nlm.nih.gov/refseq/TargetedLoci/Fungi/
https://ftp.ncbi.nlm.nih.gov/refseq/TargetedLoci/Fungi/
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(1) classify-consensus-blast [34]; (2) classify-consensus-
vsearch [41]; (3) the plugin feature-classifier used to 
train a Naive-Bayes classifier against a specific database 
with subsequent amplified ASV classification [42]; and 
(4) classify-hybrid-vsearch-sklearn [33] using default 
and customized settings to classify the fungal ASVs, 
while only using the former for bacteria ASVs. The set-
tings chosen for the different plugins can be found in 
the Supplementary Data. All plugins were used in accor-
dance with QIMME documentation website https://docs.
qiime2.org/2021.8/.

Taxonomic classification of bacteria and fungi: 
understanding trust scores
The above taxonomic classification tools were applied 
against each database except for the NCBI database. A 
customized R script was then used to define a defini-
tive taxonomic rank for each ASV (from subkingdom 
to species, if possible), plus a trust score, which was 
done against each database to check how many clas-
sification tools were in agreement. This trust score was 
computed by assigning a weight to each taxonomic tool 
and then multiplying it by the confidence score given by 
the QIIME plugins. All the tools received a weight of 1 
except for the Naive-Bayes classifier, which received 0.5 
based on the poor performance experienced using this 
tool. For fungi, the five classification tools were used to 
normalize the final trust score into a 0 to 1 scale, and the 
sum of scores was divided by the possible max score of 
4.5. For bacteria, we only used four tools; therefore, the 
final trust score was normalized dividing by 3.5. The 
final trust score represents the level of confidence that 
the chosen final classification had. However, if the clas-
sification tool failed to assign a taxonomic rank, the trust 
score was set to 0, and the taxonomic rank was catego-
rized as “Unassigned”. The final taxa ranks, and their final 
trust score were assigned taking into account the high-
est frequency taxonomic ranks among tools. If only one 
tool could categorize a taxonomic rank for an ASV, then 
the same taxonomic rank and its score were considered 
the final taxonomic classification. In case of a tie between 
two conflicting taxonomic ranks with the same frequen-
cies among tools, the one with the highest aggregat-
ing score was chosen. However, if the aggregating score 
between these two were the same, then the classify-con-
sensus-blast result was assigned, and The final trust score 
was determined by adding up the number of tools that 
matched with this particular tool.

Clustering of the fungal ASVs to enhance classification
Even though we classified fungi against three databases 
and used five different tools to do so, the certainty and 
amount of taxonomically classified ASVs were low. To 
improve this, we performed clustering analysis using 

VSEARCH [41]. The representative fungi ASVs were 
clustered by identity coverage at every possible percent-
age of identity. The representative sequences were 240 
bases long after removing one base at every clustering 
level until we reached one base similarly among ASVs. 
This resulted in a range from 100% identity to 0.004% 
identity. It is essential to note that the ITS region seems 
to fail as a phylogenetic tool as the region is polymorphic, 
short, and presents high variability [35, 43, 44]. In fact, 
within a single strain, considerable sequence divergence 
between copies of the ITS1 region has been documented 
[45]. Our intent here was to indicate how certain classi-
fied ASVs might relate to others, giving or reducing the 
weight of the certainty on the taxonomic classifications.

All the ASVs that were classified as Candida to genus 
level are compared along with two strains of Can-
dida albicans (NCBI accession number:MT166273.1, 
MN960653.1) [46, 47] and one strain [Candida] nivarien-
sis (NCBI accession number:KY102231.1) [48]. The clas-
sification of the ASVs against three databases and their 
trust score, and the identity value from a pairwise com-
parison for each ASV were generated from the R package 
Bio3d [49] after [50].

Results
In this study, we obtained a total of 3,096,321 and 
2,609,027 non-chimeric reads for the bacterial (16  S 
rRNA) and fungal (ITS) datasets, respectively. The bacte-
rial dataset had a minimum of 77,113 reads, a maximum 
of 145,189 reads, and a mean of 103,211 reads per scat 
sample. The fungal dataset exhibited a minimum of 6,734 
reads, a maximum of 166,246 reads, and a mean of 86,968 
reads per scat sample.

Alpha diversity
Scat aging impacted the bacterial and fungal alpha diver-
sity differently. The bacterial alpha diversity was found to 
persist and remain stable through time (Table 2; Fig. 2A). 
A Friedman test confirmed this stability (χ2 = 4.66, 
p = 0.45) with post-hoc comparisons showing no signifi-
cant differences between any of the time points. These 
results indicate that scat aging for 10 days had little to no 
impact on the bacterial alpha diversity in our samples. In 
contrast, the alpha diversity of fungi exhibited significant 
differences over time, indicating that it did not remain 
constant (χ2 = 11.29, p = 0.046). Post-hoc comparisons 
revealed significant differences between the following 
time points: T0-T72h, T0-T5d, and T0-T10d. Further 
analysis revealed the following behaviour: diversity inter-
koala difference at T0 were minimalexcept for Koala 5. In 
two of the five koalas sampled for scats, alpha diversity 
remained stable through the scat aging process. Koala 1 
exhibited a consistently high alpha diversity profile, while 
Koala 5 consistently displayed a low profile (Table  2; 

https://docs.qiime2.org/2021.8/
https://docs.qiime2.org/2021.8/
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Table 2 Summary of alpha diversity metrics at time zero (T0) and after T0 for bacteria (16s V3 and V4) and fungi (ITS1 and ITS2) in 
koala scat samples: This table presents the minimum, maximum, mean, and standard deviation (SD) values for alpha diversity metrics, 
including richness, evenness, and Shannon index, at time zero (T0) and after T0 across all koalas. The T0 values represent averages 
across all koalas at time zero, while the values after T0 represent averages across all time points and koalas beyond time zero
Alpha Diversity: T0
Index Bacteria (16s V3 and V4) Fungi (ITS1 and ITS2)

Min max mean SD min max mean SD
Richness 159 221 190 27.60 74 169 118 39.50

Evenness 0.47 0.61 0.67 0.05 0.76 0.85 0.79 0.04

Shannon 3.40 4.60 3.90 0.46 1.09 5.70 4.60 1.96

Alpha Diversity After T0
Richness 124 239 178 31 9 133 46.32 41

Evenness 0.40 0.60 0.51 0.053 0.76 0.30 0.31 0.28

Shannon 2.90 4.20 3.80 0.48 0.05 4.99 1.80 1.91

Fig. 2 Comparisons of alpha diversity between koalas. The relationship between time (scat aging) and Shannon entropy coefficient for the scat samples 
taken from five different koalas. Each koala id (color-coded in the plot) is represented by six time-points ranging from 0 to 10 days. The Shannon Entropy 
coefficient was determined at each point in time. In the combined plot, dashed lines represent Fungi (ITS1 and ITS2), and solid lines represent bacteria 
(16s V3 and V4)
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Fig.  2). In contrast to the bacterial alpha diversity, scat 
aging significantly impacted the fungal alpha diversity in 
three of the five koalas. Over a period of 24 to 72 h, these 
koalas experienced notable changes, their alpha diversity 
shifting from the highest to the lowest levels (Fig.  2B). 
Thus, these data suggest a potential inconsistency: while 
bacterial alpha diversity demonstrated stability through-
out the aging experiment, the fungal counterpart seemed 
to display a higher degree of variability.

Beta diversity
Here, we aimed to identify where the largest variance was 
found, whether between time points (intra-koala differ-
ences) or between individuals (inter-koala differences). 
If the intra-koala differences are smaller than inter-koala 
differences, the variance introduced by time is negligible. 
If an axis satisfies this rule, we determine that the amount 
of variance represented by it is not skewed by time. We 
verified this rule in each one of the first five principal 
coordinate axes, adding the variance that each axis repre-
sents only if the rule was satisfied, and concluded that the 
added amount of variance withstands the effect of time 
(scat ageing). For example, in bacteria using Bray-Curtis, 
the first five axes of the principal coordinates captured 
96% of the variance. However, the analysis yielded that 
the intra-koala difrences were smaller than inter-koala 
difrences for the first three axes. These three axes repre-
sented the added total of 93% of the variance. Thus, from 
an abundance (Bray-Curtis) perspective, approximately 
93% of the variance in bacterial load measured ASVs 
withstand time (Fig. 3A).

For fungi, the first five axes explained 87% of the vari-
ance. Koalas 2, 3 and 4 started at T0 with a more simi-
lar fungal Bray-Curtis distance which takes abundance 
into account (Supplementary Fig.  3A). The most dis-
tinct individuals were Koala 1 and Koala 5, as they had 
extremely different fungal compositions from each other 
and the rest of the individuals. When we included all the 
time points measured for all koalas, the individual differ-
ences in time became extreme, especially for Koalas 2, 3 
and 4. Koala 5 had a less extreme yet considerable differ-
ence, while Koala 1 was an outlier with the least differ-
ences between time points. Even though Koalas 2, 3 and 
4 started with a similar composition at T0, the differences 
between them were clear (Supplementary Fig. 3A). How-
ever, at T10d, these three individuals clustered from axis 
1 to axis 5 (Supplementary Fig. 3B). Thus, for 91% of the 
variance, the Bray-Curtis distance differences between 
Koala 2, 3, and 4 at T10d were approximately 0 (supple-
mentary Fig.  3B). In fungi, the extreme effects of time 
removed the differences between individuals; this can 
be seen in time points 72  h, 5d, and 10d (Supplemen-
tary Fig. 3B). However, in two individuals, the effects of 
time were not as extreme. For Koala 5, the influence of 

time can be discerned from the first two axes (Fig.  3B). 
Finally, Koala 1 was an outlier as time had a substan-
tially smaller effect compared to the other individuals. 
As shown in Fig. 3B, Koala 1 maintained the trend from 
axis 1 to axis 4. Furthermore, the maximum intra-koala 
difference observed in Koala 1 between two distinct time 
points is 4.6 times smaller than the average maximum 
difference observed in inter-koala comparisons. Thus, 
with the exception of Koala 1, time substantially affected 
the abundance of the fungal composition measured as a 
function of Bray-Curtis distance (Fig.  3B). Jaccard dis-
tance showed a similar profile to Bray-Curtis but did not 
explain as much of the variance given; it did not include 
abundance measures. The results and plots of Jaccard dis-
tance can be found in the Supplementary Material.

Effect of time on bacterial beta diversity metrics
In general, for the first three axes, which account for the 
majority of the variance in all beta diversity metrics, the 
inter-koala absolute difference at T0 was greater than the 
intra-koala absolute difference from T0 to the remain-
ing time points (Fig.  4). This finding was consistent 
with the Friedman test, as time was insignificant in any 
beta diversity metric for the first three axes. However, 
from the fourth axis onwards in the metrics that relied 
on abundance (Bray-Curtis and Weighted UniFrac), the 
intra-koala differences were comparable to or larger than 
the inter-koala differences (Fig. 4A and B). For the fourth 
axis, the Friedman test was only significant for the Jac-
card distance (χ2 = 13.11, p = 0.022). The post hoc analy-
sis reveals that only T5d had a significant difference from 
T0, with a difference of 11 ranks (χ2 = 13.11, p = 0.026). 
For the fifth axis, all beta diversity metrics presented 
equal or greater intra-koala differences than inter-koala 
differences (Fig.  4). On this axis, the Friedman test was 
only significant for Bray-Curtis (χ2 = 13.23, p = 0.021). 
The post hoc analysis showed that times greater than 
T72h had a significant difference from T0, which ranged 
from 14 to 16 ranks, with chi-squared values of 13.23 and 
p-values between 0.002 and 0.005.

While the inter-koala differences in bacterial com-
munity remain relatively the same when compar-
ing non-phylogenetic metrics with their phylogenetic 
counterparts (Jaccard vs. Unweighted UniFrac and 
Bray-Curtis vs. Weighted UniFrac), the intra-koala dif-
ferences increased when phylogeny was considered in 
all axes (Figs.  4 and 5). Then, when we compared pres-
ence/absence of bacteria with abundance beta diversity 
metrics, the abundance metrics presented higher intra-
koala differences than presence/absence metrics (Figs. 4 
and 5). In fact, the gradient in which the beta diversity 
metrics increase in intra-koala differences is shown in 
Supplementary Fig.  5, demonstrating that not all beta 
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diversity metrics respond the same to the effects of time 
on bacteria.

We did not observe a depletion in obligate anaerobes 
nor an increase in facultative anaerobes (Fig. 5). In fact, 
the logarithmic ratio has a positive number through the 
scat aging process even after 10 days (Fig. 6B and C). In 
other words, anaerobic bacteria were present in larger 
proportions than facultative anaerobes. Furthermore, we 
did not observe any obligate aerobes or aerobic bacterial 
taxa in the pool of samples at any point in time.

ASVs relative abundance and their journey through time
By establishing how ASVs changed through time, we 
can better explain the patterns found in the alpha and 
beta diversity results. A total of 1,054 ASVs were identi-
fied across the entire set of scat samples, representing a 
total of 2,609,027 reads. Of this total, 7.6% of the fungal 
reads were found in T0 across all koalas, while T24h and 
T48h had 16.2% and 14.1% of the fungal reads, respec-
tively. After these time points, we observed an increase 
in the percentage of fungal reads. The fungal reads for 
T72h to T10d represented 20.1–21.1% of the total reads. 
The most substantial increase in the percentage of fungal 

Fig. 3 Comparison of beta diversity between koalas. Bray Curtis dissimilarity principal coordinates analysis represented by a parallel coordinates plot. The 
scat samples taken from five koalas are represented by six points in time from 0 to 10 days. Therefore, each color denotes a koala id (color-coded in the 
plot) with six lines representing those time points. The first five principal axes were plotted, and the total amount of variance they account for was printed 
on the x-axis. Plot (A) accounts for bacteria (V3 and V4), and plot (B) accounts for Fungi (ITS1 and ITS2). The dashed lines represent the T0 time point, while 
the solid lines represent the other time points
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reads is observed at T72h. This significant increase is 
important as it highlights a potential shift in the fungal 
community composition over time.

Given this context, we now turn our attention to the 
specific ASVs contributing most significantly to these 
fungal reads. ASV1 and ASV2 represent 58.8% and 21.9% 
of the total fungal reads, respectively. These high per-
centages demonstrate the dominance of ASV1 and ASV2 
compared to the rest of the ASVs in terms of relative 
abundance. This observation is consistent with Fig.  6A, 
which clearly shows the insignificance of other ASVs rel-
ative to ASV1 and ASV2.

Even though ASV1 was present at T0 in the pool of 
samples, it only represented 0.059% of the total fungal 
reads at that time point. After 24  h, it surged to repre-
sent 50.9% of the reads. Then it decreased to 40.1% of 
the reads at T48h, to dramatically increase to 79% of the 
reads at T72h. Finally, it slightly decreased yet remained 
above 66.4% for T5d and T10d (Fig.  6A). ASV1 heavily 
invaded three out of the five individuals represented by 
the scat samples after T0 (Fig.  6B). For instance, ASV1 
represents 99.5% of the fungal reads of Koala 2, 96.7% of 

Koala 3, and 94.1% of Koala 4 at T10d, making the rest of 
ASVs virtually 0 at that point in time.

The second most abundant ASV (ASV2) was only 
present in Koala 5, representing 21.9% of the total fun-
gal reads (Fig. 6C). In contrast to ASV1, this fungus was 
highly abundant at T0 and represented 46.1% of the fun-
gal reads at that time point. This fungus remained stable 
through time (Fig.  6C), explaining why Koala 5 had a 
Shannon index around 1 from T0 to T10d (Fig. 2B).

Finally, we argue that only the ASVs present at T0 
represent the true composition and relative abundance 
of fungi in koala scats sampled as measurable changes 
were observed from the second time-point onwards. Of 
the 1,054 fungal ASVs found in the pooled sample, 519 
were present at T0, representing 11.6% of the total fungal 
reads. Of the ASVs present at T0, 81.6% were exclusive 
to an individual, 13.0% were present in two individuals, 
2.7% were present in three individuals, 1.1% were pres-
ent in four individuals, and 1.3% were present in all 5 
individuals.

Fig. 4 The effect of scat aging on bacterial beta diversity metrics. The graph compares the range of absolute intra-koala differences between T0 and each 
time point (T24h to T10d) with the range of absolute inter-koala differences at T0 for the first five PCoA axes across four different beta diversity metrics. 
(A) Bray-Curtis (B) Weighted UniFrac (C) Jaccard (D) Unweighted UniFrac
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Fungal taxonomy
Despite using several databases and taxonomic assign-
ment tools as described in the methods, the success rate 
of classifying the fungal ASVs was very low. Of the 1,054 
fungal ASVs (ITS1 and ITS2) present across all scat sam-
ples, only 287 (27.2%) received a taxonomic rank, while 
the remaining 767 ASVs were completely unassigned 
(Fig. 7). We performed cluster analyses in an attempt to 
resolve this issue and better understand the taxonomic 
diversity present in koala scat samples. For instance, 
applying the threshold of 1 nucleotide similarity between 

ASVs resulted in nine clusters. These nine clusters per-
sisted as we increased the identity coverage up to 35% 
similarity between ASVs. Cluster 1 included 731 ASVs, all 
entirely taxonomically unassigned. From here on, we will 
refer to this cluster as “Big-Unknown”. Cluster 2 included 
235 ASVs, and most of them received at least a taxonomic 
rank higher or equal to Phylum. From here on, we will 
refer to this cluster as the “Known”. Clusters 3, 5, 8, and 9 
included between one to three ASVs, except for Cluster 
9, all the ASVs remained taxonomically unassigned. Clus-
ter 4 included 31 taxonomically unassigned ASVs. From 

Fig. 5 Impact of oxygen on bacterial taxa through the scat aging process (A) Relative frequency of the 11 most abundant bacterial taxa at a family level 
during the scat aging process. Each bacterial family has its respiration profile. (B) Relative frequency at taxonomic family level, group by its respiration 
profile through the scat aging process. (C) Logarithmic ratio of anaerobic to facultatively anaerobic bacteria. The red line marks the threshold below which 
facultatively anaerobic would be more abundant than anaerobic bacteria, which does not occur through the scat aging process
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now on, we will refer to this cluster as “Small-Unknown”. 
Cluster 6 included 49 ASVs, with most of them receiving 
at least a taxonomic rank higher or equal to genus level. 
Many ASVs in this cluster shared the similarity that most 
of them were not present at T0 (Fig. 7). For this reason, 
we will refer to this cluster as the “Scat-Invaders”.

It is important to note that there was not a single nucle-
otide position that could be aligned between these nine 
clusters. However, within them, the nucleotide similar-
ity to the parent ASV was much higher though, varied 
greatly. In terms of percentage identity within clusters, 
Scat-Invaders were the most similar. The percentage 
identity ranged from 65 to 99.2%, with a mean of 80.6% 
and an SD of 9.3%. The least similar cluster, the Known 
cluster, had a percentage identity that ranged from 36.2 
to 99.6%, with a mean of 59.9% and an SD of 13.8%.

Of those ASVs we could assign a taxonomic rank, 
defining characteristics from this information was a dif-
ficult task. However, there were some ASVs for which 
the taxonomic classification was more informative. In 
particular, ASV1, the most abundant ASV in the pool of 
scat samples, was classified with high confidence using 
the BLAST search in NCBI; ASV1 matched the ITS1 
region of Fungal sp. accession number MF965564.1 [51] 
with an identity and query coverage of 100% for both cri-
teria. Furthermore, this fungal species might be closely 

related to a Sordaria alcina isolate (accession num-
ber EU551182.1) [52], as the identity between the two 
is 99%. We also classified all ASVs against UNITE and 
RefSeq. ASV1 was classified at the family level to Sorda-
riaceae by both databases. This classification provided a 
good indication, as all the ASVs from the Scat-Invaders 
were classified at the family level as Sordariaceae, with 
68.7% of them further classified at genus level to Neu-
rospora. We, however, found a different pattern when 
we classified the Scat-Invaders cluster using the BLAST 
search engine in NCBI with 24% ASVs classified as Sor-
daria, while others were classified as Fungal sp. ASV1 
clustered with nine other ASVs the BLAST search clas-
sified as Fungal sp most probably Sordaria alcina. It was 
only when we utilised a lower identity coverage than 98% 
when the ASVs classified by the BLAST search classified 
as Sordaria at the genus level were included in this clus-
ter group (Fig. 7).

The second most abundant fungus in the pool of scat 
samples, ASV2, was also classified at the species level 
with high certainty. Using BLAST search, this ASV had 
best matching hits exclusively to different strains of Can-
dida albicans with an identity of 100% and a query cov-
erage of minimum 97%. We also classified 22 ASVs from 
the Known cluster at the genus level to Candida, except 
for three (ASVs 32,38 and 60), all of them were classified 

Fig. 6 The most abundant ASVs for Fungi (ITS1 and ITS2) across time (scat aging). (A) The 10 most abundant ASVs for each of the six points in time. These 
were calculated as the sum of the Reads Per Million (RPM) for the scat samples of the five koalas for each specific time point. (B) The most abundant ASV1 
in RPM for each koala per time point. (C) The second most abundant ASV2 in RPM for each koala per time point
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as Candida albicans. Figure  8 displays an identity pair-
wise comparison of these 22 ASVs, and their classifica-
tion against three databases. It is important to note that 
the ASVs classified as Candida albicans were only pres-
ent in Koala 5. While the remaining three (ASVs 32,38, 
and 60) classified as [Candida] Nivariensis, were only 
present in Koala 1. In terms of sequence similarity, 
the ASVs identified as Candida Albicans are quite dis-
tinct from the ASVs identified as [Candida] Nivariensis 
(Figs. 8 and 9).

Discussion
The effects of scat aging on bacterial community stability
In this study, the main premise is that if the intra-koala 
differences in diversity metrics are smaller than the inter-
koala differences, we can conclude that the effects of time 
do not significantly skew the factors driving the compo-
sition and abundance of ASVs. From an alpha and beta 
diversity perspective, bacteria seem to be stable through 
the aging process. The results demonstrated a remark-
able consistency across all individuals, as all beta diver-
sity metrics were able to distinguish individual koalas 
throughout the scat aging experiment. This indicates that, 
for the majority of the variance observed, the intra-koala 
differences did not substantially impact the inter-koala 

Fig. 7 A cluster-based visualization of the 1054 Fungi (ITS1 and ITS2) ASVs found in the pool of stool samples. Grey squares represent the ASVs present 
at time 0, while white squares represent the ASVs not present at time 0. The red bar plots represent the relative abundance in RPM for each ASV. Two 
significant clusters were identified in this figure. These are represented by branch colour: Scat-invaders cluster in blue, and the Known cluster in orange. 
The branches in green colour represent all the ASVs that did not match any taxonomic identification that came from the Unknown clusters (Big-Unknown, 
Small-Unknown, 3, 5 and 8) here represented as one cluster, while branches with a different colour were loosely assigned to a taxonomic group
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differences. As a result, we were able to identify and dif-
ferentiate individual koalas regardless of the specific time 
point in the experiment. In fact, the Freidman test shows 
that time did not have significant effect in the first three 
axes in all beta diversity metrics, which account for 68% 
or more of the variance for each metric being evaluated. 
Furthermore, all beta diversity plots separate individuals 
and form distinguished clusters in the first three axes. We 
note that from life history information, the factor driving 
these clusters appears to be location, which is supported 
by the current literature [10].

In our investigation, we measured the impact of time 
on the beta diversity metrics of bacterial communities. 
The temporal variance was observed to influence beta 
diversity metrics distinctively, contingent on whether the 
metrics consider the presence or absence of ASVs, their 
relative abundances, or their phylogenetic relationships 
(Fig. 4 and Supplementary Fig. 5).

Interestingly, the Jaccard metric, which accounts for 
the presence or absence of ASVs, displayed minimal 
response to scat aging (Supplementary Fig.  4A). This 
result underscores a potential resilience in the bacterial 
community across time, with the same ASVs consistently 
present despite the passage of time. Conversely, the Bray-
Curtis metric, which factors in the relative abundances 
of ASVs, revealed a slight but not significant response 
to aging. This suggests that while the diversity of ASVs 
remains generally unchanged, there is a subtle shift in 
their individual contributions to the overall community 

dynamics as time progresses. Furthermore, we noted 
nuanced responses from the unweighted and weighted 
UniFrac metrics that shed light on the influence of phy-
logenetic relationships within the bacterial commu-
nity. Despite scat aging, the unweighted UniFrac metric 
- encapsulating changes in the presence or absence of 
ASVs whilst accounting for their phylogenetic relation-
ships - remained largely stable, suggesting a robust phy-
logenetic structure within the bacterial community 
resistant to the passage of time (Supplementary Fig. 2A). 
However, the weighted UniFrac metric, which incorpo-
rates both relative abundance changes and phylogenetic 
relationships, exhibited a more pronounced but not 
significant response to aging (Supplementary Fig.  2B). 
This outcome suggests that closely related ASVs exhib-
ited similar responses to the aging process in terms of 
changes in their abundance.

Previous studies reported anaerobic bacteria 
decreased, whereas facultatively anaerobic and aerobic 
bacteria increased during the scat aging process [26–29]. 
However, the rate in which these occurred vary, suggest-
ing that the stability of scat microbiota is dependent on 
the species of wildlife due to the susceptibility of scats 
to the aerobic environment [26, 27, 29]. In fact, Menke 
et al., [26] suggested that using the core of the scat pellet 
minimizes the amount of exogenous bacterial contami-
nation and increases the chance to sample a better-pre-
served scat region. We were able to corroborate this since 
we did not observe a reduction in obligate anaerobic 

Fig. 8 Potential Candida: Heatmap represents all the ASVs that were classified as Candida to genus level compared with two strains of Candida albicans 
and one strain [Candida] nivariensis.On the left, the figure displays the classification of the ASVs against three databases and their trust score. On the right, 
The identity value from a pairwise comparison for each ASV after aligning their sequences
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bacteria nor an increase in facultative anaerobes even 
after 10 days. This is likely attributed to the fact that dur-
ing the DNA extraction process, we targeted the core of 
the sample, while other studies broke the sample in three 
equal portions without avoiding the external surface [29]. 
Therefore, it is important to assess the integrity of faecal 
samples upon collection in the wild to ensure that the 
core has not been exposed to air and to target this por-
tion of the scat for DNA extraction.

The effects of scat aging on fungal community stability
Fungal composition and abundance measured at T0 did 
not form distinct clusters between individuals such as 
those observed in bacteria (Fig.  3). Moreover, the scat 
aging process greatly affected the fungal composition and 
abundance of the scat samples, as alpha diversity had an 
overall decrease. In terms of beta diversity, the dissimilar-
ities between samples decreased over time due to the scat 
aging experiment. However, not all individuals respond 
equally to the scat aging process; two out of three sam-
ples had significantly different fungi compositions from 
T0. Only Koala 1 exhibited somewhat stable alpha and 
beta diversity through time. A possible explanation for 
this may be due to its distinct fungal composition com-
pared to the rest of the individuals that may have been 
shaped by the exposure to antibiotics. Perhaps this par-
ticular composition allowed scat samples from Koala 1 to 
maintain a stable alpha and beta diversity over time.

ASV1 and the Scat-Invaders
Within the fungal composition, the aging effect was 
potent enough that after 72  h, most of the samples 
had no differences between individuals from an abun-
dance perspective. The ASV relative abundance analysis 
revealed the primary driver of the change in abundance; 
ASV1 was later identified as a recently described fungal 
species found in Australia [51], which might be closely 
related to Sordaria alcina. This species had been isolated 
from koala scats [52]. Most ASVs present in the Scat-
Invaders cluster were classified into the family Sordaria-
ceae. However, there was a lot of divergence between the 
classifications at a genus level between databases. Fortu-
nately, the distribution of this taxonomic family had been 
studied extensively [53, 54]. Sordariaceous were typically 
found in humid tropical and subtropical regions [53, 55]. 
However, Sordaria was widely known for being a cop-
rophilous genus, only being found in scats [53, 56, 57]. In 
contrast, Neurospora was known for the opposite, gen-
erally found in soil samples but absent in scats [53, 58]. 
Thus, the Scat-Invaders cluster was most likely composed 
of fungi related to this new fungal species and the Sor-
daria genus.

One possible way of dealing with the effects of aging 
when trying to uncover the fungal composition and 

abundance of scat samples in tropical and subtropical 
regions is to filter out these taxa. However, we concluded 
that from 72 h of scat aging, the fungal communities of 
the scat sample may be compromised not only from an 
abundance perspective but also from a presence-absence 
perspective, producing a sample that does not accurately 
represent the fungal communities present at T0. Thus, 
it is highly recommended not to use samples older than 
72 h.

Exploring the complexities of fungal classification
The taxonomic classification was challenging despite 
encountering a group of fungi that appear to colonise 
scats. As shown in the results, most fungal ASVs were 
completely unassigned, and many that received a taxo-
nomic rank presented high uncertainty. It is a fact that 
the study of the fungi sub-kingdom is underdeveloped 
compared to bacteria. It has been estimated that only 
1% of fungal species have a reference in a database [59]. 
Furthermore, there is a lack of curation on fungal data-
bases [8, 59, 60]. The ITS region is one of the most com-
mon metabarcodes used in fungal diversity studies [7]. 
However, it might not be the best region to amplify, due 
to its highly polymorphic nature. For example, some 
Ascomycota lack interspecific variation, while other 
fungal species vary heavily between related species [35, 
61–67]. This somewhat explains the poor characteriza-
tion of fungal communities in general and the inability 
to perform a robust phylogenetic analysis, which is the 
current standard for diversity metrics, as they account 
for the degree of divergence between sequences [68–70]. 
Perhaps, the use of long reads for amplicon sequencing 
might address the problems that the ITS region presents. 
Long-read sequencing technologies are not nearly as 
constrained by the length of region used for the metaba-
rcode and could target amplicons severalfold larger than 
what current short-read methods can manage[35, 71]. 
Such approaches might be able to provide a more robust 
view on the phylogeny of the fungal composition of the 
scat sample given a much larger array of nucleotide posi-
tions to compare.

Candida Albicans: the common mammalian pathogen
The second most abundant ASV was identified as Can-
dida albicans. This yeast represented approximately 20% 
of the total fungal reads. Nevertheless, this yeast was 
restricted to only one individual (Koala 5). The genus 
Candida includes approximately 160 species. However, 
this genus is currently under revision [48]. C. albicans is 
arguably the most clinically significant species of Can-
dida [7]. This yeast tends to cause infections primarily 
after the host has undergone antibiotic treatment [7]. It 
was surprising that this fungal yeast was not observed in 
Koala 1 given this individual was recently administered 
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antibiotics to treat Chlamydia. Instead, we found ASVs 
that seem more closely related to [Candida] nivariensis. 
From our analysis, these two species appear quite differ-
ent. Though, this divergence may be due to the choice of 
target region. Curiously, we dug into the veterinary his-
tory of Koala 5, and it seems that he always had been a 
healthy subject, without any history of Chlamydia or any 
known antibiotic administration.

Conclusions
While time had a small effect on the bacterial composi-
tion of the scat samples, we show that more robust beta 
diversity metrics that consider phylogeny are better able 
to capture and identify how time is affecting the micro-
ecology of the samples. In fungi, the effect of time was 
indisputable, as we encounter a whole fungal community 
that invades and colonizes scats changing its composition 
and abundance, which is unsurprising, given the fungi 
kingdom is known as one of the most diverse and abun-
dant decomposers in the environment [8]. However, the 
exploration of the scat samples’ fungal community was 
constrained due to the early stage of the fungal metabar-
coding databases development.

To further the scope of conservation metagenomics 
as a tool to monitor endangered species in the wild, it is 
essential to first understand the factors that might skew 
the sample being collected. A non-invasive metagenomic 
sample will be subject to environmental degradation as a 
function of time. Thus, it is fundamental to understand 
its effects and safeguard the sample’s quality. Our study 
suggests that field-collected scat samples can indeed 
serve as valuable data sources in conservation studies. 
We found that in koalas, most of the variance in bacte-
rial diversity between individuals was maintained over 
time, despite the aging process of scats. This key finding 
enables future exploration of conservation strategies. It 
provides a foundation for potential development of mon-
itoring programs, streamlined translocation efforts, and 
the discovery of health biomarkers. Therefore, our study’s 
results could pave the way for a deeper understanding of 
individual bacterial diversity, a factor that could signifi-
cantly influence decision-making processes in future con-
servation research. However, it’s essential to bear in mind 
that these findings may vary for different species. As each 
animal’s scat undergoes unique changes in microbial 
composition when shifting from an anoxic to an aerobic 
environment, it is crucial that these aging experiments be 
conducted for each species under consideration. Hence, 
further research is needed to establish the robustness and 
applicability of our findings across different taxa.
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