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Abstract 

Background  CD-1 is an outbred mouse stock that is frequently used in toxicology, pharmacology, and fundamen‑
tal biomedical research. Although inbred strains are typically better suited for such studies due to minimal genetic 
variability, outbred stocks confer practical advantages over inbred strains, such as improved breeding performance 
and low cost. Knowledge of the full genetic variability of CD-1 would make it more useful in toxicology, pharmacol‑
ogy, and fundamental biomedical research.

Results  We performed deep genomic DNA sequencing of CD-1 mice and used the data to identify genome-
wide SNPs, indels, and germline transposable elements relative to the mm10 reference genome. We used multiple 
genome-wide sequencing data types and previously published CD-1 SNPs to validate our called variants. We used 
the called variants to construct a strain-specific CD-1 reference genome, which we show can improve mappability 
and reduce experimental biases from genome-wide sequencing data derived from CD-1 mice. Based on previously 
published ChIP-seq and ATAC-seq data, we find evidence that genetic variation between CD-1 mice can lead to alter‑
ations in transcription factor binding. We also identified a number of variants in the coding region of genes which 
could have effects on translation of genes.

Conclusions  We have identified millions of previously unidentified CD-1 variants with the potential to confound 
studies involving CD-1. We used the identified variants to construct a CD-1-specific reference genome, which can 
improve accuracy and reduce bias when aligning genomics data derived from CD-1 mice.
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Background
CD-1 is a commonly used outbred mouse, derived in 
Switzerland from two male and seven female albino 
mice from a non-inbred stock. CD-1 was imported into 
the United States in 1926, and was stably established at 
Charles River lab in 1959 [1]. Charles River lab uses a 
specific breeding program to minimize inbreeding and 
random genetic drift that could lead to divergence among 
colonies bred in different facilities worldwide.

Outbred stocks provide a good model for outbred 
human populations, but inbred mouse strains are typi-
cally preferred in toxicology, pharmacology, and fun-
damental biomedical research due to lower genetic and 
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phenotypic variability. However, outbred stocks like 
CD-1 are commonly used in these settings, since they 
confer practical advantages over inbred strains, such as 
improved breeding performance and low cost [2].

A substantial amount of genetic variation exists 
between CD-1 mice, and the potential to confound 
mapping of CD-1 genomics data has been previously 
reported [3]. However, the prior study only examined 
single nucleotide polymorphisms (SNPs) previously iden-
tified in other mouse strains, and to date, a full, genome-
wide identification of genetic variants that exist between 
CD-1 mice has not been done. In addition, the stand-
ard reference genome in mouse was derived from the 
inbred C57BL/6 J strain, and the full set of genetic vari-
ants between CD-1 and C57BL/6 J are not known. Map-
ping of transcriptomic and genomic data derived from 
CD-1 mice to the standard mouse reference genome is 
therefore subject to inaccuracies and potentially con-
founding effects. A major focus of this study was there-
fore to perform a genome-wide identification of CD-1 
genetic variants, both within CD-1, and between CD-1 
and C57BL/6 J. For simplicity, throughout the rest of this 
paper, we will refer to variants within CD-1 as “non-uni-
form”, whereas variants between CD-1 and C57BL/6 J in 
which all CD-1 mice sequenced have the same allele are 
referred to as “uniform”.

We performed deep genomic DNA (gDNA) sequenc-
ing in order to map both the uniform and non-uniform 
variants of CD-1, including SNPs, insertions and dele-
tions (indels), and germline transposable elements 
(TEs). We then used the identified variants to construct 
a strain-specific CD-1 reference genome, and associated 
annotation files, including genes and the full set of iden-
tified CD-1 variants. We validated the CD-1 reference 
genome and the identified variants by comparative map-
ping of a wide range of CD-1 genomics datasets between 
the CD-1 and standard mm10 reference genomes. Map-
ping genomics data to the CD-1 genome rather than 
mm10 resulted in greater mappability and higher quality 
of results for all datasets examined.

We found evidence of altered transcription factor 
(TF) binding within CD-1 at non-uniform CD-1 SNPs, 
highlighting the potential confounding effects that 
non-uniform CD-1 variants can have on functional and 
phenotypic studies. This study has therefore identified 
millions of regions in the CD-1 genome with the poten-
tial to confound studies involving CD-1. These regions 
are masked with “N” in the CD-1 reference genome, elim-
inating outright several types of potentially confounding 
effects at these regions. A table of these regions in stand-
ard mm10 coordinates is also provided for researchers 
wishing to simply map to the standard reference genome 
and blacklist these confounding regions. Blacklisting of 

these regions is recommended in the analysis of most 
genomic and transcriptomic data derived from CD-1 
mice.

Results
Sequencing of the CD‑1 genome and a validation dataset
We sequenced gDNA from 5 male CD-1 mice in order 
to determine the variants relative to the standard refer-
ence genome (mm10). The exclusive use of male mice 
maximizes coverage for variant calling on the Y chromo-
some, but does diminish the ability to call variants within 
the relatively short sex chromosome pseudoautosomal 
region [4]. The paired-end sequencing depth was at least 
24-fold coverage for all 5 samples, and with all 5 sam-
ples combined, the total sequencing depth was 142-fold 
coverage. After trimming of adapters and low-quality 
bases (see Methods), all samples showed uniformly high 
sequencing quality across both read pairs and passed the 
FastQC [5] quality control measures (Additional file  1: 
Figures S1A-E).

We also performed Assay for Transposase-accessible 
chromatin followed by sequencing (ATAC-seq) on adi-
pose tissue from 4 CD-1 mice under two different treat-
ments, to be used as an independent dataset to validate 
the results from the CD-1 gDNA data. The treatment 
in this case was administration of bisphenol A (BPA) in 
utero to F1 mice, and then samples were extracted from 
the F4 generation. This is a similar experimental design 
as was done to generate sperm ATAC-seq data [6] which 
are also used in the present study for validation pur-
poses, except that sperm samples were taken from the F3 
generation.

For the ATAC-seq data generated for this study, adap-
tor and quality trimmed reads from these data were of 
high quality and passed the FastQC quality control meas-
ures (Additional file 1: Figures S1F-I). Reads per kilobase 
per million (RPKM) values at peaks were highly cor-
related across replicates of each treatment (Additional 
file 1: Figure S1J).

Genome‑wide CD‑1 variants
Using the gDNA data from 5 CD-1 male mice, we iden-
tified SNPs, indels, and germline TEs. We compared 
our identified SNPs to a comparable set (see Methods) 
derived from ~ 3000 previously published CD-1 SNPs 
[3]. 93.2% of the comparable, previously published SNPs 
were also called in our study prior to final filtering (Addi-
tional file  1: Figure S1K). However, for the purposes of 
building a CD-1 reference genome, we excluded low fre-
quency SNPs, and also SNPs with low coverage, since 
more CD-1 mice will have the major allele in that case 
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and on average, mapping would be optimal using the 
major allele. We performed a similar filter on indels (see 
Methods).

We divided the set of filtered SNPs and indels into two 
main categories: uniform and non-uniform. Uniform 
SNPs/indels are those in which all CD-1 mice sequenced 
had the same exact sequence, which was different from 
mm10; non-uniform SNPs/indels are those in which 
there is variability between individual CD-1 mice. The 
distributions of the frequency of the most abundant 
alternate allele corresponded to the frequency cutoffs 
used for each variant class (see Methods and Additional 
file 1: Figure S1L). 2.4 million and 3.9 million high-con-
fidence uniform and non-uniform SNPs were identified, 
respectively. We similarly identified 377,418 uniform and 
1.4 million non-uniform indels. The majority of the iden-
tified indels are less than 100 base pairs (bp) in length, 
while the maximum uniform indel length was a 197  bp 
deletion, and the maximum non-uniform indel length 
was a 302  bp deletion (Additional file  1: Figure S1M). 
In addition, we found 7,154 germline TEs not previ-
ously identified in CD-1 that are not contained in mm10, 
as well as 10,645 germline TEs in mm10 that are not in 
CD-1 (Table 1).

After filtering, we recovered > 80% of the compara-
ble, previously published uniform SNPs and > 70% of the 
comparable, previously published non-uniform SNPs. 
(Additional file 1: Figure S1N). Next, in order to get addi-
tional insights on the sufficiency of sequencing 5 mice for 
SNP calling, we down-sampled to 2, 3, and 4 mice and 
determined the number of uniform and non-uniform 
SNPs called in each case, and an asymptotic curve was fit 
to the down-sampled data (Additional file 1: Figure S1O). 
The curves asymptotically approach 2.12 million uniform 
and 4.17 million non-uniform SNPs, with 12 mice being 
sufficient to reach the asymptotic portion for both. This 
suggests that 12 mice may be sufficient to fully character-
ize the uniform and non-uniform SNPs in CD-1, as they 
are defined in this study. This would only result the loss 
of about 0.2 million uniform SNPs (8%), and the gain of 
about 0.2 million non-uniform SNPs (5%). More mice 
than this would be needed to include lower abundance 

SNPs with high confidence, however. For 12 mice, the 
theoretical probability that none of the mice have a vari-
ant that actually has a 10% population frequency is 0.08 
(binomial distribution), while sequencing of 20 mice 
would bring that probability to 0.01. Thus, sequenc-
ing of 20 mice would allow for the detection of > 99% of 
low abundance alleles with population frequencies as 
low as 10%, though many more mice than this would 
be needed to obtain an accurate estimate of the popula-
tion frequency for such low-abundance alleles. Nonethe-
less, the validation analyses suggest that the majority of 
SNPs present in CD-1 are represented in the uniform and 
non-uniform SNP sets we used to construct the CD-1 
reference genome, and that sequencing of just 5 mice is 
sufficient to have accurately identified the majority of 
both uniform and non-uniform SNPs as defined in this 
study.

Functional consequences of genotype variation 
within CD‑1
Non-uniform SNPs and indels in CD-1 are regions that 
have the potential for functional variability within CD-1. 
For example, a non-uniform SNP at a transcription factor 
(TF) binding site could result in ablated binding in mice 
that deviate too far from the consensus binding motif for 
the TF. The result would be a TF that is bound in some 
CD-1 mice but not others. Over a million non-uniform 
SNPs have two alleles with a roughly equal population 
frequency (between 40 and 60%; Additional file  1: Fig-
ure S1L); these are variants with a relatively high chance 
that mice in a treatment group happen to have the same 
nucleotide at a SNP, whereas the control mice share a 
common nucleotide that differs from the treatment ani-
mals. If unrecognized, this could lead to the erroneous 
conclusion that altered TF binding was due to the treat-
ment, when its actually due to a non-uniform SNP bias. 
Similarly, there are > 250,000 non-uniform indels with 
two alleles with a roughly equal population frequency 
(Additional file  1: Figure S1L), and these could lead to 
similar experimental biases.

To determine whether the non-uniform SNPs can 
result in variations in TF binding within CD-1, we 
used a CTCF ChIP-seq dataset that was taken from 
the liver of four male and four female CD-1 mice [7]. 
Upon examination, replicate 4 of the male, and repli-
cate 4 of the female, appeared globally to be of lower 
quality than the other replicates (Additional file  1: 
Figure S2A); thus, these two replicates were removed 
from consideration. We then determined peaks that 
were irreproducible between the remaining replicates 
(Additional file  1: Figure S2B; see Methods) and took 
these as candidates for regions where there could be 
variability in Ctcf binding within CD-1. The study that 

Table 1  CD-1 variants

Uniform SNPs 2,374,877

Non-uniform SNPs 3,935,774

Uniform indels 377,418

Non-uniform indels 1,377,285

TEs added in Cd1 7,154

TEs lost in Cd1 10,645
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generated these ChIP-seq datasets identified regions of 
sexual dimorphism in Ctcf binding [7], and these were 
excluded from the set of considered irreproducible 
peaks. We reasoned that it was possible that not all sex-
ually dimorphic regions were identified. Therefore, we 
decided to consider only irreproducible peaks from the 
three male mice for a more focused, higher-confidence 
analysis; this left 1,461 irreproducible peaks (Fig. 1A).

To test the hypothesis that a subset of the 1,461 irre-
producible peaks are authentic Ctcf binding sites, we 
scanned for the presence of CTCF motifs near the sum-
mits of irreproducible peaks and compared them to a 
set of randomly shuffled regions. There was a highly 
statistically significant enrichment of CTCF motif hits 
at irreproducible peaks relative to controls (Fig. 1B and 
Additional file  1: Figure S2C), supporting the hypoth-
esis that a subset of the irreproducible CTCF peaks are 
authentic Ctcf binding sites. Next, to test the hypothe-
sis that a subset of the irreproducible Ctcf binding sites 
are irreproducible due to a non-uniform CD-1 SNP, 
we looked at non-uniform SNPs within CTCF motifs 
near the summits of irreproducible peaks compared 
to randomly shuffled controls, and indeed found a sta-
tistically significant enrichment of non-uniform SNPs 
within the CTCF motifs (Fig. 1C and Additional file 1: 
Figure S2D).

We next checked the specific sequences of CTCF 
ChIP-seq reads at irreproducible regions overlap-
ping a non-uniform SNP, to see if that SNP is reflected 
in the ChIP-seq data in a manner that correlates with 
the amount of signal. Indeed, in the example shown 
(Fig.  1D), replicates 1 and 2 have substantial ChIP-seq 
signal, whereas replicate 3 only has a single read. There is 
a non-uniform SNP at this locus, with a population-wide 
alternate allele frequency of 40%, that occurs at a highly 
conserved G in the consensus CTCF motif. All reads 
from replicates 1 and 2 have a G at the SNP as expected, 
whereas the read from replicate 3 has an A (Fig.  1E). 
Importantly, the A that was sequenced in replicate 3 has 
a phred quality score of 41, indicating the base was called 
at high quality and not likely to be a sequencing error.

Another example like this is shown, in which a C <—> T 
non-uniform SNP occurs at a highly conserved C in the 
reverse-complemented CTCF motif (Additional file  1: 
Figures S2E, F); in this example, reads from replicates 1 
and 3 have a C at this position, and both have substan-
tial ChIP-seq signal, while the single read from replicate 
2 has a T at this position, with a phred score of 41. These 
examples corroborate the presence of non-uniform SNP’s 
in datasets that are independent from the data used to 
determine the SNPs in the first place, and establish an 
association between non-uniform SNPs and variability 
of CTCF ChIP-seq signal within CD-1. Although only a 

small number of reads are in the replicate where there is 
no peak, this is to be expected, since the ChIP-seq exper-
iment is enriching for DNA bound to Ctcf, and so only a 
small number of reads from background DNA not bound 
to Ctcf should occur.

To determine whether this non-uniform-SNP-asso-
ciated functional variability occurs more generally for 
other TFs, we analyzed the ATAC-seq data from adipose 
tissue (generated for this study) in a similar manner as 
was done for CTCF ChIP-seq. The majority of ATAC-
seq DNA fragment lengths from these samples were less 
than 100 bp (Additional file 1: Figure S2G), which is the 
size-range of ATAC-seq fragments that are expected to 
be bound by TFs. After determining the set of TF motif-
containing, irreproducible ATAC-seq peaks (N = 521; 
Additional file 1: Figure S2H), we observed a statistically 
significant increase in the proportion of said motifs over-
lapping a non-uniform SNP than did randomized con-
trols (Fig. 1F). We show an example of an irreproducible 
peak with high coverage in replicate 2 but not replicate 
1, with a non-uniform SNP at a highly conserved A of a 
Tcf7l2 motif (Fig. 1G). All reads from replicate 2 contain 
an A at the non-uniform SNP position, whereas the two 
reads from replicate 1 contain a G (Fig. 1H). The two G’s 
sequenced in replicate 1 have phred quality scores > 30, 
indicating that the called G is unlikely to be a sequencing 
error. This provides another example in which an inde-
pendent dataset corroborates the presence of the called 
non-uniform SNP, and in addition supports the hypothe-
sis that non-uniform SNPs can result in variable TF bind-
ing within CD-1.

Having established evidence that the variants within 
CD-1 have the potential to lead to functional vari-
ability, we sought to characterize the potential, global 
functional consequences of both the uniform and non-
uniform CD-1 variants (Fig. 2A, B). The majority of both 
uniform and non-uniform variants occurred within 
introns of genes, followed by intergenic regions. The 
fact that more variants were identified at introns than 
intergenic regions may be due to the likely increased 
mappability at introns relative to intergenic regions: a 
study on mappability of short reads to the mammalian 
genome observed that the majority of regions that can’t 
be uniquely mapped lie within repetitive regions [8], 
which are enriched in both introns and intergenic space 
[9]; thus, exons are more mappable and can enable 
increased mappability into nearby introns. A substan-
tial number of uniform and non-uniform variants were 
identified at regions that could lead to specific functional 
consequences (Figs. 2C, D).

We next scanned for potentially functional regions 
of the genome that had significantly more SNPs in 
them than the global genomic background (SNP 
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Fig. 1  Genomic variants within CD-1 with associated functional consequences. A Heatmaps of enrichment of replicates (Reps) 1–3 of the CTCF 
Male liver ChIP-seq data at irreproducible peaks. B Barplots comparing the percentage of irreproducible peaks (Fig. 1A) that contain a called 
CTCF motif near the summit, to the ratio of randomly shuffled regions that contain a CTCF motif. C Barplots comparing the percentage 
of CTCF motifs near the summits of irreproducible peaks that overlap with a non-uniform SNP to the percentage of randomly shuffled regions 
that overlap a non-uniform SNP. D Genome browser image of Reads per million (RPM)-normalized CTCF ChIP-seq coverage around a non-uniform 
SNP that occurs at a highly conserved G in a called CTCF motif. The CTCF motif is pictured at top, and the arrow points to the nucleotide 
with the non-uniform SNP. E The sequenced CTCF ChIP-seq reads from the indicated replicate that map to the non-uniform SNP displayed 
in Fig. 1D. The non-uniform SNP is highlighted. Nucleotides are colored according to their phred sequencing quality score as follows: black 
for 30 or above, orange: < 30, green: < 20, blue: < 10. F Barplots comparing the percentage of TF motifs near the summits of ATAC-seq peaks 
that overlap a non-uniform SNP to the percentage of randomly shuffled regions that overlap a non-uniform SNP. G, H Same as D, E, respectively, 
but for ATAC-seq data at a called Tcf7l2 motif. P-values in this figure were calculated by Fisher’s exact test, with cutoffs shown as follows: * p < .01; ** 
p < .001; *** p < .00001; **** p < .0000000001
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hotspots; Additional file 2). Importantly, > 4,000 anno-
tated enhancers had a uniform SNP hotspot (Fig. 2E), 
and > 3,500 enhancers had a non-uniform SNP hotspot 
(Fig. 2F), further demonstrating the potential for func-
tional consequences at both uniform and non-uniform 
SNPs. Both uniform and non-uniform SNP hotspots 
were also present at a small number of promoters, 
UTRs, and protein coding exons.

The CD‑1 reference genome
Taken together, the results thus far demonstrate millions 
of variants with the potential to result in functional vari-
ation within CD-1 and to confound nucleotide-sensitive 
genomics data derived from CD-1, such as ChIP-seq. 
The primary functional impact appears to be altered TF 
binding at enhancers, but a substantial number of vari-
ations have the potential to affect protein translation as 

Fig. 2  CD-1 genetic variants. A Pie chart showing the distribution of the consequence types of the uniform SNPs and indels, predicted 
by the Variant Effect Predictor. B Pie chart showing the distribution of the consequence types of the non-uniform SNPs and indels, predicted 
by the Variant Effect Predictor. C Absolute counts of the indicated consequence types at uniform SNPs and indels, predicted by the Variant Effect 
Predictor. D Absolute counts of the indicated consequence types at non-uniform SNPs and indels, predicted by the Variant Effect Predictor. E Total 
number of each of the indicated regions containing at least one uniform SNP hotspot. “Coding Exons” indicates protein coding exons. F Same as E, 
but for non-uniform SNPs
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well. Knowledge of the non-uniform CD-1 variants will 
be important in order to remove them from studies that 
use CD-1 as an experimental model, since otherwise they 
could confound the results and lead to functional vari-
ation that is not due to the experimental treatment. On 
the other hand, knowledge of the uniform CD-1 variants 
can enable greater accuracy when conducting sequence 
analyses on CD-1 mice, as there are millions of variants 
that separate the CD-1 genome from the standard refer-
ence genome.

We therefore created a CD-1-specific reference genome 
that incorporates the uniform SNPs and indels, non-uni-
form SNPs, and germ-line TEs identified in this study. 
Importantly, non-uniform SNPs are displayed as “N” in 
the CD-1 genome, since different CD-1 mice have dif-
ferent nucleotides at these regions. This should result in 
more accurate alignment, since most alignment tools will 
not penalize mismatches at “N”, whereas, when mapping 
to the mm10 genome, non-uniform alleles that differ from 
the mm10 sequence will incur an alignment penalty.

We created chain files for converting between the 
CD-1 and mm10 genomes, and we used these to create 
a gene annotation file in CD-1 coordinates. In order to 
validate that the chain files are properly set up and the 
gene conversion is accurate, we checked the sequence at 
exons of the Ctcf and Esrra genes, and verified that the 
sequence in CD-1 coordinates matches the sequence in 
mm10 coordinates (Additional file 1: Figures S3A, B). In 
all, > 99.8% of the exons annotated in the NCBI RefSeq 
annotation file for mm10 were successfully converted 
into CD-1 coordinates (Additional file 1: Figures S3C, D), 
and > 99.7% of transcripts from mm10 are represented in 
the CD-1 annotation file (Additional file 1: Figures S3E, 
F). We have included a table of the exon IDs that were 
not successfully converted to the CD-1 genome, which 
can be used as a starting point for researchers wishing to 
pursue a more complete annotation of the CD-1 refer-
ence genome (Additional file 3).

Improved mappability and accuracy of whole genome 
bisulfite sequencing (WGBS) data alignment to the CD‑1 
genome
Given that WGBS data analysis is highly sensitive to SNPs 
at CpGs, we decided to align a published WGBS dataset 
consisting of 8 CD-1 samples [6] to the CD-1 reference 
genome, both as a way to validate our called CD-1 vari-
ants, and also to explore the ability of the CD-1 reference 
genome to produce more accurate results when com-
pared to aligning with the standard reference genome. 
Similar to the ATAC-seq data produced for this study, the 
WGBS samples consist of two replicates each of adipose 
and sperm samples of descendants of F1 mice treated in 
utero by BPA, as well as two replicates each of sperm and 

adipose samples under control conditions. We used data 
from the F3 generation for BPA sperm samples, and the 
F5 generation for BPA adipose samples.

In all 8 samples, aligning to the CD-1 genome resulted 
in more mapped reads than when aligning to mm10 
(Fig.  3A, B and Additional file  1: Figure S4A). Mapping 
to the CD-1 genome increased the number of mapped 
reads by > 2% in all 8 samples, amounting to an increase 
of between 2 and 4 million mapped reads per sample. 
This occurred despite the fact that a greater number of 
reads of low mapping quality (mapQ < 30) occurred when 
aligning to mm10 (Fig.  3B), demonstrating an overall 
improvement in both mapping quality and the number of 
reads mapped when mapping to the CD-1 reference.

Next, we called differentially methylated regions 
(DMRs) between the treatment (BPA) and control for 
each of the WGBS samples, both after aligning to mm10 
as well as CD-1. The majority of DMRs were called when 
aligning to both mm10 and CD-1, whereas some DMRs 
were called only when mapping to CD-1, and still others 
only when mapping to mm10 (Fig. 3C). 1,782 DMRs were 
called only when mapping to CD-1, whereas 2,304 DMRs 
were called only when mapping to mm10. We hypoth-
esized that DMRs unique to one genome or the other 
would either occur due to the loss of false positives or to 
the gain of true positives when mapping to CD-1 instead 
of mm10. To check this, we looked at variants involving 
Cs and Gs between mm10 and CD-1, since those regions 
will affect the methylation calls. For example, a C in 
mm10 that is actually T in CD-1 would, in the absence 
of sequencing errors, get called as a 100% unmethyl-
ated C, potentially contributing to a false discovery. On 
the other hand, a T in mm10 that’s actually C jn CD-1 
would get called neither as methylated nor unmethylated 
when mapping to mm10, but when mapping to CD-1, the 
region would be accurately called as either methylated or 
unmethylated.

There was a statistically significant enrichment of Cs 
and Gs that were either lost or gained in CD-1 (relative 
to mm10) at DMRs that were either CD-1-specific or 
mm10-specific (Fig. 3D), supporting the hypothesis that 
changes in the accuracy of methylation calls are contrib-
uting to the differences in called DMRs between CD-1 
and mm10. Interestingly, a higher percentage of CD-
1-unique DMRs had both gained and lost Cs/Gs than did 
the mm10-unique DMRs, suggesting these may be con-
tributing more to an increase in true positives than to a 
decrease in false positives. Upon further examination, the 
majority of Cs/Gs gained or lost are coming from either 
C- > T, G- > A, T- > C, or A- > G transitions (Additional 
file  1: Figure S4B), providing additional support that 
these are contributing to more accurate methylation calls 
when mapping to CD-1 than to mm10.
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Fig. 3  Improved mappability and accuracy of WGBS alignments to the CD-1 genome. A Left panel: Barplots showing the number of non-duplicate 
reads mapped to either CD-1 or mm10 in the indicated samples (Sp. = sperm; Fat = adipose). Right panel: Barplots showing the difference 
between the number of nonduplicate reads mapped in CD-1 and mm10. Positive values indicate more reads mapped in CD-1 than mm10. B 
Histograms of reads mapping with mapping quality (mapQ) < 40 when mapping to CD-1 and to mm10. C Venn diagram showing the number 
of DMRs called in both mm10 and CD-1, just in CD-1, and just in mm10. All DMRs called in BPA vs. control in all samples examined in this study 
were combined into a single set of DMRs called after mapping to CD-1, and a single set called after mapping to mm10. D Barplots comparing 
the percentage of the indicated DMR sets overlapping with a uniform SNP or indel in which a C or G is in mm10 but not CD-1 (left column), 
or comparing the indicate DMR sets overlapping with a uniform SNP or indel in which a C or G is present in CD-1 but not mm10 (right column). 
CD-1 Unique: DMRs that are called when mapping to CD-1 but not when mapping to mm10; mm10 Unique: DMRs that are called when mapping 
to mm10 but not when mapping to CD-1; Common: DMRs that are called both when mapping to CD-1 and to mm10. E Barplots comparing 
the percentage of the indicated DMR sets overlapping with a non-uniform SNP of one of the indicated types. C <—> T: Some CD-1 mice have 
C and others T at the SNP; G <—> A: Some CD-1 mice have G and others A at the SNP. F, G Genome Browser views of adipose WGBS, showing 
methylation % and WGBS read coverage at DMRs called uniquely in CD-1 and mm10, as indicated. Ctrl = Control. P-values for this figure are exactly 
as described in Fig. 1
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We also hypothesized that methylation calls based on 
the CD-1 reference would be more accurate than mm10 
around the non-uniform CD-1 SNPs. To test this, we 
examined DMRs that contained a SNP that was a mix-
ture of C and T (C <—> T), or a mixture of G and A 
(G <—> A), across different CD-1 mice. Consistent with 
our hypothesis, the proportion of CD-1-unique DMRs 
and mm10-unique DMRs with C <—> T or G <—> A 
SNPs were both significantly higher than the correspond-
ing proportion of DMRs that were called with both CD-1 
and mm10 (Fig.  3E). Nearly 60% of the mm10-unique 
DMRs contained at least one C <—> T or G <—> A SNP, 
suggesting that many of the mm10-unique DMRs are 
false positives that arise out of biases due to non-uniform 
C <—> T or G <—> A SNPs, which would be called as dif-
ferentially methylated when mapping to mm10. In addi-
tion, about 25% of the CD-1-unique DMRs contain at 
least one C <—> T or G <—> A SNP. These regions do not 
get called as either methylated or un-methylated in CD-1, 
because they are masked by “N” in the CD-1 genome. 
Therefore, if non-uniform SNPs lie within a true DMR, 
they would contribute in a way that is uncorrelated with 
the rest of the DMR when mapping to mm10, potentially 
reducing the significance of the DMR and at times result-
ing in it not being called as significant.

We show an example of two uniform SNPs at a DMR 
that was called when mapping to CD-1 but not to mm10 
(Fig. 3F). Both of these SNPs are not recognized as CpGs 
in mm10, whereas in CD-1 they are, and so they have 
called methylation values in CD-1 but not in mm10. We 
also show an example of a DMR that was called when 
mapping to mm10 but not to CD-1 (Fig. 3G). This DMR 
only contains 4 CpGs, one of which is at a C <—> T non-
uniform SNP. Since it is not clear whether T’s at this 
SNP were bisulfite-converted C’s, or simply mice with T 
in their genome, this CpG should not get a methylation 
call. The unwarranted methylation call in mm10 results 
in a DMR getting called in mm10 amidst CpGs that do 
not have a major difference in methylation levels. On 
the other hand, in CD-1, the ambiguous reads do not 
contribute to DMR calling, and the potentially aberrant 
DMR isn’t called.

Taken together, these results show that both uniform 
and non-uniform SNPs can contribute in complex ways 
to the ultimate methylation value that is assigned at a 
DMR when mapping to mm10, potentially contrib-
uting to both an increase in false positives, and to a 
decrease in true negatives, when mapping to mm10 ver-
sus CD-1. By masking non-uniform SNPs with N’s, the 
CD-1 genome is protected from aberrant methylation 
calls that can result from biases due to non-uniform 
SNPs, and also increases the accuracy of methylation 
levels called at uniform SNPs, which are represented 

by incorrect nucleotides in mm10, but by the correct 
nucleotides in CD-1.

Improved alignment of ATAC‑seq to the CD‑1 genome
While bisulfite-converted DNA is very sensitive to SNPs 
when used to determine DNA methylation levels, other 
common sequencing data types that map to the whole 
genome or transcriptome are more robust to SNPs. An 
example of such a data type is ATAC-seq, where a SNP 
would result in a slight mismatch score when mapping a 
read to the genome, but as long as the read is sufficiently 
long and matches the reference genome sufficiently well, 
it will be uniquely mapped and not influence most down-
stream analysis pipelines such as peak calling or transcript 
quantification. Therefore, the expected effect of SNPs on 
such sequencing data alignment is lower, but still nonzero.

To test the degree to which the CD-1 reference genome 
can improve the accuracy of sequence data analysis of 
data expected to be robust to SNPs, we used the ATAC-
seq data obtained from adipose tissue of 4 CD-1 mice 
described above (generated in this study), as well as 
the ATAC-seq from sperm of 4 other CD-1 mice men-
tioned above (previously published [6]). The data were 
mapped to both CD-1 and mm10, and peaks were 
called. Across all 8 samples, mapping to CD-1 resulted 
in a slight increase in the number of mapped reads com-
pared to mapping to mm10 (Additional file  1: Figure 
S5A,B). Although the percent increase in mapped reads 
was small, mapping to CD-1 resulted in 50–250 thou-
sand additional reads being mapped per sample to CD-1 
than mm10 (Additional file 1: Figure S5A). The increased 
mappability of reads to the CD-1 genome with respect 
to mm10 suggests a slight improvement in mapping 
accuracy of the CD-1 genome even when working with 
sequencing data robust to SNPs.

Collectively, ~ 5% of all reproducible ATAC-seq peaks 
called were only called using either CD-1 or mm10, but 
not both: 2,512 peaks were called when mapping to CD-1 
but not mm10, whereas 2,759 peaks were called when 
mapping to mm10 but not CD-1 (Fig. 4A). A significantly 
greater proportion of peaks uniquely called either with 
mm10 or CD-1 contained both uniform and non-uni-
form variants than did peaks that were called with both 
CD-1 and mm10 (Fig. 4B), suggesting that these variants 
are contributing in a substantial way to peaks that are 
called uniquely to either CD-1 or mm10.

In an example of a peak that was called with CD-1 but 
not mm10 (Fig. 4C), the peak region contains a number 
of uniform SNPs. Signal at this region can be seen to be 
clearly above background when examined by eye, yet was 
not called a peak under mm10, exemplifying an improved 
accuracy of peak calling when mapping to CD-1 rather 
than mm10. Conversely, in an example of a peak that was 
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called with mm10 but not CD-1 (Fig.  4D), examination 
by eye shows this region to have background-level sig-
nal. In this case, the region contains a number of non-
uniform SNPs, which, when mapping to mm10, can lead 

some mice to mismatch the reference genome at the SNP 
while others match the reference genome, resulting in 
differential signal due to the SNP and potentially result-
ing in false positive calls for differential peaks.

Fig. 4  Improved accuracy of ATAC-seq alignment to the CD-1 genome. A Venn diagram showing the number of ATAC-seq peaks called 
in both mm10 and CD-1, just in CD-1, and just in mm10. Reproducible peaks (see Methods) were called separately in the BPA Adopose, Control 
Adipose, BPA Sperm, and Control Sperm samples, and then combined into a single pan-sample peak set for CD-1 and one for mm10. B Barplots 
comparing the percentage of the indicated ATAC-seq peak sets overlapping with uniform SNPs and indels (left column), and with non-uniform 
SNPs (right column). CD-1 Unique: peaks that are called when mapping to CD-1 but not when mapping to mm10; mm10 Unique: peaks that are 
called when mapping to mm10 but not when mapping to CD-1; Common: peaks that are called both when mapping to CD-1 and to mm10. C 
Genome browser view of a control (Ctrl) adipose ATAC-seq peak called when mapping to CD-1 but not mm10. D Genome browser view of a control 
(Ctrl) adipose ATAC-seq peak called when mapping to mm10 but not CD-1. In both C and D, RPM-normalized ATAC-seq coverage is displayed, 
and the region of interest is highlighted; the genome to which reads were mapped is indicated at the top left of each browser view. P-values in this 
figure are exactly as described in Fig. 1
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Discussion
Here we report the genome-wide identification of a sub-
stantial number of SNPs, indels, and TEs that vary between 
CD-1 and C57BL/6  J, the strain used to construct the 
mm10 genome. In addition, we identified a substantial 
number of SNPs and indels that exist between individ-
ual CD-1 mice, which we have demarcated with the term 
“non-uniform”. These non-uniform variants are particularly 
problematic when using CD-1 as an experimental model, 
because by chance, the treatment mice could happen to 
have one allele at a given locus, while the control mice have 
another, resulting in a bias in the number of reads mapped 
to this site in the treatment vs. control samples.

We identified ~ 3.9 million non-uniform SNPs, of 
which over 1 million had two alleles with a roughly equal 
population frequency. For biallelic variants with equal 
population frequencies, and assuming 5 replicates each 
for the treatment and control groups of an experiment, 
that results in a probability of ~ 0.09% that any one non-
uniform SNP could have 1 genotype in the 5 treatment 
animals that is distinct from the genotypes of all con-
trol animals, or vice-versa (see Methods). Under these 
assumptions, the expected number of biased regions per 
experiment due to non-uniform SNPs would be > 900. 
Similarly, we identified over 250,000 non-uniform indels 
with 2 alleles of roughly equal population frequencies, 
resulting in > 200 expected, potentially biased regions 
due to non-uniform indels in each experiment. Although 
most non-uniform variants do not affect the coding 
regions of genes, 67.4% of non-uniform variants are 
either within introns or immediately upstream or down-
stream of a gene (Fig. 2B), and these are regions that have 
a high chance of affecting binding of TFs at promoters or 
enhancers and altering transcription of nearby genes. In 
total, we estimate that over 700 regions near genes will 
have one genotype in the five treatment animals that is 
distinct from all control animals, or vice-versa.

We used previously published ChIP-seq data to show 
evidence that the non-uniform SNPs can lead to vari-
ability in Ctcf binding within CD-1, providing a proof-
of-principle that the non-uniform SNPs of CD-1 can lead 
to functional variation within CD-1. Similarly, we used 
ATAC-seq data to show evidence that the non-uniform 
SNPs can lead to variability in TF binding more gener-
ally within CD-1 mice. We further found there to be non-
uniform SNP hotspots at over 3,500 annotated mouse 
enhancers. There is therefore a relatively high risk when 
conducting genomics experiments on CD-1 mice that 
non-uniform SNP’s can lead to biased binding of TFs at 
enhancer regions. Loci overlapping non-uniform CD-1 
variants should therefore either be eliminated from 
experimental consideration, or carefully genotyped in 
order to draw functional conclusions from them.

In addition to functional variability, we used WGBS 
and ATAC-seq data to show that significant read map-
ping biases can arise at both uniform and non-uniform 
SNPs. In an effort to help eliminate non-uniform SNP 
biases as potential sources of erroneous experimental 
interpretation, we constructed a CD-1 reference genome 
in which the non-uniform SNPs are masked by N’s, 
eliminating possible biases from occurring at these loci 
when mapping reads to the CD-1 genome. In addition, 
uniform SNPs and indels between mm10 and CD-1 are 
replaced with the proper nucleotide sequence for CD-1 
in the CD-1 reference genome. The CD-1 genome has 
been made available to the public, complete with gene 
annotations and chain files for converting genomic coor-
dinates between CD-1 and mm10. We showed a substan-
tial improvement in mappability and accuracy of WGBS 
data derived from CD-1 mice when mapping to the CD-1 
reference versus mm10, and similarly showed modest 
improvements when mapping ATAC-seq data. More 
accurate DMR and peak calling is demonstrated when 
mapping to CD-1 rather than mm10.

When performing WGBS experiments using CD-1 
mice, we recommend using the CD-1 reference genome 
to improve the accuracy of the results. For data types 
such as ATAC-seq, RNA-seq, and ChIP-seq, using mm10 
should be sufficient in most cases, given the modest 
improvement in accuracy we observed with ATAC-seq. 
However, we recommend blacklisting regions that over-
lap with non-uniform SNPs and indels, as these rep-
resent potentially biased regions. For this purpose, we 
have provided files containing all non-uniform CD-1 
SNPs and indels in mm10 coordinates that can be used 
to simply blacklist potentially biased regions from the 
analysis. In cases where a treatment effect is suspected 
at a region overlapping a non-uniform variant, genotyp-
ing of each mouse in the experiment will be necessary to 
rule out SNP biases as the source of the effect. Even for 
data such as ATAC-seq, RNA-seq, and ChIP-seq, map-
ping to the CD-1 reference genome will likely confer an 
improved accuracy versus using mm10, as evidenced by 
our comparative mapping of ATAC-seq to CD-1 versus 
mm10. Thus, for experiments where maximizing accu-
racy of CD-1 sequencing data analysis is the goal, we rec-
ommend mapping to the CD-1 reference genome. Motif 
analysis and other sequence-based analyses will also 
likely benefit from improved accuracy when using the 
CD-1 genome for data derived from CD-1 mice.

Because only short-read sequencing was performed, 
this study contains limited information on longer vari-
ants. DNA fragments sequenced in this study ranged 
between 100 and 300  bp long, excluding adaptors. 
Thus, variants longer than this could not be fully iden-
tified in this study. Similarly, repetitive regions more 
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than 300  bp from a non-repetitive region are also not 
covered in this study. This limitation was overcome 
in part for longer TEs by inserting the consensus 
sequence of identified TEs at regions that could not be 
sequenced. Although long read sequencing has recently 
become tenable, at the time of sequencing for this 
study, long read sequencing technologies such as those 
from Oxford Nanopore and PacBio still suffered from a 
lower per read sequencing accuracy than Illumina short 
read sequencing [10], and Illumina still remains among 
the top whole genome sequencing options in terms of 
read accuracy [11]. Thus, the methodology of this study 
provides the advantage of highly accurate results for 
SNPs and short- to mid-range variants in non-repeti-
tive regions of the genome, including at and near most 
protein coding genes.

Conclusions
We have identified millions of previously unidentified 
genomic variants of CD-1 mice that have the potential to 
confound studies using CD-1 as a model. We constructed 
a reference genome specific to CD-1 that can assist 
researchers in obtaining more accurate results from the 
analysis of sequencing data derived from CD-1 mice. The 
results of this study can improve accuracy and reduce 
bias when using CD-1 in toxicology, pharmacology, and 
fundamental biomedical research.

Methods
Experimental design for genomic DNA extraction
Adult (2–5  months old) CD-1 IGS mice (Charles River 
Lab, USA) were used for all experiments. Mice were 
housed in standard cages on a 12 h light:dark cycle and 
given ad libitum access to food and water. Five randomly 
picked male animals were euthanized by cervical disloca-
tion before the cortex were retrieved for DNA extraction 
and genomic library preparations. All animal experi-
ments were approved by the Emory University Institu-
tional Animal Care and Use Committee (IACUC).

Genomic DNA extraction and library preparations
Dounce homogenizers were used for each cortex sample 
in a general lysis buffer containing 0.1 M Tris-pH8, 0.2 M 
NaCl, 5 mM EDTA, 10% SDS, 150 mM DTT and protein-
ase K. The genomic DNA was extracted from the lysate 
using phenol:chloroform:isoamyl alcohol extraction fol-
lowed by EtOH precipitation. 2 µg of genomic DNA was 
sheared with Diagenode Bioruptor to yield DNA frag-
ments that are approximately 300  bp. DNA fragments 
were end repaired, A-tailed, and ligated to Illumina adap-
tors followed by PCR amplification for 7 cycles. The final 
libraries were size selected using AMPure XP beads, so 
the fragments were between the size of 200–400 bp long. 

Each library was subject to paired-end sequencing for 
150 bp reads using Illumina NovaSeq platform.

Experimental design for ATAC‑seq data generation
Mice were maintained and handled in accordance with the 
Institutional Animal Care and Use policies at Emory Uni-
versity. All experiments were conducted according to the 
animal research guidelines from NIH and all protocols for 
animal usage were reviewed and approved by the Institu-
tional Animal Care and Use Committee (IACUC). Mice 
were housed in standard cages on a 12:12 h light:dark cycle 
and given ad lib access to food and water. Healthy 8-week 
old CD-1 mice (Charles River Labs) not involved in previ-
ous procedures were used for all experiments. Gestating 
females (F0) were administered daily intraperitoneal injec-
tions of Bisphenol A (Sigma 239,658, 50 mg/kg) or sesame 
oil (Sigma S3547) to prevent irritation at the injection 
site. Injections were performed from embryonic day 7.5 
through 13.5. Offspring from different BPA-treated F0 mice 
were mated (no sibling breeding was used to avoid inbreed-
ing artifacts) to produce offspring of BPA-treated mice that 
were not directly treated by BPA themselves, and this was 
done similarly for control mice. Direct, untreated descend-
ants of BPA-treated and control-treated F0 mice were gen-
erated separately in this manner through the F4 generation, 
which is where samples were taken for sequencing.

Sample extraction and library preparation for ATAC‑seq
ATAC-seq was carried out using the Omni-ATAC proto-
col [12]. Visceral adipose tissue (1 g) was placed in cold 
1 × homogenization buffer (320  mM sucrose, 0.1  mM 
EDTA, 0.1% NP40, 5 mM CaCl2, 3 mM Mg(Ac)2, 10 mM 
Tris pH 7.8, 1 × protease inhibitors (Roche, cOmplete), 
and 167 μM β-mercaptoethanol, in water), homogenized 
with Dounce homogenizers, and residual debris was pre-
cleared by using 80 um nylon mesh filter. Nuclei were 
then collected by layering with iodixanol mixture. 50,000 
counted nuclei were transferred to a tube containing the 
transposition mix (25 μl 2 × TD buffer, 2.5 μl transposase 
(100 nM final), 16.5 μl PBS, 0.5 μl 1% digitonin, 0.5 μl 10% 
Tween-20, 5  μl water) and mixed by pipetting up and 
down six times. Transposition reactions were incubated 
at 37  °C for 30  min in a thermomixer with shaking at 
1,000 r.p.m. Reactions were cleaned up with Zymo DNA 
Clean and Concentrator 5 columns. Library amplification 
was done with 2 × KAPA HiFi mix (Kapa Biosystems) and 
1.25 µM indexed primers using the following PCR condi-
tions: 72 °C for 5 min; 98 °C for 30 s; and 10–11 cycles at 
98 °C for 10 s, 63 °C for 30 s, and 72 °C for 1 min.

Pre‑processing of CD‑1 genomic DNA data
Adaptors were trimmed from raw sequencing reads using 
trimmomatic version 0.38 [13]. The script used for this 
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has been provided on github. All subsequent analyses 
using these data started from the trimmed fastq files that 
resulted from this step.

Identification of germline transposable elements different 
between CD‑1 and mm10
We first constructed a fasta file of the consensus 
sequence for each mus musculus TE annotated on the 
Dfam website [14]. We then used TEMP2 [15] insertion 
(version 0.1.1) to detect TE insertions in each of the 5 
samples separately, using the trimmed fastq files for each 
sample, and the fasta file of consensus motifs as inputs. 
From the output of TEMP2, we made a custom script to 
extract all candidate germline TEs by requiring that the 
allele frequency be at least 0.495, since a germline TE 
must be fully present on at least one of the two alleles, 
and 0.495 rounds up to the 50% allele frequency required. 
In addition, candidate germline TEs were required to 
have at least two reads supporting the insertion. Then, we 
merged the trimmed fastq files from all 5 CD-1 mice into 
a single fastq file for each read pair, and the two merged 
fastq files were then input into TEMP2 insertion in 
order to get population-wide allele frequencies for each 
TE identified. We filtered TEs from the pooled analysis, 
and kept only those with a minimum population allele 
frequency of just under 10% (corresponding to the ger-
mline in 1 of the 10 alleles, allowing for a small amount of 
sequencing error). Finally, the filtered TEs from the pop-
ulation-pooled analysis were only selected if they were 
also on the candidate germline TE list mentioned above, 
ensuring that the TE is contained on at least one allele in 
at least one mouse, with tolerance for a small amount of 
sequencing error. We were not very strict with our cut-
offs for TEs, because we reasoned that inserting a TE that 
wasn’t actually a germline TE would not have much of an 
effect when aligning reads to a reference genome with 
these TEs inserted. On the other hand, with stricter cut-
offs that would increase the odds of filtering out authen-
tic germline TEs, and not having those in the genome 
would make it less accurate.

We also ran TEMP2 absence, specifying an insert size 
of 200 bp on the DNA fragments (-f 200). For the final list 
of TEs absent from CD-1, we required at least 10 reads 
that support its absence, and an estimated population 
frequency of 100% with the absence. After obtaining the 
coordinates for the final list of germline TE insertions and 
TEs in mm10 that are absent in CD-1, we modified the 
reference genome to insert the consensus sequence for 
each germline insertion, and removed the TE sequences 
for the mm10 TEs that are absent from the germline in 
CD-1, using RSVSim [16] version 1.26.0. Newly inserted 
germline TEs were first inserted into mm10 with the 
function simulateSV(), with the parameters sizeDups = 0, 

bpFlankSize = 0, maxIndelSize = 0, maxDups = 0, ran-
dom = F, seed = 2, percCopiedIns = 1. These input param-
eters ensured that the consensus sequence for only the 
inserted TEs identified above were inserted into mm10 
exactly once, at precisely the position where the inser-
tion was identified, and no random insertions were made. 
We then took the fasta output from simulateSV(), and 
used that as the input for a 2nd call of the function simu-
lateSV() in order to remove the TEs identified as being 
absent from CD-1, as described above. In this case, we 
again used the input parameters random = F, seed = 2, 
percCopiedIns = 1 in order to ensure that only the TEs 
identified as absent were removed from the reference, 
and in precisely the position at which they were identi-
fied to have been missing from.

The resulting genome was soft masked using Repeat-
Masker [17] version 4.1.2-p1 with the flags “-xsmall -spe-
cies mouse”. This marks repetitive regions with lower 
case letters for greater efficiency of analysis with a num-
ber of bioinformatics tools. The result of this was a fasta 
file which was the mm10 reference containing the con-
sensus sequence for the newly identified CD-1 TEs, and 
with absent TEs removed; this fasta, which we will call 
“mm10-CD-1 hybrid” for brevity, was then used for SNP 
and indel calling as described below.

SNP and indel calling
We then took the mm10-CD-1 hybrid fasta reference 
described above, and used GATK [18] version 4.2.0.0 to 
call SNPs and indels on it, based on the gDNA data, and 
then incorporate the called variants into the mm10-CD-1 
hybrid reference genome. In this way, the deviations from 
the consensus sequences of the newly inserted TEs could 
be detected and corrected, as could SNPs and indels rela-
tive to mm10 at non-TE regions.

In order to use the gDNA data in GATK, we first 
mapped the trimmed fastq files for each sample to the 
mm10-CD-1 hybrid reference fasta. Alignments were 
done using bwa [19] mem version 0.7.17-r1198-dirty. 
PCR duplicate reads were removed from the resulting.
sam files using samtools [20] markdup version 1.10. Files 
were converted to sorted bam format using samtools and 
saved for downstream analysis.

The sorted, duplicate-removed.bam files for each of 
the 5 CD-1 mice were then used as inputs for a single 
call of GATK HaploTypeCaller, along with the mm10-
CD-1 hybrid fasta file, in order to call SNPs and indels 
between the mm10-CD-1 hybrid genome and CD-1. 
Called SNPs and indels were saved into two separate files 
using GATK SelectVariants. SNPs were then filtered with 
GATK VariantFiltration with the flags “-filter "QD < 2.0" 
-filter "QUAL < 30.0" -filter "SOR > 3.0" -filter "FS > 60.0” 
-filter "MQ < 40.0" -filter "MQRankSum < -12.5" -filter 
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"ReadPosRankSum < -8.0"" to ensure only high-confi-
dence SNP calls. Indels were similarly filtered with the 
flags “-filter "QD < 2.0″ -filter "QUAL < 30.0″ -filter 
"FS > 200.0″ -filter "ReadPosRankSum < -20.0″” in order 
to ensure high-confidence indels.

After filtering, “uniform” variants were selected using 
GATK SelectVariants with the flags “-select "AF > 0.8 && 
AC > 5" –restrict-alleles-to BIALLELIC”. This ensures 
that all SNPs and indels identified as uniform have an 
allele frequency > 80% and that more than half of the 10 
total alleles are present. Uniform indels were further fil-
tered using GATK RemoveNearbyIndels with the flag “–
min-indel-spacing 1”. The final set of uniform SNPs and 
indels were merged into a single VCF file using GATK 
MergeVcfs. Uniform SNPs overlapping a uniform indel 
after final filtering were excluded.

“Non-uniform” variants were taken as the subset of fil-
tered variants which were either biallelic with an allele 
frequency between 20 and 80% (GATK SelectVariants 
with the flags “-select "AF <  = 0.8 && AF > 0.2 && AC > 2" 
–restrict-alleles-to BIALLELIC”), or multiallelic with 
the most frequent allele being > 20% (GATK SelectVari-
ants with the flags “-select ’AN > 5 && vc.hasGenotypes() 
&& vc.getCalledChrCount(vc.getAltAlleleWithHigh-
estAlleleCount())/(1.0*vc.getCalledChrCount()) > 0.2’ 
–restrict-alleles-to MULTIALLELIC”). Non-uniform 
biallelic and multiallelic SNPs/indels were merged into a 
single VCF file with GATK MergeVcfs.

Finally, uniform and non-uniform variants were con-
verted to mm10 coordinates using GATK LiftoverVcf. 
The use of such tools to convert single nucleotide vari-
ants from vcf files between genomes is known to intro-
duce a small amount of error in the conversion process 
due to various factors [21]. In human, the maximum 
conversion error rate of variants not removed by con-
version software was 0.785% (maximum “Novel CUP’s” 
from Table 1 by Ormond et al. [21] (0.651%) plus maxi-
mum “Novel CUP’s” from Table 2 by Ormond et al. [21] 
(0.134%)). Assuming a similar error rate for mouse pro-
vides a conservative estimate of the false positive rate 
introduced by the use of LiftoverVcf of under 1% of the 
SNPs and indels reported in Table 1 of the present study.

SNP validation
We obtained a previously published set of CD-1 SNPs 
genotyped in 245 CD-1 mice [3]. From that list, we 
obtained a set of uniform SNPs by taking only the SNPs 
with a minor allele frequency (MAF) of 0 and in which 
the minor allele nucleotide was the nucleotide in the 
mm10 reference genome. Non-uniform SNPs were taken 
as those with MAF > 0.2, and in which the nucleotide of 
either the minor allele or the major allele was the nucleo-
tide present in the mm10 reference genome. The genomic 

coordinates of the published SNPs were done in mm8, 
so liftOver [22] was used to convert them to mm10, for 
direct comparison with our set of uniform and non-
uniform SNPs.in mm10 coordinates. The uniform and 
non-uniform sets obtained from the previously published 
SNPs were combined for comparison with our full set of 
SNPs prior to removal of those with low allele frequen-
cies and low coverage.

SNP down‑sampling analysis
For all sub-samplings of 2, 3, and 4 mice, we sub-sam-
pled from the total, unfiltered set of called variants 
using GATK SelectVariants using the “–sample-name” 
flag to subsample selected mice, and also using the flags 
“–exclude-non-variants –remove-unused-alternates”. 
SNPs that were not a part of either the uniform or non-
uniform SNP set when using all 5 mice were excluded. 
This was done for all possible combinations of 2, 3, and 
4 mice. After sub-sampling, variants were filtered using 
GATK VariantFiltration with the flags “-filter "QD < 2.0" 
-filter "QUAL < 30.0" -filter "SOR > 3.0" -filter "FS > 60.0” 
-filter "MQ < 40.0" -filter "MQRankSum < -12.5" -fil-
ter "ReadPosRankSum < -8.0"”. Uniform variants were 
then selected using GATK SelectVariants with the flags 
“-select "AF > 0.8 && AC > AC_uniform" –restrict-alleles-
to BIALLELIC”, where AC_uniform = 2, 3, and 4 when 
down-sampling to 2, 3, and 4 mice, respectively. This is to 
ensure that the AC cutoff is at least 50% of the total num-
ber of alleles sequenced, as was done for 5 mice. Uniform 
indels were further filtered using GATK RemoveNear-
byIndels with the flag “–min-indel-spacing 1″, and then 
uniform SNPs overlapping a uniform indel after final fil-
tering were excluded.

Non-uniform SNPs were selected from filtered vari-
ants using both GATK SelectVariants with the flags 
“-select "AF <  = 0.8 && AF > 0.2 && AC > AC_nonu-
niform" –restrict-alleles-to BIALLELIC”, and GATK 
SelectVariants with the flags “-select ’AN > AN_min && 
vc.hasGenotypes() && vc.getCalledChrCount(vc.getAl-
tAlleleWithHighestAlleleCount())/(1.0*vc.getCalledChr-
Count()) > 0.2’ –restrict-alleles-to MULTIALLELIC”. In 
this case, AC_nonuniform = 0, 1, and 1, and AN_miN = 2, 
3, and 4, for 2, 3, and 4 mice, respectively. This was done 
to ensure that the proportions of both AC_nonuniform 
and AN_min to the total number of subsampled alleles 
was as close as possible to the proportions when using 5 
mice (> 20% and > 50% for AC_nonuniform and AN_min, 
respectively, with 5 mice).

A nonlinear least squares regression analysis was then 
performed separately on the subsampled data for uni-
form and non-uniform SNPs as follows. Due to the dis-
crete nature of allele frequencies when determining 
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whether a SNP is uniform or non-uniform, the total 
number of called uniform and non-uniform SNPs when 
subsampling to 2 mice resulted in a discontinuity in 
the data (Additional file  1: Figure S1O), and so was not 
used in the regression analysis. The average number of 
SNPs when down-sampling to 3 and 4 mice, as well as 
the number of SNPs when 5 mice were used, were then 
input into the nls() function in R version 4.0.3 in order 
to determine estimates for the parameters a, b, and c, 
in the function “N = a—(a-c)*exp(-b*(x-3))”, which is an 
asymptotic model function, where N is the number of 
SNPs called, and x is the number of mice sequenced. This 
function asymptotically approaches a as x goes to infinity, 
and takes the value c when x = 3. The average number of 
SNPs obtained from 3 mice was used as the starting value 
for c, while b = 1 was used as the starting value for b. The 
starting value for a was then used by solving for a in the 
asymptotic equation, and plugging in the starting values 
for b and c, as well as x = 5 and the value of N at x = 5. 
The parameters “control = list(maxiter = 5000)” and “algo-
rithm = "port"” were used within nls().

The parameters identified were a = 2.117X106, 
b = 0.5501, and c = 2.892 X106 for uniform SNPs and 
a = 4.174X106, b = 0. 8065, and c = 2.978X106 for non-
uniform SNPs. These parameter values were entered into 
the R function curve() to draw the regression curves from 
x = 3 to x = 15.

CTCF ChIP‑seq data analysis
Raw fastq files of CTCF ChIP-seq were downloaded from 
the NCBI GEO [23] website using their fasterq-dump 
tool. Fastq files were then trimmed using trim_galore 
[24] version 0.6.6., a wrapper for cutadapt [25] (version 
2.8). Trimmed fastq files were then mapped to the mm10 
reference genome using bowtie2 [26] version 2.3.5.1, and 
peaks were then called with macs [27] version 2.2.7.1. 
Peaks from all replicates were merged using bedtools [28] 
merge (version 2.27.1). Reads per kilobase per million 
(RPKM) values were then calculated for all replicates at 
the set of merged peaks. All peaks where the minimum 
RPKM across all replicates considered was < 0.5, and 
where the maximum RPKM across all replicates consid-
ered was > 2, were selected as the set of irreproducible 
peaks. We then used bedtools shuffle to create a ran-
dom set of control regions for comparison with the irre-
producible peaks. RepeatMadker regions from mm10, 
as obtained from the UCSC table browser [29], were 
excluded from use in bedtools shuffle, with the flag “-f 
0.5”, to ensure that no randomly shuffled region overlaps 
by more than 50% with a repetitive region.

Next, the mm10 sequences at all irreproducible and 
randomly shuffled peaks were extracted using bedtools 
getfasta, and then TF motif scanning was done at these 

sequences using fimo [30] version 5.3.0, using a combina-
tion of the jolma2013.meme, JASPAR_CORE_2014_ver-
tebrates.meme, and uniprobe_mouse.meme TF motif 
data files provided by fimo for motif scanning. We then 
compared the proportion of irreproducible peaks with a 
CTCF motif hit (either human or mouse) to the propor-
tion of random peaks with such a motif hit, using Fisher’s 
exact test to calculate the P-values, to perform the analy-
sis presented in Fig. 1B. We similarly compared the pro-
portion of motifs at irreproducible peaks that overlap a 
non-uniform SNP to the proportion of randomly shuffled 
regions that overlap a non-uniform SNP, to perform the 
analysis presented in Fig.  1C. P-value calculations were 
made using the R function fisher.test() in R version 4.0.3.

ChIP-seq read sequence content was compiled as fol-
lows..bam files of duplicate-removed CTCF ChIP-seq 
alignments to mm10 were input into bamView [31] ver-
sion 18.2.0, with “Colour by” set to “Base Quality”. The 
CTCF and reverse-compliment CTCF motif images used 
in the main and supplemental figures were generated 
using meme2images, a tool from the MEME Suite [32] 
version 5.3.0.

Classification of CD‑1 variants
Uniform SNPs/indels, and non-uniform SNPs/indels, 
were input separately into the command-line version of 
the Ensembl variant effect predictor [33] version 104. The 
gtf file, “Mus_musculus.GRCm38.102.gtf.gz” was down-
loaded from the Ensembl website [34] and processed 
according to the vep User’s Manual, for use with the –
gtf flag of vep. We used the pie charts under the heading 
“Consequences (all)” for display in Fig. 2. In addition, we 
extracted.the table of counts of each consequence type 
under “Consequences (all)” for plotting in barplots.

SNP hotspot analysis
We used mutEnricher [35] noncoding, version 1.3.3 to 
call hotspots separately using uniform and non-uniform 
SNPs. The software was called separately for UTRs, pro-
moters, enhancers, and coding exons. UTRs and coding 
exons were obtained as bed files from the UCSC Table 
Browser [29] using the mm10 assembly and the ref-
Flat table from NCBI RefSeq [36]. To obtain promoters, 
a.gtf file of genes was downloaded from the UCSC Table 
Browser using the mm10 assembly and the refFlat table 
from NCBI RefSeq, and then a custom script was used 
to obtain promoter regions of genes, taken as 500 bp up- 
and down-stream of transcription start sites. Annotated 
enhancers were obtained by downloading all available 
mouse enhancers from EnhancerAtlas 2.0 [37] in mm9 
coordinates. Enhancers were then converted to mm10 
coordinates using UCSC liftOver [22]. Each of the bed 
files was sorted and then merged with bedtools merge 
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[28] version 2.27.1 prior to being input into mutEnricher. 
The flags “–stat-type nmutations –no-wap” were used in 
mutEnricher. Only hotspots containing at least 50 SNPs 
and with FDR_BH < 0.05 were selected as significant.

Construction of the CD‑1 reference genome and associated 
annotation files
GATK FastaAlternateReferenceMaker was used to con-
vert to CD-1 nucleotides at the uniform SNPs and indels 
in the mm10-CD-1 hybrid genome. The non-uniform 
SNPs were used within the flag “–snp-mask”, resulting in 
non-uniform SNPs being masked by “N” in the final CD-1 
genome. The resulting genome was then soft-masked for 
repeats with RepeatMasker [17], with the flags “-xsmall 
-species "Mus musculus”.

To facilitate conversion between the coordinate sys-
tems of mm10, the mm10-CD-1 hybrid, and CD-1,.
chain files were constructed using the commands recom-
mended by the genomewiki site [38], which makes use 
of several tools from the UCSC genome browser [22]: 
faSplit, liftUp, axtChain, chainNet, faToTwoBit, chain-
MergeSort, twoBitInfo, and netChainSubset, as well as 
blat [39], and samtools faidx, The script we used to make 
the.chain files is available on our Github repository page. 
The chain files for converting between CD-1 and mm10 
coordinates have been made publicly available.

VCF files of uniform SNPs/indels, and non-uniform 
SNPs/indels, in mm10 coordinates were obtained via 
UCSC’s liftOver tool [22], by using the.chain file attained 
as described above to convert from the mm10-CD-1 
hybrid coordinates to mm10 coordinates. These VCF files 
are publicly available.

An annotation.gtf file of genes was created in CD-1 
coordinates as follows: a refFlat gtf file in mm10 coor-
dinates was downloaded from the UCSC Table Browser 
[29], and the tool crossMap [40] was used in gff mode to 
convert it to CD-1 coordinates. This resulted in a sim-
ple genome annotation that was used for viewing in the 
Integrative Genomics Viewer (IGV) [41]. However, we 
observed some instances of exons that were repeated 
in regions of the genome that were far from the rest of 
the gene and most likely errenous. Therefore, in order to 
construct a more accurate gene annotation, we used the 
liftoff [42] software (version 1.6.3), which was specifically 
designed for accurate mapping of gene annotation files. 
The file “mm10.ncbiRefSeq.gtf “ was downloaded from 
the UCSC Genome Browser website [22] and then con-
verted to CD-1 coordinates using liftoff with the flags, 
“-infer_genes -exclude_partial -polish -chroms”. We veri-
fied that the IGV screenshots in this paper, which used 
the simpler refFlat annotation, were also correctly anno-
tated with the file created with liftoff. The annotation file 
created with liftoff has been made publicly available.

ATAC‑seq data analysis
Raw fastq files were trimmed using trim_galore as 
described above for CTCF ChIP-seq. Trimmed fastq 
files were then mapped separately to both the mm10 
and CD-1 genomes as follows. Reads were mapped using 
bowtie2 [43] version 2.3.5.1, with the flag “-X 2000” to 
allow for DNA fragments up to 2 kb. Reads that did not 
map uniquely to one location were removed, and then 
reads were sorted, and PCR duplicates were removed 
with samtools markdup. Peaks were then called on each 
sample with macs2 [44] callpeak version 2.2.7.1. We kept 
only peaks that overlapped by at least 50% in the two rep-
licates of each sample, and kept these as the set of repro-
ducible peaks. Reproducible peaks from all samples were 
then merged into a single peak set separately for mm10 
and CD-1, using bedtools merge.

Irreproducible ATAC-seq peaks were obtained as fol-
lows. Peaks from both Control Adipose replicates were 
merged using bedtools [28] merge (version 2.27.1). Reads 
per kilobase per million (RPKM) values were then calcu-
lated for each replicate at the set of merged peaks. Peaks 
with RPKM < 1 in one replicate and RPKM > 2 in the 
other were selected as the set of irreproducible peaks. 
The generation of randomly shuffled control regions, 
TF motif analysis, the analysis of SNPs at irreproducible 
peaks vs. control peaks, and the display of sequence con-
tent of the ATAC-seq reads, were all done in mm10 in the 
same manner as described above for the CTCF ChIP-seq 
data.

For the analysis of common and unique peaks, peaks 
called when using the CD-1 genome were converted to 
mm10 coordinates using UCSC liftOver with the.chain 
file for converting from CD-1 to mm10 generated in this 
study. “Common” peaks were those that overlap when 
using bedtools intersect v2.27.1, comparing the CD-1 
peaks in mm10 coordinates to the mm10 peaks. “Unique” 
peaks were similarly taken with bedtools intersect, using 
the “-v” flag. Bedtools intersect was also used to determine 
the number of SNPs overlapping each of the peak sets.

WGBS data analysis
Raw fastq files were trimmed using trim_galore version 
0.6.6. Trimmed fastq files were then mapped separately 
to both the mm10 and CD-1 genomes as follows. Reads 
were mapped using bismark [45] version 0.22.3. PCR 
duplicates were then removed with the command dedu-
plicate_bismark, and then bismark_methylation_extrac-
tor was used to extract methylation counts at CpGs. 
Then, for each sample, DMRfinder [46] version 0.3 was 
used to call DMRs of BPA vs. control for the available 
tissue samples. The analysis of common versus unique 
DMRs was done in the same manner as described for 
common versus unique ATAC-seq peaks.
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Estimation of the probability of experimental bias due 
to non‑uniform CD‑1 variants
At a variant with 2 possible alleles of equal frequency, 
denote the alleles as “a” and “b”. There are 20 total alleles 
across all 10 mice, so the probability of any one set of the 
20 alleles is p = 0.520 (e.g. P(aa aa aa aa aa bb bb bb bb 
bb) = p). Let P(all a’s, X a’s) denote the probability all mice 
in the treatment group are ‘aa’, whereas there are X a’s in 
the control group, with no mouse in the control group 
having the ‘aa’ genotype. Similarly let P(X b’s, all b’s) denote 
the probability that all control mice are ‘bb’, and there are X 
b’s in the treatment group, with no treatment mouse hav-
ing the ‘bb’ genotype. The overall probability of all mice in 
the treatment group having a common genotype that dif-
fers from all mice in the control group, or vice-versa, is 
then 2*[P(all a’s, all b’s) + P(all a’s, 1 a) + P(all a’s, 2 a’s) + P(all 
a’s, 3 a’s) + P(all a’s, 4 a’s) + P(all a’s, 5 a’s) + P(1 b, all 
b’s) + P(2 b’s, all b’s) + P(3 b’s, all b’s) + P(4 b’s, all b’s) + P(5 
b’s, all b’s)]. The factor of 2 is to account for the situation 
where a and b are switched everywhere, which has an 
equal probability, e.g. P(all b’s, all a’s) = P(all a’s, all b’s), P(all 
b’s, 1 b) = P(all a’s, 1 a), etc. P

(

all a′s, X a′s
)

= 2X
(

5

X

)

 p, 
since X control mice must be chosen from 5 to assign a 
single a, and there are two ways the a can be assigned to 
each mouse (ab or ba). Thus, the overall probability 
that the 5 treatment mice have a common genotype 
that is distinct from all control mice, or vice-versa, is 
2p+ 4p 5

X=12
X 5

X
= 0.0009250641.

The expected number of such occurrences genome 
wide is then just the total number of applicable non-
uniform variants times 0.0009250641. Considering only 
non-uniform variants that are bi-allelic and where each 
allele has a roughly equal frequency (between 40 and 
60%; Additional file  1: Figure S1L), this results in an 
expected 106 X 0.0009250641 = 925 non-uniform SNPs 
and 250,000 X.0009250641 = 231 non-uniform indels. 
To get the final estimate of over 700, we added these two 
numbers together (925 + 231 = 1156) and then multiplied 
by the percentage of non-uniform variants that were 
either at introns, or immediately upstream or down-
stream of a gene (Fig. 2B).
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