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Abstract
Background  Sepsis is a high mortality disease which seriously threatens human life and health, for which the 
pathogenetic mechanism still unclear. There is increasing evidence showed that immune and inflammation responses 
are key players in the development of sepsis pathology. LncRNAs, which act as ceRNAs, have critical roles in various 
diseases. However, the regulatory roles of ceRNA in the immunopathogenesis of sepsis have not yet been elucidated.

Results  In this study, we aimed to identify immune biomarkers associated with sepsis. We first generated a global 
immune-associated ceRNA (IMCE) network based on data describing interactions pairs of gene–miRNA and miRNA–
lncRNA. Afterward, we excavated a dysregulated sepsis immune-associated ceRNA (SPIMC) network from the global 
IMCE network by means of a multi-step computational approach. Functional enrichment indicated that lncRNAs in 
SPIMC network have pivotal roles in the immune mechanism underlying sepsis. Subsequently, we identified module 
and hub genes (CD4 and STAT4) via construction of a sepsis immune-related PPI network. Then, we identified hub 
genes based on the modular structure of PPI network and generated a ceRNA subnetwork to analyze key lncRNAs 
associated with sepsis. Finally, 6 lncRNAs (LINC00265, LINC00893, NDUFA6-AS1, NOP14-AS1, PRKCQ-AS1 and 
ZNF674-AS1) that identified as immune biomarkers of sepsis. Moreover, the CIBERSORT algorithm and the infiltration 
of circulating immune cells types were performed to identify the inflammatory state of sepsis. Correlation analyses 
between immune cells and sepsis immune biomarkers showed that the LINC00265 was strongly positive correlated 
with the macrophages M2 (r = 0.77).

Conclusion  Collectively, these results may suggest that these lncRNAs (LINC00265, LINC00893, NDUFA6-AS1, 
NOP14-AS1, PRKCQ-AS1 and ZNF674-AS1) played important roles in the immune pathogenesis of sepsis and provide 
potential therapeutic targets for further researches on immune therapy treatment in patients with sepsis.
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Background
Sepsis is a systemic immune-inflammatory response 
caused by dysfunction of the body’s response to infec-
tion, which can lead to the multiple organ dysfunction 
syndrome (MODS) that seriously threatens the life safety 
of patients [1, 2]. In the treatment of sepsis, several novel 
approaches have been applied to ameliorate disease pro-
gression, including fluid resuscitation, symptom control, 
anti-infection and prevention of complications [3], as 
well as continuous blood purification [4] and extracor-
poreal membrane oxygenation (ECMO) [5]. The patho-
genesis and progression of sepsis is extremely complex, 
which include imbalance of immune homeostasis, exces-
sive inflammation response, cell death and abnormal 
molecular regulation all participate in the pathogenesis 
of sepsis [6]. Early diagnosis of sepsis is critical for timely 
treatment and improved sepsis outcomes [7]. However, 
at present, there are no effective measures for early diag-
nosis and intervention of sepsis [8]. Therefore, finding 
biomarkers for early intervention and diagnosis of sep-
sis may be important to reduce the mortality of sepsis 
patients as well as provide etiologic insight into sepsis.

Long non-coding RNAs (lncRNAs) range in size from 
200 nucleotides to thousands of nucleotides. LncRNAs 
lack the ability to serve as protein templates, but they 
regulate the expression of genes and have variety of 
important biological regulatory functions [9]. More-
over, competing endogenous RNA (ceRNA) is a newly 
discovered regulatory mechanism by which RNA mol-
ecules (such as mRNA and lncRNA) targeted by com-
mon miRNAs can indirectly regulate each other through 
competition with miRNA response elements [10]. 
Emerging evidences indicate that lncRNAs may act as 
ceRNAs regulating risk genes and play a regulatory role 
in the development of various diseases. Ye et al. revealed 
that lncRNA NALT1 could acting as a ceRNA by bind-
ing with miR-574-5p to regulate the expression of the 
PEG10, thereby promoting colorectal cancer prolifera-
tion and migration [11]. In addition, Wang et al. found 
that the lncRNA KCNQ1OT1 played a crucial role in the 
inflammatory response and progression of acute lung 
injury due to sepsis by acting as a ceRNA to binding with 
miR-212-3p, thereby regulating MAPK1 expression and 
activating the p38/NF-κB pathway [12]. These results 
suggested that lncRNAs are involved in the sepsis-related 
immunoregulatory processes.

The immune-inflammatory response is the body’s 
defense against external injury. The immune-inflam-
matory response is a crucial pathological process in the 
patients with sepsis [13]. Recent studies have shown 
that ceRNA also regulate inflammatory response of the 
immune system in various diseases. For instance, Yan et 
al. identified that lncRNA HIX003209 promoted inflam-
mation response by binding with miR-6089 via the TLR4/

NF-κB pathway in patients with rheumatoid arthritis 
[14]. Moreover, lncRNAs-mediated ceRNAs also par-
ticipate in immune-inflammatory response in infectious 
diseases. Wang et al. found lncRNA SHNG16 was shown 
to regulate the expression of TLR4 by inhibiting the miR-
15a/16 cluster, which in turn affected lipopolysaccharide-
induced inflammatory pathway in neonatal sepsis [15]. 
Even so, the roles of lncRNAs acting as ceRNAs in the 
mechanism of immunoregulatory processes underlying 
sepsis still remain unclear.

With the development of science and technology and 
the maturity of big data acquisition methods, correla-
tion analysis based on bioinformatics technology enables 
us to have a certain understanding of the occurrence 
and development mechanism of patients with sepsis. In 
recent years, several studies have shown immune-related 
genes that involved in inflammatory processes could 
be latent therapeutic targets or diagnostic biomarkers 
in sepsis [16–18]. Dai et al. identified that LPIN1 was 
found to be a reliable biomarker for survival in patients 
with sepsis by using weighted gene co-expression net-
work analysis (WGCNA) analysis and verified by qPCR 
[16]. Wang et al. identified 6 key genes (FYN, FBL, ATM, 
WDR75, FOXO1 and ITK) in sepsis through WGCNA 
analysis and PPI network analysis [18]. However, there is 
little known about the functions of lncRNAs which may 
thus be novel regulators of the pathogenesis of sepsis. To 
address this point, based on multi-step bioinformatics 
computational approach and ceRNA and PPI networks 
analysis, it is possible to predict more novel lncRNAs 
involved in immune responses after sepsis.

In our present study, we constructed a global immune-
associated ceRNA (IMCE) network based on data 
describing interactions pairs of gene–miRNA and 
miRNA–lncRNA. Next, we excavated a dysregulated sep-
sis immune-associated ceRNA (SPIMC) network from 
the global IMCE network by means of a multi-step com-
putational approach, with a focus on gene expression 
profiles in sepsis. Enrichment assessments was applied 
to identify the roles of lncRNAs in SPIMC network were 
mainly related with inflammation and immune response. 
Subsequently, we used bioinformatics to generate and 
analyze PPI network and modular structure, to iden-
tify module and hub genes related to inflammatory and 
immunological status of patients with sepsis. Moreover, 
to further verify reliability of our results, we applied two 
machine learning algorithms (LASSO [19] and SVM-RFE 
[20]) to further filter and verification of the hub genes. 
Then, we obtained six hub lncRNAs that regulated the 
key genes based on ceRNA theory, which were identi-
fied as important regulatory components and potential 
key biomarkers for sepsis. Finally, we established the 
characteristics between these feature biomarkers and 
22 kinds of infiltrating immune cells in each sample by 
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using the CIBERSORT algorithm (flowchart shown in 
Fig.  1). Our study will provide new direction into the 
pathogenesis of sepsis and enhance the understanding of 
the role of ceRNA-mediated regulation of inflammation 
and immune responses in sepsis with the ultimate aim of 
providing a rationale for effective therapeutic targets in 
sepsis.

Materials and methods
Identification of immune-related genes
Immune-related genes (IRGs) were collected from the 
ImmPort–Immunology Database and Analysis Portal 
[21] and InnateDB [22] databases, which contain infor-
mation concerning genes involved in the human innate 
immune response. Thus, we obtained 1793 IRGs from the 
ImmPort and 1040 IRGs from the InnateDB database. In 
total, we collected 2519 IRGs from the two databases.

Gene–miRNA and miRNA–lncRNA interaction data
miRNA–mRNA interaction pairs data were obtained 
from miRTarBase (Release 7.0) [23], which contains 
information concerning experimentally verified gene–
miRNA interactions that has been compiled from pub-
lished experiments. We downloaded high-confidence 
functional (e.g. Luciferase reporter assay, Immunoblot, 
Western blot, AGO2 binding RNA immunoprecipita-
tion qRT-PCR) miRNA–mRNA interaction pairs; this 
yielded 2843 genes and 740 miRNAs. Subsequently, we 

identified miRNA–lncRNA interaction pairs from star-
Base database [24], DIANA-LncBase database [25], and 
LncACTdb databases [26], which contain high-through-
put and experimentally validated interaction pairs (e.g. 
HITS-CLIP, iCLIP, CHIP, PAR-CLIP, CLASH). In total, 
we obtained 644 miRNAs and 582 lncRNAs from com-
bined analysis of the above miRNA–lncRNA interaction 
data. Then, based on miRBase [27] and RNAcentral [28] 
databases, we unified miRNAs naming to subsequent 
processing.

mRNA expression profiles for sepsis and data processing
The GSE134347 datasets were downloaded from the 
Gene Expression Omnibus database. GSE134347 fea-
tured data acquired from the peripheral whole blood of 
156 sepsis patients and 83 healthy controls (platform: 
GPL17586). The R package “stats” was used to principal 
component analysis (PCA) by using the “prcomp” func-
tion. The “limma” package was used to identify differen-
tially expressed genes (DEGs) between sepsis patients 
and healthy control samples, with the screening criteria 
|log2 fold change|>1.0 and adjusted P-value < 0.05. The 
intersection of IRGs with DEGs yielded IRDEGs. We 
used the “ComplexHeatmap” R package to generate heat-
map and the “gplots” R package to generate volcano plots. 
Furthermore, the lncRNA profile under accession num-
ber GSE217700 was from 4 sepsis patients and 4 healthy 
controls and was used for validation dataset.

Fig. 1  The flow chart of the research analysis process

 



Page 4 of 15Wang et al. BMC Genomics          (2023) 24:484 

Construction of a global IMCE network
We constructed a global IMCE network based on ceRNA 
theory that competing mRNA–lncRNA interaction 
pairs share common miRNA binding sites [28]. For a 
given immune-related ceRNA interaction pair, lncRNAs 
and IRGs share common miRNAs, forming a compet-
ing triad. Then, we constructed a global IMCE network 
after all lncRNA–miRNA–IRG interaction pairs had 
been assembled and visualized in Cytoscape software. In 
the network, the nodes represented IRGs, miRNAs, and 
lncRNAs, while the edges represented their interactions. 
Moreover, we analyzed the topological features for all 
nodes in the global IMCE network.

Hypergeometric test
We established the dysregulated SPIMC network from 
the global IMCE network by hypergeometric test and co-
expression correlation analysis. The hypergeometric test 
was used to evaluate the significance of the shared miR-
NAs between each mRNA and lncRNA, mRNA-lncRNA 
interaction pairs with a P-value < 0.01 were considered 
to be statistically significant. We applied the cumulative 
hypergeometric test and computed P-values using the 
following formula:

	

P = 1−
x∑

k=0

(
m
k

) (
N−m
n−k

)

(
N
n

)

For each interaction pair, the total number of miRNAs in 
the interaction data were presented as N, the number of 
miRNAs that were associated with one lncRNA and one 
mRNA were presented as n and m, and the number of 
miRNAs shared with the lncRNA and mRNA were pre-
sented as x.

Pearson correlation coefficients analysis (PCC)
Next, we applied co-expression analysis for mRNA–
lncRNA interaction pairs by using PCC to examine the 
expression patterns of IRDEGs and lncRNAs. PCC was 
used to measure the correlation between the expres-
sion levels of two variables. The expression data of the 
lncRNAs and genes were downloaded from the Geno-
type-Tissue Expression (GTEx, v8 release) [29] and PCC 
were calculated by using the following formula:

	
ρX,Y =

cov (X, Y )

σXσY

Here, σX and σY represent standard deviations for X and 
Y, while cov (X, Y) refers to the covariance of variables 
X and Y. Finally, the co-expressed interaction pairs that 
met the PCC threshold (PCC > 0.7 and P < 0.01) and 
crossed the hypergeometric test threshold (P < 0.01) 

were regarded as statistically significant interaction pairs. 
After integrating all of the competing triplets, we con-
structed the SPIMC network. We constructed and visual-
ized SPIMC network by using Cytoscape v3.8.1.

Construction of immune-related PPI network and module 
analysis
It is well known that genes play an important role in the 
pathogenesis of sepsis. LncRNAs lack the ability to serve 
as protein templates, but they regulate the expression of 
genes and have variety of important biological regula-
tory functions. To identify the interactions of proteins 
encoded by sepsis-related genes, we constructed a PPI 
network of IRDEGs in the SPIMC. Furthermore, module 
analysis was performed to find the key genes shared com-
mon properties and related to inflammatory and immu-
nological status of patients with sepsis. Immune-related 
PPI network analysis was then performed to interpret 
the molecular mechanisms of key cellular activities. In 
this study, PPI of IRDEGs with interaction scores ≥ 0.4 
in the SPIMC network were determined by using Search 
Tool for the Retrieval of Interacting Genes database 
(STRING v11.0) [30] and visualized with Cytoscape. Fur-
thermore, the Molecular Complex Detection (MCODE) 
tool [31] in Cytoscape software was utilized to identify 
highly interconnected modules and functionally related 
from the PPI network using selection criteria (MCODE 
degree cutoff = 2; k-core = 2; max. depth = 100; node score 
cutoff = 0.2).

Functional enrichment assessments
To determine the potential functions of the lncRNAs in 
SPIMC network, we performed functional enrichment 
analyses of KEGG pathways [32–34] and GO functions 
based on co-expressed IRDEGs by using “clusterProfiler” 
R package [35]. The KEGG pathway and GO database 
generated from “org.Hs.eg.db” R package. The adjusted 
P-values < 0.01 were considered as significantly GO terms 
and KEGG pathways, and then these results were visual-
ized by “Ggplot” R package.

Identifying of key immune-related lncRNAs of sepsis and 
evaluation of immune cell subtypes distribution
Then we characterized the topological properties of 
PPI network and identified one module that contained 
6 IRDEGs and in which CD4 and STAT4 had higher 
degrees in PPI network. The hub IRDEGs in sepsis which 
were obtained by PPI network and module analysis 
were subsequently overlapped within the SPIMC net-
work. To evaluate the hub lncRNAs regulation as ceR-
NAs in sepsis, a lncRNA-mediated module-associated 
ceRNA network was constructed. The ceRNA subnet-
work that included hub lncRNAs was then defined as 
potential sepsis immune-relevant lncRNA. Next, we 
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performed infiltrating fractions of immune cells based on 
the GSE134347 datasets of sepsis by CIBERSORT algo-
rithm [36] (https://cibersortx.stanford.edu), which with 
22 kinds of immune cell with using 1,000 permutations 
to estimate the relative abundance of immune cells infil-
tration. We filtered the samples for P-values < 0.05 in the 
CIBERSORT as statistically significant results. Then, we 
used Spearman’s correlation analysis to estimate the cor-
relation between the degrees of immune cells infiltration 
with significant differences between groups. Finally, these 
results were analyzed and visualized by the “Corrplot” 
and “Ggplot2” R package.

Evaluation the correlation between biomarkers and 
immune cells infiltration
Finally, we estimated the characteristics between these 
feature lncRNAs biomarkers and 22 kinds of infiltrat-
ing immune cells. The correlation between the immune-
related lncRNAs co-expression IRDEGs expression and 
levels of infiltrating fractions of immune cells were evalu-
ated by the R language based on Spearman’s correlation 
and visualized with “ggplot2” R package.

Results
The global IMCE network construction and topological 
analysis
To construct a global IMCE network, we obtained human 
IRGs from the ImmPort database and InnateDB database, 
along with human miRNA–gene and miRNA–lncRNA 
interaction pairs from the miRTarBase database, starBase 
database, DIANA-LncBase database, and LncACTdb 
database. We constructed a network by integrating the 
abovementioned data (Fig.  2A). The global IMCE net-
work contained 1232 nodes (479 IRGs, 576 lncRNAs, and 
177 miRNAs) and 9655 edges. We found that many nodes 
were lncRNAs, suggesting essential roles of lncRNAs 
in the network. Subsequently, we analyzed the nodes 
degree distribution in the network; nodes in the global 
IMCE network closely followed the power law distribu-
tion (f(x) = 346.86x-1.21, R2 = 0.968), which suggested that 
network is approximately scale-free network (Fig.  2B). 
Moreover, comparative analysis revealed significant dif-
ferences in degree distribution among the miRNAs, 
mRNAs, and lncRNAs (P < 0.05) (Fig. 2C). These findings 
indicated that both lncRNAs and miRNAs exhibit con-
siderably high degrees, suggesting that they have impor-
tant roles in the network. Collectively, the global IMCE 
network can serve as a starting point for investigating of 
the immune processes involved in sepsis.

Identification of DEGs and sepsis-associated IRDEGs
The expression files between sepsis groups and control 
groups in the GSE134347 were normalized and identified 
using “limma” R package with |log2 FC|>1.0 and adjusted 

P-value < 0.05. The PCA plot of the GSE134347 dataset 
was shown in Fig. 3A. As a result, we successfully iden-
tified 317 genes were up-regulated and 352 genes were 
down-regulated in GSE134347 dataset. The heatmap and 
volcano plots were shown to depict the expression ten-
dencies and distribution of these DEGs between sepsis 
and controls (Fig. 3B, C). Because the immune response 
has important roles in the pathogenesis of sepsis [37], 
we then focused on the sepsis-associated IRDEGs that 
were identified by the intersection of the IRGs and DEGs. 
Finally, we obtained 173 sepsis-associated IRDEGs in the 
two gene sets mentioned above (Fig. 3D).

Excavation of a SPIMC network from the global IMCE 
network
To identify the relationships between IRDEGs, miRNAs 
and lncRNAs, as well as exploring key lncRNAs in sep-
sis, we mapped 173 IRDEGs to the global IMCE network. 
As a result, we mapped 100 gene–miRNA interaction 
pairs and 4254 lncRNA-miRNA interaction pairs. Next, 
we performed hypergeometric tests and PCC analysis, 
setting the thresholds with PCC > 0.7 and P-value < 0.01 
to meet statistical significance of the IRDEGs-miRNAs-
lncRNAs interactions. Then, a significantly dysregulated 
SPIMC network (Fig.  4A) was established which con-
tained 70 nodes (12 IRDEGs, 27 lncRNAs and 31 miR-
NAs) and 189 edges (as listed in Table 1).

Enrichment analysis of IRDEGs in SPIMC network
To explore the biological functions of lncRNAs in the 
SPIMC network, we conducted GO enrichment analysis 
and KEGG pathway through the lncRNAs co-expressed 
IRDEGs. In total, we obtained 553 GO terms (detail 
information in supplementary Table S1) and 41 KEGG 
enriched pathways (detail information in supplementary 
Table S2). The top 10 significant KEGG pathways and GO 
functional enrichment terms (P-value < 0.05) which might 
play pivotal roles in the immunological mechanisms of 
sepsis were shown in Fig.  4B, C. GO function analysis 
showed that these IRDEGs mostly enriched in biologi-
cal processes related with regulation of inflammatory 
response (GO:0050727), T cell activation and differen-
tiation (GO:0042110, GO:0030217), regulation of inflam-
matory response to antigenic stimulus (GO:0002861). 
KEGG pathway showed that they were mostly enriched 
in Jak-STAT signaling pathway (hsa04630), PD-L1 expres-
sion and PD-1 checkpoint pathway in cancer (hsa05235), 
T cell receptor signaling pathway (hsa04660). Our find-
ings indicate that these IRDEGs co-expressed lncRNAs 
regulate multiple risk signaling pathways and may have 
various function roles in sepsis.

https://cibersortx.stanford.edu
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Generation of sepsis immune-related PPI network and 
screening hub lncRNAs
Based on the SPIMC network we obtained 12 IRDEGs, 
and then the STRING database was used to detect poten-
tial interactions of the IRDEGs. Accordingly, a total of 25 
PPI interactions were identified and used to construct 

immune-related PPI network (Fig.  5A). Then, we used 
MCODE to analyze the network and obtained one mod-
ule which contained 6 IRDEGs (CD4, STAT4, CD28, 
IL10RA, CCR7 and JAK2) (Fig. 5B). Moreover, based on 
the ceRNA hypothesis, we combined the hub IRDEGs 

Fig. 2  Construction and analysis of the global IMCE network. (A) The global IMCE network. Blue, green, and orange nodes represent IRGs, miRNAs, and 
lncRNAs, respectively. Lines between IRGs, miRNAs, and lncRNAs represent their interactions. The pie chart shows the number of IRGs, miRNAs, and ln-
cRNAs in the network. (B) The nodes degree distribution of the global IMCE network. (C) The degree distribution of IRGs, miRNAs and lncRNAs in global 
IMCE network
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Fig. 3  Identification of DEGs and immune-related DEGs in sepsis. (A) The principal component analysis results of the GSE134347 expression matrices. (B) 
Hierarchical heatmap for DEGs in sepsis patients and healthy controls. (C) Volcano plot for DEGs in sepsis patients and healthy controls (D) Venn diagram 
of the intersection of the DEGs and IRGs; the intersection represents overlapping genes (IRDEGs).
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and the lncRNA–miRNA–mRNA interactions between 
them (Fig.  5C); the resulting module contained 6 IRD-
EGs, 7 miRNAs and 13 lncRNAs. Furthermore, CD4 
and STAT4 had higher degrees in the PPI network and 
have been reported participate in immune mechanisms 
underlying sepsis, which indicated their important regu-
late roles in sepsis immune processes. Therefore, CD4 
and STAT4 were considered to be hub genes of sepsis, 
and 6 lncRNAs (LINC00265, LINC00893, NDUFA6-
AS1, NOP14-AS1, PRKCQ-AS1 and ZNF674-AS1) 
that regulated the two genes abovementioned based 
on ceRNA theory were identified as potential key bio-
markers of sepsis. To further verify the reliability of our 
results, we downloaded another lncRNA expression 
profile (GSE217700) of sepsis from GEO database. By 
analyzing the high-throughput lncRNA expression pro-
file, 883 DElncRNAs were identified (Supplementary 

Table S3). There were two common shared DElncRNAs, 
namely LINC00265 and PRKCQ-AS1. The common 
shared DElncRNAs between 6 candidate lncRNAs and 
GSE217700 were statistically significant (P < 0.05) based 
on a hypergeometric test (Supplementary Figure S1). 
These findings further enhanced the credibility of our 
results. Collectively, these findings indicate that these 
hub lncRNAs were involved in the immunological and 
inflammatory processes underlying the pathogenesis of 
sepsis.

Evaluation of the circulating immune cell infiltration
The infiltration of 22 immune cells types was calculated 
in different samples of sepsis and controls by CIBER-
SORT immune subset deconvolution. The box plot 
presents the 22 immune cells types infiltration both 
in samples of sepsis and healthy controls (Fig.  6A). The 

Table 1  The information of SPIMC network
IRDEGs BCL2, CCR7, CD28, CD4, ETS1, FYN, IL10RA, JAK2, MAPK14, PTGER4, RORA, STAT4

miRNAs miR-181b, miR-27a, miR-141, miR-101, miR-26a, miR-15b, miR-181d, miR-16, miR-125a, miR-98, miR-30b, miR-
449a, miR-211, miR-153, miR-429, miR-7, miR-33b, miR-448, miR-181a, miR-503, miR-708, miR-199a, miR-145, 
miR-499a, miR-23b, miR-506, miR-193b, miR-221, miR-106b, miR-216a, miR-181c

LncRNAs CTBP1-AS2, EPB41L4A-AS1, FAM66C, LINC00265, LINC00667, LINC00894, MCM3AP-AS1, NDUFA6-AS1, PAXIP1-
AS2, PVT1, RUSC1-AS1, ZNF674-AS1, MIR600HG, PRKCQ-AS1, INE1, LINC01588, NOP14-AS1, TP73-AS1, DKFZ-
P434I0714, NFYC-AS1, FAM13A-AS1, LINC01547, LINC01579, WDFY3-AS2, LINC00996, TTC28-AS1, LINC00893

Fig. 4  Excavated and analysis of the SPIMC network. (A) Construction of the SPIMC network in sepsis. Red circles represent IRDEGs, green triangles rep-
resent miRNAs, and purple diamond represent lncRNAs. Lines represent interactions among them. (B) The GO function analysis of IRDEGs regulated by 
lncRNAs in the SPIMC network. The degree of enrichment increases from blue to red. The bigger circles suggest a more significant proportion of genes 
among GO function genes. (C) Pathway enrichment analysis of IRDEGs regulated by lncRNAs in the SPIMC network. The degree of enrichment increases 
significantly from blue to red. The bigger circles suggest a more significant proportion of genes among KEGG pathway genes
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sepsis groups generally stored a higher proportion of B 
cells memory (P = 0.0015), plasma cells (P = 0.0011), T 
cells gamma delta (P < 0.0001), monocytes (P < 0.0001), 
mast cell activated (P < 0.001), while the proportions of 
B cells naive (P < 0.0001), CD8+ T cells (P < 0.001), naive 
CD4+ T cells (P < 0.0001), memory resting CD4+ T cells 

(P < 0.0001), memory activated CD4+ T cells (P < 0.001), 
NK cells resting (P < 0.0001), macrophages M0, mac-
rophages M2 (P < 0.0001) and neutrophils (P < 0.0001) 
were relatively lower. Then, we estimated the correla-
tion between significant differences immune cell types 
in the degree of infiltration between sepsis and healthy. 

Fig. 5  Construction of a PPI network and screening key candidate lncRNA for sepsis. (A) The sepsis immune-related PPI network. Orange circles represent 
IRDEGs. The bigger and darker the node is, the higher degree the node has. Lines represent their regulatory interactions. (B) The module from sepsis 
immune-related PPI network is modularized by MCODE. (C) The interactions between the lncRNAs, hub genes and miRNAs. The first column represents 
genes, the second column represents miRNAs and the third column represents lncRNAs.
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As the correlation heatmap shown in (Fig.  6B), mono-
cytes and macrophages M2 (Spearman’s Corr = − 0.79), 
memory resting CD4+ T cells and monocytes (Spear-
man’s Corr = − 0.71), monocytes and neutrophils (Spear-
man’s Corr = − 0.68, p < 0.0001) showed the significant 
negative correlations, respectively. M2 macrophages and 

naive CD4+ T cells (Spearman’s Corr = 0.70), memory 
resting CD4+ T cells and M2 macrophages (Spearman’s 
Corr = 0.67), CD8+ T cells and M2 macrophages (Spear-
man’s Corr = 0.62) showed the significant positive corre-
lations, respectively.

Fig. 6  Immune cell infiltration analysis in sepsis. (A) Box plot of 22 kinds of immune cells infiltration between sepsis patients and healthy controls. Blue 
and red colors represent normal and sepsis samples, respectively. (B) The correlation analysis of the immune cells with significant differences. Red sug-
gests the positive correlation, blue suggests the negative correlation, and a darker colour suggests a stronger correlation. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001
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Analysis of correlation between the feature lncRNAs and 
immune cells
Finally, we estimated the correlation between the fea-
ture lncRNAs and 22 types of immune cells based on the 
co-expressed IRDEGs. The correlation was evaluated by 
using Spearman’s correlation coefficient based on the 
R software. The expression of CD4 displayed a strong 
positive correlation with Macrophages M2 and memory 

resting CD4+ T cells and displayed a strong negative cor-
relation with Monocytes and T cells gamma delta. While, 
the expression of STAT4 displayed a strong positive cor-
relation with Macrophages M2, memory resting CD4+ 
T cells and CD8+ T cells and displayed a strong nega-
tive correlation with T cells gamma delta and monocytes 
(Fig. 7). Furthermore, what is noteworthy is that CD4 was 

Fig. 7  Heatmap showing the correlation between feature lncRNAs and immune cells. The correlation coefficients were estimated by using Spearman’s 
correlation analysis; Red suggests the positive correlation, blue suggests the negative correlation, and a darker colour suggests a stronger correlation
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strongly positive correlated with the proportion of mac-
rophages M2 (r = 0.77).

Discussion
At present, the pathogenesis of sepsis is yet to be eluci-
dated, and there is a lack of timely diagnosis methods for 
sepsis. Recent researches have demonstrated that sep-
sis involves in the activation of immune responses [38] 
which is associated with the up-regulated of chemokines 
[39], proinflammatory cytokines [39], proteins released 
from activated platelets and neutrophils, coagulation 
factors and complement products [40, 41]. Immune 
response is the main pathological process of sepsis and 
participates in the regulation of sepsis process [42, 43]. 
Therefore, constructing the immune-associated ceRNA 
regulatory network could provide novel perspective on 
the cellular and molecular mechanisms of sepsis and 
help to elucidate the immune mechanism of sepsis. In 
present study, the integrated analysis and computational 
approach were performed by using gene expression pro-
files and experimentally verified interactions to explore 
immune-associated ceRNAs in sepsis.

We first investigated a global IMCE network based on 
the genes and lncRNAs compete for common miRNA. 
The highest degrees of lncRNAs (e.g. HAND2-AS1 and 
CASC2) in the network were identified as to be partici-
pated in immune or inflammatory responses in multiple 
diseases. Yang et al. found that HAND2-AS1 level was 
elevated in patients with hepatocellular carcinoma and 
its dysregulation related to immune response and meta-
bolic processes [44]. LncRNA CASC2 was found to bind 
with miR-27b, and alleviated LPS‑induced injury in acute 
lung injury cell model by inhibiting apoptosis and inflam-
matory cytokine production [45]. Consequently, con-
struction of the global network has shown that lncRNAs 
commonly modulate immune processes in various dis-
eases; this provides an important background for the 
immunopathogenesis of sepsis.

We constructed a SPIMC network by mapping the 
IRDEGs to the global IMCE network and then identi-
fied the functions of lncRNAs. Functional enrichment 
analysis revealed that they can play important roles in 
sepsis development. The GO function results indicated 

that lncRNAs in SPIMC network were mostly involved 
in the biological processes related with regulation of 
inflammatory response (GO:0050727), T cell activation 
and differentiation (GO:0042110, GO:0030217), regu-
lation of inflammatory response to antigenic stimulus 
(GO:0002861). Similarly, the results of KEGG pathways 
assessments showed that these lncRNAs co-expressed 
IRDEGs several enriched immune-related pathways. 
The results of the original dataset showed that immune 
inflammatory responses might play important roles in 
the development of sepsis [46]. Our findings also indi-
cated that several significant inflammation or immune 
related biological pathways were closely concerned with 
sepsis, which is partially similar to the results of the 
original dataset. Our present findings suggested that the 
lncRNA might result in the abnormal expression of genes 
which might lead to the dysregulation of key pathways, 
thus leading to the occurrence and progression of sepsis. 
Therefore, these lncRNAs may play important roles in 
the immune mechanism of sepsis.

Modularization can dissect complex network into 
specific modules and the genes within these modules 
may play an important functional role. Then, we estab-
lished a PPI network based on 12 IRDEGs that obtained 
from the SPIMC network and identified module and hub 
genes (detail information are shown in Table 2). Further-
more, by analyzing the network, the CD4 and STAT4 had 
higher degrees in the PPI network and we identified 6 
hub lncRNAs-mediated ceRNA interaction pairs featur-
ing the two hub genes. To further verify reliability of our 
results, based on the IRDEGs in the SPIMC network, we 
applied two machine learning algorithms (LASSO and 
SVM-RFE) to further filter the hub genes. As a result, 
8 IRDEGs were obtained by the LASSO regression 
algorithm (Supplementary Figure S2A). Meanwhile, 8 
IRDEGs were featured by SVM-RFE algorithm (Supple-
mentary Figure S2B). There were 3 common shared IRD-
EGs (CD4, STAT4, CD28) between LASSO, SVM-REF 
and module analysis of PPI network (Supplementary Fig-
ure S2C). These findings enhanced the credibility of our 
results.

These key genes are not only hub genes but are IRD-
EGs in sepsis, that may be potential targets for sepsis 
regulation. Recently, several studies indicated that CD4 
and STAT4 could be participated in the development of 
sepsis. The dysregulation expression of STAT4 genes in 
monocytes of sepsis patients may inhibit its therapeu-
tic potential [47]. As a result, we obtained 6 lncRNAs 
as biomarkers (LINC00265, LINC00893, NDUFA6-
AS1, NOP14-AS1, PRKCQ-AS1 and ZNF674-AS1) that 
were closely associated with immune and inflammatory 
response in sepsis. Previous research has shown that 
the expression of lncRNA LINC00265 was up-regu-
lated in osteoarthritis patients and directly suppressed 

Table 2  Top 6 hub genes identified by MOCODE
Gene symbol Node 

degree
Description

CD4 10 CD4 molecule

STAT4 7 signal transducer and activator of 
transcription 4

JAK2 5 Janus kinase 2

IL10RA 5 Interleukin 10 receptor subunit alpha

CD28 5 CD28 molecule

CCR7 5 C-C motif chemokine receptor 7
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the expression of miR-101-3p; conversely, LINC00265 
knockdown alleviated cell apoptosis and inflammation 
induced by caspase-3 in osteoarthritis [48]. Additionally, 
lncRNA LINC00893 regulated the suppressor of SOCS3/
JAK2/STAT3 pathway by acting as a ceRNA to bind with 
miR-3173-5p in patient with prostate cancer [49]. The 
activation of JAK/STAT signaling pathways has diverse 
functions in the pathogenesis of sepsis [50]. Moreover, 
lncRNA ZNF674-AS1 was found that directly interacted 
with miR-181a to regulate the expression of SOCS4 [51]. 
SOCS4 gene may be a potential regulator to inhibit cyto-
kine storm and cytokine overproduction in mouse mod-
els infected with the virus [52]. Though these lncRNAs 
have been demonstrated by previous researches are not 
specific for sepsis, these results elucidate that our meth-
ods for identifying immune-related lncRNAs in sepsis 
are reliable. The disturbance of immune homeostasis 
affects the occurrence and development of sepsis, so the 
early diagnosis of sepsis is particularly important. These 
findings will be helpful to identify new biomarkers for 
the diagnosis in patients with sepsis. However, the exact 
function of the other lncRNAs in the SPIMC network 
remains unknown, which may be the novel regulators in 
the immune pathogenesis of sepsis and requires further 
research to be fully clarified.

Increasing evidence documented that immune cells 
undergo numerical and functional abnormalities in the 
pathogenesis of sepsis [53, 54]. Thus, we determined 
the immune subsets infiltration between healthy con-
trols and sepsis patients by CIBERSORT algorithm. The 
results of circulating immune cell infiltration showed 
the higher proportions of B cells memory, plasma cells, 
T cells gamma delta, monocytes and mast cell activated 
in sepsis group, while with lower proportions of B cells 
naive, CD8+ T cells, naive CD4+ T cells, memory acti-
vated CD4+ T cells, memory resting CD4+ T cells, NK 
cells resting, macrophages M0, macrophages M2 and 
neutrophils, indicating these cells may be related to the 
progression and occurrence of sepsis. Interestingly, we 
found that T cell subsets were significantly correlated 
with sepsis, and the proportion of naive CD4+ T cells, 
memory activated CD4+ T cells, memory resting CD4+ T 
cells and CD8+ T cells in sepsis patients decreased signif-
icantly. These results consistent with the novel viewpoint 
about sepsis. Previous study efforts have highlighted that 
the immunosuppression and immune activation through-
out the course of the sepsis [55, 56]. Dysfunction of the 
innate immune system and immunosuppression of the 
adaptive immune system could lead to the unbalanced 
and persistent inflammatory and anti-inflammatory 
responses [54–56]. Therefore, maintaining the immune 
system homeostasis and studying the molecular regula-
tion mechanism of lncRNA in T cells in the pathogene-
sis of sepsis will help us develop new therapies targeting 

lymphocytes or cytokines to improve patient prognosis 
and reduce mortality.

Furthermore, we determined the correlations of feature 
lncRNAs co-expressed genes and infiltrating immune 
cells by Spearman’s correlation analysis. Strikingly, 
LINC00265 co-expressed gene CD4 was strongly corre-
lated with the proportion of M2 macrophages. Of note, 
LINC00265/miR-101-3p/TOP2A have been found to 
regulate the immune checkpoints expression and modu-
late the immune status by positively correlated with mac-
rophages in hepatocellular carcinoma [57]. However, 
there were still some limitations in our methods. Because 
of the inconsistent symbols of database, a great deal of 
mRNAs and lncRNAs might be lost during the process 
of integrating the data, which may decrease our result 
unfortunately. Therefore, we mapped these miRNAs to 
miRBase [27] and RNAcentral [28] for uniform naming, 
thus trying to make the data more accurate. Moreover, 
the information about these sophisticated lncRNAs and 
immune cells interacting processes are currently lacking, 
identifying the molecular mechanisms and functional 
of immune cell infiltration in sepsis would be future 
research direction. Finally, because of the small number 
of samples from patients with sepsis, some identified 
lncRNAs may be false positives. In future studies, we will 
continue to concentrate and collecting experimental data 
to further explore the in vivo roles of lncRNAs in sepsis 
pathogenesis.

Conclusion
In conclusion, we identified 6 lncRNAs (LINC00265, 
LINC00893, NDUFA6-AS1, NOP14-AS1, PRKCQ-AS1 
and ZNF674-AS1) related to the immune pathogenesis 
of sepsis and LINC00265 was strongly correlated with 
the proportion of M2 macrophages. The global IMCE 
and SPIMC network constructed in our present research 
could provide a comprehensive strategy for excavat-
ing the molecular basis of sepsis. Our study is the first 
to comprehensively analysis to the molecular biologi-
cal characteristics in the immune process of sepsis and 
presented a new direction to identify immune-related 
biomarkers in sepsis, which may serve as the potential 
therapeutic targets for immune therapy treatment in 
patients with sepsis.
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