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Abstract 

Background As the characteristic functional component in ginger, gingerols possess several health-promoting 
properties. Long non-coding RNAs (lncRNAs) act as crucial regulators of diverse biological processes. However, lncR-
NAs in ginger are not yet identified so far, and their potential roles in gingerol biosynthesis are still unknown. In this 
study, metabolomic and transcriptomic analyses were performed in three main ginger cultivars (leshanhuangjiang, 
tonglingbaijiang, and yujiang 1 hao) in China to understand the potential roles of the specific lncRNAs in gingerol 
accumulation.

Results A total of 744 metabolites were monitored by metabolomics analysis, which were divided into eleven 
categories. Among them, the largest group phenolic acid category contained 143 metabolites, including 21 gingerol 
derivatives. Of which, three gingerol analogs, [8]-shogaol, [10]-gingerol, and [12]-shogaol, accumulated significantly. 
Moreover, 16,346 lncRNAs, including 2,513, 1,225, and 2,884 differentially expressed (DE) lncRNA genes (DELs), were 
identified in all three comparisons by transcriptomic analysis. Gene ontology enrichment (GO) analysis showed 
that the DELs mainly enriched in the secondary metabolite biosynthetic process, response to plant hormones, 
and phenol-containing compound metabolic process. Correlation analysis revealed that the expression levels of 11 
DE gingerol biosynthesis enzyme genes (GBEGs) and 190 transcription factor genes (TF genes), such as MYB1, ERF100, 
WRKY40, etc. were strongly correlation coefficient with the contents of the three gingerol analogs. Furthermore, 7 
and 111 upstream cis-acting lncRNAs, 1,200 and 2,225 upstream trans-acting lncRNAs corresponding to the GBEGs 
and TF genes were identified, respectively. Interestingly, 1,184 DELs might function as common upstream regula-
tors to these GBEGs and TFs genes, such as LNC_008452, LNC_006109, LNC_004340, etc. Furthermore, protein–protein 
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interaction networks (PPI) analysis indicated that three TF proteins, MYB4, MYB43, and WRKY70 might interact 
with four GBEG proteins (PAL1, PAL2, PAL3, and 4CL-4).

Conclusion Based on these findings, we for the first time worldwide proposed a putative regulatory cascade 
of lncRNAs, TFs genes, and GBEGs involved in controlling of gingerol biosynthesis. These results not only provide 
novel insights into the lncRNAs involved in gingerol metabolism, but also lay a foundation for future in-depth studies 
of the related molecular mechanism.

Keywords Ginger, Metabolomics, Transcriptomics, Long non-coding RNAs, Gingerol biosynthesis

Background
Ginger (Zingiber officinale Roscoe), a perennial herb 
belonging to the Zingiberaceae family, has been widely 
used worldwide as a spice and medicine for over 
2,000  years [1, 2]. Ginger contains more than 60 bioac-
tive compounds, such as phenolic compounds, terpenes, 
polysaccharides, lipids, and raw fibers. Among them, 
phenolic compounds, especially gingerols, representing a 
series of phenol analogs consisting of shogaols, paradols, 
and gingerone, are the characteristic health-promoting 
constituent for ginger [2, 3]. Notably [6]-gingerol is of 
higher abundance component [2, 4]. For example, Jiang 
et  al. monitored the contents of gingerols in ginger rhi-
zomes by liquid chromatography-tandem mass spec-
trometry (LC–MS) analysis. The results exhibited that 
[6]-gingerol was the major constituent of gingerols with a 
mean value of 195.87 μg/g; whereas the contents of other 
gingerols, such as [8]-gingerol and [10]-gingerol, were 
much lower [5]. Now, clinical studies have shown that 
gingerols, specifically [6]-gingerol, are promising in the 
treatment of degenerative disorders, vomiting, and can-
cer [6]. Additionally, gingerols are also proved to exhibit 
anti-inflammatory and antioxidant properties [7]. There-
fore, gingerols possess important medicinal value.

Recently, based on available findings, we proposed a 
backbone biosynthetic pathway for gingerols based on 
chromosome-scale reference genome assembly, metabo-
lomics, and transcriptome analysis [2]. Briefly, this com-
plicated pathway is composed of two consecutive steps 
and 12 gingerol biosynthesis enzyme gene (GBEG) fami-
lies involved in phenylalanine ammonia lyase gene (PAL), 
cinnamate 4-hydroxylase gene (C4H), 4-coumarate-
CoA ligase gene (4CL), p-coumaroyl shikimate trans-
ferase gene (CST), p-coumaroyl 5-O-quinate/shikimate 
3’-hydroxylase gene (C3’H), caffeic acid 3-O-methyltrans-
ferase gene (C3OMT), caffeoyl-CoA O-methyltransferase 
gene (CCOMT), caffeoylshikimate esterase gene (CSE), 
polyketide synthase gene (PKS), NADPH-dependent 
alkanal/one oxidoreductase gene (AOR), dehydrogenase 
gene (DHN), and dehydratase gene (DHT) [2]. The first 
part is mainly composed of the catalysis the formation of 
feruloyl-CoA catalyzed from L-phenylalanine, which is 
also the main synthesis pathway of lignin or anthocyanins 

[8, 9]. Therefore, the enzymes that participate in this pro-
cess are relatively conserved in most plants [2]. The spe-
cific enzymes to the Zingiberaceae family, such as PKS, 
AOR, DHN, and DHT, are involved in the second steps of 
the pathway and contribute to the catalysis the formation 
of gingerols from feruloyl-CoA [2, 10]. Meanwhile, tran-
scription factors (TFs) from several families are involved 
in controlling gingerols biosynthesis, such as v-myb avian 
myeloblastosis viral oncogene homolog (MYB), basic leu-
cine zipper (bZIP), DNA binding with one finger (DOF), 
and basic helix-loop-helix (bHLH) [2, 4].

Long non-coding RNA genes (lncRNAs), previously 
considered as expression noise of protein-coding genes, 
are a class of transcripts with a length > 200 bp and lack 
of coding ability [11, 12]. Notably, lncRNAs are primar-
ily divided into three categories according to their loca-
tion in the genome, including long intergenic lncRNAs 
(lincRNAs), intronic lncRNAs, and antisense lncRNAs 
[13]. With the development of next-generation sequenc-
ing technologies, abundant lncRNAs have been identi-
fied in diverse plant species, such as melon (Cucumis 
melo L.), kiwifruit (Actinidia chinensis), rice (Oryza 
sativa), Chinese plum (prunus mume), and cabbage 
(Brassica rapa L.) [12, 14–17]. The expression levels of 
most human lncRNA genes are lower than those of pro-
tein-coding genes, and lncRNA genes are not conserved 
even for closely related species [18]. In recent years, a 
number of lncRNAs have been reported to involve in 
diverse plant biological processes, such as plant growth, 
flowering, anthocyanin biosynthesis, and biotic/abiotic 
stress. For example, a lncRNA salicylic acid biogenesis 
controller 1 (SABC1) functions as a molecular switch to 
balance plant defense and growth in Arabidopsis [19]. 
In healthy plants, SABC1 represses the expression of its 
neighboring gene NAC3 via H3K27me3, which further 
inhibits the transcription of the isochorismate synthase 
1 (ICS1) responsible for salicylic acid (SA) biosynthe-
sis. Conversely, the repression by SABC1 was released 
to enhance plant resistance to pathogen infection [19]. 
Moreover, the lncRNA AUXIN REGULATED PRO-
MOTER LOOP (APOLO) interacts with the transcrip-
tion factor WRKY42 to control the transcription of 
ROOT HAIR DEFECTIVE 6 (RHD6), ultimately leading 
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to the root-hair elongation [20]. In apples, the lncRNA 
MdLNC610 positively regulates high light-induced 
anthocyanin accumulation through modulating the 
expression of MdACO1 and inducing the ethylene pro-
duction [21]. Furthermore, two lncRNAs, cold-induced 
antisense intragenic RNA (COOLAIR) and cold-assisted 
intronic non-coding RNA (COLDAIR), are identified to 
promote flowering in Arabidopsis by silencing the floral 
repressor Flowering Locus C (FLC) [22, 23]. Interestingly, 
some lncRNAs act as endogenous target mimics (eTM) 
to interrupt the binding of microRNAs (miRNAs) to their 
targets [24]. For example, overexpression of the lncRNA 
TCONS_00021861 confers tolerance to drought stress in 
rice by means of attenuating the repression of miR528-
3p to the expression of critical auxin biosynthesis gene 
YUCCA7 [25]. These findings clearly demonstrated that 
lncRNAs play a vital regulatory role in plant growth and 
secondary metabolism.

However, lncRNAs in ginger are not yet identified so 
far, and the relationship between lncRNAs and gingerol 
biosynthesis remains still unknown. Recently, a study 
based on integrative transcriptome and phytochemical 
analyses has unraveled the critical lncRNAs modulat-
ing secondary metabolites in Oolong tea [26]. Accord-
ingly, in this study, we firstly characterized metabolites 
in the mature rhizomes of three main ginger cultivars 
in China: leshanhuangjiang (lshj), tonglingbaij (tlbj), and 

yujiang 1 hao (yj1h). To identify ginger lncRNAs and to 
investigate the regulatory role of them in gingerol biosyn-
thesis, genome-wide high-throughput sequencing was 
performed. Subsequently, lncRNAs involved in gingerol 
biosynthesis were tentatively identified and characterized 
through integrating analysis of transcriptome and metab-
olome. Finally, a putative regulatory network of lncRNAs, 
GBEGs, and TF genes, were proposed. The results not 
only highlight novel insights into the understanding of 
the gingerol biosynthesis in ginger, but also lay a basis for 
functional research of the candidate lncRNAs.

Results
Metabolites in the rhizomes of three ginger cultivars
In total, 744 metabolites were identified by an ultra-per-
formance liquid chromatography-electrospray ionization 
tandem triple quadrupole /mass spectrometry (UPLC-
ESI–MS/MS), which were divided into eleven categories 
(Fig.  1B, Fig. S1, Table S2). Among them, the phenolic 
acid category contained 143 metabolites, which was 
the largest group, followed by lipids, flavonoids, amino 
acids and derivatives, others, organic acids, nucleotides 
and derivatives, alkaloids, lignans and coumarins, terpe-
noids, and tannins (Fig. 1B). The amounts of [6]-gingerol, 
[8]-gingerdione, [6]-shogaol, [10]-shogaol, and [8]-gin-
gerol were the top five compounds in phenolic acid  
category (Table S2). Moreover, lysoPC 18:2(2n isomer),  

Fig. 1 A The phenotypes of mature rhizomes of the three ginger cultivars. Scale bar = 5 cm. B The pie chart of 744 metabolites. C The PCA analysis 
of metabolite data. The x-axis represents principal component 1 (PC1); the y-axis represents principal component 2 (PC2); the three ginger varieties 
are distinguished by different colors. D HCA analysis based on the relative content of metabolites in the rhizomes of three ginger varieties
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diosmetin-7-O-rutinoside (diosmin), L-isoleucine, 5-hydroxy- 
1,7-bis(4-hydroxy-3-methoxyphenyl)heptan-3-one, citric 
acid, adenosine, spermine, 7-methoxy-5-prenyloxycou-
marin, nootkatol, and procyanidin B3, were the highest 
compound in other ten metabolic categories, respectively 
(Table S2). These results imply that ginger rhizomes are 
rich in various bioactive compounds, especially phenolic 
acids.

Next, these metabolites were analyzed by principal 
component analysis (PCA). The results showed that 
lower variability was found among the three biologi-
cal replicates for each ginger cultivar (Fig.  1C). Princi-
pal component 1 and principal component 2 accounted 
for 50.76% and 28.84% of the metabolic variance among 
these samples, respectively, and resulting in a distinct 
separation of three cultivars. Furthermore, hierarchical 
cluster analysis (HCA) was conducted to detect changes 
in metabolites in all samples based on their relative con-
tents (Fig.  1D). Consistent with the results of the PCA 
analysis, the HCA results showed that the contents of 
most metabolites detected in the rhizomes had high het-
erogeneity between different ginger cultivars, while there 
was high homogeneity among the three biological repli-
cates of each variety. Furthermore, the correlation among 

all metabolite data was analyzed, as shown in Fig. S2. 
These results suggest that there was a good correlation 
among replicates.

The metabolic diversity in the rhizomes of three ginger 
cultivars
The contents of 200 metabolites were differentially accu-
mulated between leshanhuangjiang (lshj) and yujiang 1 
hao (yj1h); 109 metabolites showed diverse enrichment 
in tonglingbaij (tlbj) vs. leshanhuangjiang (lshj); and 228 
metabolites exhibited different changes in tonglingbaij 
(tlbj) vs. yujiang 1 hao (yj1h) (Fig.  2C, Tables S3-S5). 
Of them, 35 metabolites showed altered accumulation 
among all pairwise comparisons, including one amino 
acid and its derivative, fifteen flavonoids, two lignans 
and coumarins, five lipids, one nucleotide, and its deriva-
tive, four organic acids, three phenolic acids, one tan-
nin, and three other metabolites (Fig.  2C). Additionally, 
based on K-means analysis, all metabolites with diverse 
accumulation in three cultivars could be divided into 
eight subclasses (Fig.  2A). In these subclasses, cultivar-
specific subclasses were identified. For instance, tlbj was 
rich in metabolites in subclasses 1 and 4; and lshj was 
rich in metabolites in subclasses 2, 3, and 7. However, the 

Fig. 2 A K-means clustering groups of the differentially accumulated metabolites of the three ginger varieties. The y-axis represents 
the standardized content per metabolite, and the x-axis represents the different varieties. B The heat map of the content of 24 gingerol analogs 
and 5 biosynthetic substrates of gingerols in three ginger varieties. Different colors represent different contents, blue represents the lower contents, 
and red represents the higher contents. C Venn diagram of the differentially accumulated metabolites shared among two or three comparisons
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metabolites in subclasses 5 and 8 were the richest in yj1h 
(Fig. 2A).

As for the importance of gingerols in ginger, we specifi-
cally compared the contents of the gingerols and gingerol 
biosynthetic substrates in this study. Noticeably, a total of 
24 gingerol analogs were identified in these metabolites 
(Fig. 2B). Of which, 21 gingerol analogs were identified in 
the phenolic acid category and the other three were mon-
itored in the others group (Table S2). Moreover, five gin-
gerol biosynthetic substrates (L-phenylalanine, cinnamic 
acid, p-coumaric acid, caffeic acid, and ferulic acid), were 
also identified (Fig. 2B, Table S2). Notably, three deriva-
tives of gingerols were clearly different. The [8]-shogaol 
(p < 0.001), [10]-gingerol (p < 0.001), and [12]-shogaol 
(p < 0.001) contents in the rhizomes of lshj were sig-
nificantly higher than those in yj1h (Fig.  2B, Table S3). 
Similarly, the amounts of [12]-shogaol in tlbj were mark-
edly higher (p < 0.001) than those in yj1h (Fig. 2B, Table 
S5). Additionally, compared to lshj, the accumulation 
of [8]-shogaol was significantly lower (p < 0.001) in tlbj 
(Fig. 2B, Table S4).

High‑throughput sequencing and genome‑wide 
identification of lncRNAs in ginger
Totally, 93,500,930, 87,662,184, 88,946,816, 81,385,016, 
95,576,162, 93,040,956, 185,002,632, 89,949,264 and 
92,583,882 raw reads were gained from 9 libraries, 
respectively. Correspondingly, 92,361,278, 86,356,308, 

87,596,080, 80,088,006, 94,078,706, 91,776,760, 
181,826,106, 88,852,328, and 91,640,532 clean reads 
with high Q20 and Q30 were obtained from each library, 
respectively (Table S6). Of the 69.60%–80.88% clean 
reads which could be mapped to our Z. officinale Roscoe 
genome, 56.80%–64.13% of them were uniquely mapped 
reads (Table S7). In total, 16,346 lncRNAs were identified 
(Fig.  3A, Tables S8). According to the genomic location 
relationship between lncRNAs and known protein-cod-
ing genes, these lncRNAs were divided into three catego-
ries: 12,661 (77.4%) long intergenic lncRNAs (lincRNAs, 
that do not overlap with the exons of any other genes), 
978 (6.0%) antisense lncRNAs (those are located on the 
opposite strand of a known protein-coding gene and 
transcribed in the antisense direction), and 2,707 (16.6%) 
intronic lncRNAs (that are located and transcribed 
within introns of known protein-coding genes) (Fig. 3B). 
Moreover, the length, exon number, and chromosome 
distribution of the lncRNAs were compared with those 
of the protein-coding genes. The results showed that the 
length of most lncRNAs was 201–1,000 nt, and the num-
ber of lncRNAs gradually decreased along with increas-
ing transcript length. Furthermore, the length of the 
lncRNAs ranged from 201 to 11,020 bp, with an average 
length of 789 bp (Table S8). Interestingly, protein-coding  
genes over 4,000 nt in length were higher in number in 
our RNA-seq data (Fig. 3C). Furthermore, most lncRNAs  
had fewer than six exons, whereas more than 15,000 

Fig. 3 Identification and characterization of lncRNAs and protein-coding genes in three ginger varieties. A Venn diagram analysis of identified 
lncRNAs using CPC2, CNCI, and PLEK software. B The proportions of different types of lncRNAs. C Comparison of transcript length between lncRNAs 
and protein-coding genes. D Comparison of the exon number between lncRNAs and protein-coding genes. E Genomic locations of all the lncRNAs 
and protein-coding genes
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protein-coding genes possessed more than 10 exons 
(Fig.  3D). Additionally, these lncRNAs were distributed 
on 11 chromosomes, with the largest numbers on chro-
mosomes 4 and 6, respectively (Fig.  3E). It also showed 
that the expression levels of lncRNAs were lower than 
those of protein-coding genes (Fig. S3).

Identification of differentially expressed lncRNA genes 
(DELs) and protein‑coding genes (DEPCGs)
To screen for differentially expressed (DE) lncRNA genes 
and protein-coding genes in the three ginger cultivars, 
three pairwise comparisons were analyzed in this study. 
Based on the threshold value of |log2(fold change)|> 1 
and an adjusted p-value < 0.05, 2,513 (2,013 upregulated 
and 510 downregulated), 1,225 (791 upregulated and 434 
downregulated), and 2,884 (2,520 upregulated and 364 
downregulated) DELs were identified in the comparisons 
between lshj vs. yj1h, tlbj vs. lshj, and tlbj vs. yj1h, respec-
tively (Fig. S4A-C, Table S9-S11). Venn analysis revealed 
that 129 DELs exhibited transcriptional changes in all 
three comparisons (Fig. S4D). In addition, 3,898 (2,339 
upregulated and 1,559 downregulated), 2,281 (1,104 
upregulated and 1,177 downregulated), and 4,221 (2,613 
upregulated and 1,608 downregulated) DEPCGs were 
identified in the comparisons of lshj vs. yj1h, tlbj vs. lshj, 
and tlbj vs. yj1h, respectively (Fig. S5A-C, Table S12-S14). 
Of which, 181 DEPCGs were shared in all three compari-
sons via the Venn analysis (Fig. S5D). Additionally, the 
K-means analysis showed that these DELs were divided 
into four types of expression patterns in the three gin-
ger cultivars. The expression levels of DELs in subclasses 
1 and 4 were the highest in the rhizomes of yj1h. Con-
versely, the DELs transcripts in subclasses 2 and 3 were 
higher in lshj and tlbj, respectively (Fig. S6A). Noticeably, 
the K-means analysis exhibited that these DEPCGs were 
divided into ten types of different expression patterns. 
For example, the DEPCGs expression levels in subclasses 
1, 4, 7, and 8 were higher in yj1h, while the transcripts 
of DEPCGs in subclasses 6, 9, and 10 were higher in tlbj; 
conversely, the DEPCGs in subclasses 2, 3, and 5 showed 
higher expression levels in lshj (Fig. S6B).

Analysis of potential DEPCG targets of DELs
DEPCG targets located within 100 kb upstream or down-
stream of DELs were screened as potential cis-regulated 
targets of DELs [27]. 883 out of 2,513, 350 out of 1,225, 
and 1,123 out of 2,884 DELs identified potential cis-
regulated targets in lshj vs. yj1h, tlbj vs. lshj, and tlbj vs. 
yj1h, respectively. Several DELs possessed at least two 
DEPCG targets (Fig. S7A, Table S15-S17). In addition, 
we screened DEPCGs showing similar expression pat-
terns to those of DELs, which were defined as potential 
trans-regulated targets of DELs [28]. 1,437 out of 2,513, 

1,222 out of 1,225, and 1,358 out of 2,884 might play a 
trans-acting role in the regulation of DEPCGs. Similarly, 
those DELs might function as common upstream regu-
lators to abundant DEPCGs (Fig. S7B, Table S18). Next, 
to validate the results of potential DEPCG targets of 
DELs, qRT-PCR was performed. The expression patterns 
of 11 DEPCGs and 11 corresponding DELs were moni-
tored. Among them, ZoLNC_008531, ZoLNC_008529, 
ZoLNC_010979, and ZoLNC_007353 regulated the 
expression levels of ZoPAL1, ZoPAL2-like, ZoCSE-
7, and ZoAOR1, respectively, in the cis-acting model. 
The ZoLNC_003688, ZoLNC_002194, ZoLNC_011938, 
ZoLNC_006429, ZoLNC_000552, ZoLNC_005593, as 
well as ZoLNC_000739 responded to control the tran-
scripts of ZoPAL2, Zo4CL-like, ZoPAL6, ZoPAL-like, 
Zo4CL-4, ZoPAL3, and ZoPKS14 in the trans-acting 
model. The expression patterns of the selected DELs and 
DEPCGs determined by qRT-PCR were consistent with 
those in the RNA-seq data  (R2 = 0.8832) (Fig. 4, Fig. S8). 
This suggested that the results of potential DEPCG tar-
gets of DELs were highly reliable.

Functional analysis of DELs based on their potential 
targets
Based on the cis- and trans-acting models, the functions 
of the DELs were first analyzed through Gene Ontology 
(GO) enrichment analysis in the three comparisons. For 
instance, the DELs involved in the secondary metabolite 
biosynthetic process (GO:0044550), response to plant 
hormones (GO:0009753, GO:0010337), and phenol-con-
taining compound metabolic process (GO:0018958), etc., 
were enriched (Fig. S9).

In addition, functional prediction of the DELs was 
performed using the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analyses (Fig.  5). The 
DELs functioned in the plant hormone signal transduc-
tion (ko04075), biosynthesis of secondary metabolites 
(ko01110), phenylpropanoid biosynthesis (ko00940), 
MAPK signaling pathway (ko04016), etc., were enriched 
(Fig. 5).

The contributions of DELs to gingerol biosynthesis 
by targeting the key enzyme genes and transcription 
factor genes in ginger rhizomes
To obtain the DELs that participated in the regulation 
of gingerol biosynthesis, we first screened differentially 
expressed (DE) gingerol biosynthesis enzyme genes 
(GBEGs) in the three comparisons. Totally, 22 DE GBEGs 
were identified (Fig.  6A). Subsequently, a correlation 
analysis was constructed between three significantly dif-
ferent gingerols ([10]-gingerol (mws1561), [12]-shogaol 
(Hmsp008976), and [8]-shogaol (Hmsp008707)) and 
22 DE GBEGs (Table S19). Interestingly, the expression 
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levels of 11 DE GBEGs (PAL-like, PAL1, PAL2, PAL2-like, 
PAL3, PAL6, AOR1, 4CL-4, 4CL-like, CSE7, and PKS14) 
showed a high correlation coefficient with the contents 
of three gingerol analogs (p-value < 0.01), Table S20). 
Moreover, DELs with a potential role in controlling the 
11 GBEGs were screened. Among them, PAL1, PAL2-
like, PAL3, CES-7, and AOR1 could be targeted by 7 DELs 
using a cis-acting model (Table S21). Using a trans-acting 
model, 1,200 DELs were identified as upstream regula-
tors to the 11 GBEGs (Fig. 6B, Table S22). Interestingly, 
some DELs may target several gingerol biosynthesis 
enzyme genes. For example, three DELs (LNC_014041, 
LNC_008010, and LNC_005460) have been identified 
as potential regulators of at least seven gingerol biosyn-
thetic enzyme genes (Fig. 6B, Table S21, S22).

Next, we screened the differentially expressed tran-
scription factor (DE TF) genes, which expression pat-
terns shown a high correlation coefficient with the 
contents of three gingerol analogs in three ginger cul-
tivars (p-value < 0.01). A total of 190 DE TF genes were 
identified, which were grouped into 32 TF families 
(Fig. 6C, Table S23). Among them, 24 TF genes belonged 
to MYB TF family, which were the largest group, fol-
lowed by ERF TF family (19 members), NAC TF family 
(16 members), C3H TF family (15 members), HD-ZIP TF 
family (14 members), etc. (Fig. 6C, Table S23). Cis-acting 
model analysis indicated that 83 out of 190 TF genes pos-
sessed their corresponding 111 upstream cis-regulating 

DELs (Table S24). Interestingly, all 190 TF genes could 
be targeted by 2,225 trans-regulating DELs (Fig.  6D, 
Table S25). Moreover, we analyzed the potential interac-
tion proteins to 11 GBEGs by protein–protein interac-
tion networks (PPI) analysis. 44 proteins were identified 
to interact with 4 GBEGs including PAL1, PAL2, PAL3, 
and 4CL4. Among them, 3 TF proteins (MYB4, MYB43, 
and WRKY70) and 2 flavonoid biosynthesis related pro-
teins (TT4 and TT7) were found (Fig. 6E). Based on these 
results, a network of multiple critical lncRNAs in gin-
gerol biosynthesis was constructed (Fig.  6F). However, 
further studies are needed to better understand their 
molecular mechanisms.

Discussion
In the present study, a total of 744 metabolites were iden-
tified in the ginger rhizomes using an ultra-performance 
liquid chromatography-electrospray ionization tandem 
triple quadrupole/mass spectrometry (UPLC-ESI–MS/
MS), including 24 gingerol derivatives and 5 biosynthetic 
substrates of gingerols (Figs. 1 and 2, Table S2). The num-
ber of metabolites was higher than that measured by an 
ultra-performance liquid chromatography-electrospray 
ionization tandem triple quadrupole/mass spectrometry 
(UPLC-MS/MS) analysis [1]. This suggests that UPLC-
ESI–MS/MS is a powerful tool for detecting metabolites 
in ginger; and a similar effect was observed in buck-
wheat [29]. Additionally, these differentially accumulated 

Fig. 4 The relative expression levels of 11 gingerol biosynthesis genes and 11 corresponding lncRNAs in three ginger varieties by qRT-PCR. The 
values represent the means ± SD (n = 3) with three biological replicates
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Fig. 5 Statistical analysis of KEGG pathway enrichment of DELs based on the cis-acting model in the three comparisons of lshj vs. yj1h (A), tlbj 
vs. lshj (B), and tlbj vs. yj1h (C); or based on the trans-acting model in the three comparisons of lshj vs. yj1h (D), tlbj vs. lshj (E), and tlbj vs. yj1h (F). 
The color and the size of the circle represent the p-value and the number of DELs enriched in each pathway, respectively. Rich factor represents 
the ratio of the number of differentially expressed genes in one KEGG pathway to the total number of the genes detected in this pathway. KEGG 
is developed by Kanehisa Laboratories (https:// www. kegg. jp/ kegg/ kegg1. html)

(See figure on next page.)
Fig. 6 A The heat map of the expression levels of 22 differentially expressed gingerol biosynthesis enzyme genes. Different colors represent 
different expression levels, blue represents the lower expression levels, and red represents higher transcripts. B Co-expression network of 3 gingerol 
analogs ([10]-gingerol (mws1561), [12]-shogaol (Hmsp008976), and [8]-shogaol (Hmsp008707)), 11 gingerol biosynthetic genes as well as their 
corresponding 1,200 trans-acting lncRNAs. The different marker size was used to represent metabolites, GBEGs and lncRNAs, respectively. The largest 
markers represent metabolites, medium markers represent genes, and small markers represent lncRNAs. C The pie chart of 190 TF genes showing 
a high correlation coefficient with 3 gingerol analogs. The count of TF genes belonging to each TF families are given in parenthesis D Co-expression 
network of 3 gingerol analogs ([10]-gingerol (mws1561), [12]-shogaol (Hmsp008976), and [8]-shogaol (Hmsp008707)), 190 TF genes as well as their 
corresponding 2,225 trans-acting lncRNAs. The different marker size was used to represent metabolites, TF genes and lncRNAs, respectively. The 
largest markers, medium markers, as well as small markers represent metabolites, genes, and lncRNAs, respectively. E Protein–protein interaction 
networks (PPI) of 4 GBEGs proteins (PAL1, PAL2, PAL3, and 4CL-4) and their potential 44 interaction proteins. F The three-tier regulatory model 
for lncRNAs regulation of gingerol biosynthesis in ginger. lncRNAs could regulate the biosynthesis of gingerols via directly or indirectly modulating 
the GBEGs expression under cis/trans-acting models. Furthermore, lncRNAs could directly or indirectly control the transcripts of TFs genes 
under cis/trans-acting models, which then directly or indirectly modulate GBEGs expression to regulate gingerol biosynthesis. Meanwhile, these TFs 
also could directly or indirectly feedback control lncRNAs expression

https://www.kegg.jp/kegg/kegg1.html
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Fig. 6 (See legend on previous page.)
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metabolites could be divided into eight subclasses, and 
the cultivar-specific subclasses were identified using 
K-means analysis (Fig. 2A). These results could not only 
help us to better evaluate the edible and medicinal value 
of the three ginger cultivars, but also provide a theoreti-
cal basis to manipulate different gingerol content in gin-
ger breeding.

Noticeably, the contents of [10]-gingerol, [12]-shogaol, 
and [8]-shogaol were significantly different among the 
three cultivars (Fig. 2, Tables S3-S5). The concentrations 
of [10]-gingerol and [12]-shogaol in the rhizomes were 
in the order tonglingbaijiang (tlbj) > leshanhuangjiang 
(lshj) > yujiang1hao (yj1h) (Fig.  2, Table S2). The accu-
mulation of [8]-shogaol was higher in lshj than in tlbj 
and yj1h, whereas no significant difference was found 
between tlbj and yj1h (Fig. 2, Table S2). This is consistent 
with our previous report that the yj1h is more suitable for 
use as a table vegetable because of its lower gingerol con-
tent [30].

Moreover, a total of 16,346 lncRNA genes were identi-
fied in ginger by RNA-seq, including 12,661 (77.4%) long 
intergenic lncRNAs (lincRNAs), 978 (6.0%) antisense 
lncRNAs, and 2,707 (16.6%) intronic lncRNAs (Fig.  3). 
The results showed that ginger contains a higher num-
ber of lincRNAs than other plant species, such as maize 
and rice [16, 31]. Furthermore, the structural analy-
sis revealed that the average length of lncRNA genes 
was shorter than that of protein-coding genes, and the 
expression levels of lncRNA genes were lower than those 
of protein-coding genes (Fig.  3C, Fig. S3), which are in 
agreement with those of previous studies [32]. Interest-
ingly, the mean length (789 bp) of the lncRNAs in ginger 
was longer than that of other species, that is, 285, 364, 
463, and 323  bp for Arabidopsis, maize, kiwifruit, and 
rice, respectively. It is because the average length of lncR-
NAs is different in species [33].

Additionally, 2,513, 1,225, and 2,884 differentially 
expressed lncRNAs (DELs) were identified in the compar-
isons of lshj vs. yj1h, tlbj vs. lshj, and tlbj vs. yj1h, respec-
tively (Fig. S4, Table S9-S11). Among them, 7 cis-acting 
and 1,200 trans-acting DELs were respectively identi-
fied as upstream regulators to 11 gingerol biosynthesis 
enzyme genes (GBEGs), which showed a highly signifi-
cant correlation coefficient (p-value < 0.01) with three dif-
ferentially accumulated ginger analogs (Fig. S7, Table S21 
and S22). In particular, 4CL is a critical gene for catalyz-
ing steps involving p-coumaroyl-CoA and feruloyl-CoA, 
thereby generating enough substrates for the synthe-
sis of gingerols [1, 34]. In the present study, we found 
that the transcripts of two 4CL genes (4CL-4 and 4CL-
like) showed a strongly positive correlation of expres-
sion levels with the contents of [10]-gingerol (mws1561, 
index = 0.937, p-value = 0.00018) and [12]-shogaol 

(Hmsp008976, index = 0.931, p-value = 0.00027) in ginger 
rhizomes and might be targeted by 512 and 352 trans-
acting DELs, respectively (Fig.  6A and B, Tables S21 
and S22). These data provide evidence that lncRNAs are 
related to ginger analogs biosynthesis via the regulation 
of various GBEGs, specifically 4CL expression. In oolong 
tea, 4CL expression was inhibited by the low expression 
of lncRNA LTCONS-00054003, which participates in the 
regulation of flavonoid accumulation [26]. Interestingly, 
the DE C3OMT family gene, C3OMT-2, its expression 
levels did not exhibit a high correlation coefficient to the 
contents of [8]-shogaol (index = 0.027, p-value = 0.944) in 
our research, which has been identified as a critical gene 
that participated in gingerols biosynthesis in previous 
study [1].

On the other hand, we also found that 32 transcription 
factor (TF) families including 190 TF genes had a highly 
significant correlation coefficient (p value < 0.01) with the 
amounts of [8]-shogaol, [10]-gingerol, or [12]-shogaol. 
(Fig.  6C, Table S23). These TF genes were signifi-
cantly enriched in all DEGs by 2 × 2 Fisher exact test 
(p-value = 1.433e-13). Furthermore, among these TF pro-
teins, MYB4, MYB43, and WRKY70 might interact with 
PAL1, PAL2, PAL3, and 4CL4 (Fig.  6E). These results 
suggested that TFs genes might participate in gingerol 
biosynthesis not only through regulation of GBEGs gene 
expression at transcriptional level, but also by affecting 
GBEGs enzyme activities at post-transcriptional level. 
We also found that 111 cis-acting and 2,225 trans-acting 
DELs could regulate these TF genes expression levels, 
suggesting that lncRNAs also participate in controlling 
gingerol biosynthesis by regulating the transcription of 
TFs genes (Fig. 6D, Tables S24 and S25). Similar results 
have demonstrated that the lncRNA/TF regulatory mod-
ule controls other secondary metabolic biosynthesis, 
such as anthocyanin biosynthesis. For example, in sea 
buckhorn fruits, one lncRNA LNC1 promotes anthocya-
nin biosynthesis by acting as endogenous target mim-
ics of miR156a to reduce the expression levels of SPL9; 
in contrast, LNC2 reduces anthocyanin biosynthesis by 
inducing transcripts of MYB114 [32]. Moreover, it was 
recently reported that the MdWRKY1-MdLNC499-
MdERF109 transcriptional cascade is involved in light-
induced anthocyanin accumulation in apples [35].

In addition to controlling gingerol biosynthesis, we 
also found DELs involved in other biological processes, 
such as plant hormone signal transduction (ko04075), 
plant–pathogen interactions (ko04626), and MAPK 
signaling pathway (ko04016) (Fig. 5). It is supported by 
the previous conclusions [34]. For example, in apples, 
the lncRNA MdLNC610 positively regulates high 
light-induced anthocyanin accumulation by modulat-
ing the expression of MdACO1 and inducing ethylene 
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production [21]. This is also consistent with kiwifruits 
in response to Psa infection [36]. The related transgenic 
evidence was reported in Chinese cabbage, and when 
a long noncoding natural antisense transcript of the 
MAPK gene (MSTRG.19915) was silenced, the resist-
ance to downy mildew was enhanced [12].

Conclusion
In this study, 200, 109, and 228 differentially accumu-
lated metabolites were identified between ginger cul-
tivars leshanhuangjiang (lshj) and yujiang1hao (yj1h), 
tonglingbaijiang (tlbj) and leshanhuangjiang (lshj), 
and tonglingbaijiang (tlbj) and yujiang1hao (yj1h), 
respectively. Among them, the concentrations of 
three gingerol analogs, [8]-shogaol, [10]-gingerol, and 
[12]-shogaol, accumulated significantly. Moreover, the 
expression levels of 11 gingerol biosynthesis enzyme 
genes and 190 transcription factor (TF) genes were 
highly correlated with the content of the three gingerol 
analogs. Additionally, 16,346 lncRNAs were identified, 
of which 2,513, 1,225, and 2,884 were differentially 
expressed in the three comparisons, respectively. 
Noticeably, DE lncRNAs, such as ZoLNC_008531, 
ZoLNC_008529, and ZoLNC_007353, might contribute 
to gingerol biosynthesis by controlling the key enzyme 
genes or TF transcripts via a cis-acting or trans-act-
ing model. Overall, our results not only provide novel 
insight into gingerol metabolism, but also lay a founda-
tion for future in-depth studies of the related molecular 
mechanism.

Materials and methods
Plant materials
Three ginger cultivars, leshanhuangjiang (lshj), 
tonglingbaijiang (tlbj), and yujiang1hao (yj1h), were 
used as the materials in this study. These ginger plants 
were planted in the greenhouse at Chongqing Uni-
versity of Sciences and Arts, Yongchuan, Chongqing, 
China (29°14’N, 105°52’E) in 2020. The growth con-
ditions were set at 25 ± 3  °C with 14  h/10  h light/dark 
cycles and 60 ± 5% relative humidity. For metabolomics 
and transcriptomic analyses, ginger plants were ran-
domly harvested after 180 d of growth (Fig.  1A) [1, 
2]. Three biological replicates of each cultivar were 
collected, and each replicate consisted of pooled five 
mature rhizomes of each ginger cultivar. After rinsing 
with Milli-Q water, the rhizomes were immediately fro-
zen in liquid nitrogen and stored at -80 °C until subse-
quent analyses.

Metabolite extraction and ultra‑performance liquid 
chromatography‑electrospray ionization tandem triple 
quadrupole/mass spectrometry analysis
Sample preparation and extraction were performed 
according to the methods described by Metware Bio-
technology Co., Ltd. (Wuhan, China) [29]. Briefly, the five 
rhizomes of each ginger cultivar were pooled and used as 
one biological replicate. Three biological replicates were 
used for each cultivar. For metabolite extraction, the 
samples were first desiccated using vacuum freeze-dry-
ing. The dried samples were then crushed into a powder 
using a mixer mill (MM 400, Retsch) at 30 Hz for 1.5 min. 
One hundred milligrams of powder were dissolved in 
1.2  mL of 70% aqueous methanol. In order to improve 
the extraction rate, the solution was vortexed for 30 s and 
repeated six times, and then stored at 4 ℃ overnight. The 
mixtures were then centrifuged at 12,000 rpm for 10 min, 
and the supernatant was filtered using a microporous 
member (0.22 μm).

Next the extracts of each sample were analyzed using 
an ultra-performance liquid chromatography-elec-
trospray ionization tandem triple quadrupole/mass 
spectrometry (UPLC-ESI–MS/MS) system (UPLC, SHI-
MADZU Nexera X2, https:// www. shima dzu. com. cn/; 
MS, Applied Biosystems 4500 QTRAP, http:// www. appli 
edbio syste ms. com. cn/). Parameters of UPLC were fol-
lows: 1) column: agilent SB-C 1.8μm, 2.1 mm × 100 mm; 
2) flow rate: 0.35 mL/min. The metabolites were detected 
under quantitative monitoring mode by multiple reaction 
monitoring (MRM) according to the previous method 
[37]. Parameters of ESI–MS were as follows: 1) tempera-
ture: 550 ℃; 2) voltage: 5500 v (positive ion mode), -4500 
v (negative ion mode). All metabolite data identified in 
this study were listed in Table S2. Differentially accumu-
lated metabolites were identified based on thresholds 
with an absolute fold change ≥ 2 or ≤ 0.5. Venn diagram 
of the differentially accumulated metabolites shared 
among two or three comparisons were analyzed on the 
platform ofhttp:// www. ehbio. com/ test/ venn/#/.

RNA isolation, library construction, and sequencing
Total RNA was isolated from nine ginger rhizome samples 
using an RNeasy Plant Mini Kit (QIAGEN, Germany). 
The quality and integrity of the total RNA were evaluated 
using Nanodrop, Qubit 2.0, (Invitrogen, USA), and an 
Agilent Bioanalyzer 2100 System (Agilent Technologies, 
USA). The Epicenter Ribo-Zero™ rRNA Removal Kit 
(Epicenter, Madison, WI, USA) was used to remove ribo-
somal RNA. Three micrograms of rRNA-depleted RNA 
were used to construct a sequencing library using the 
NEBNext Ultra Directional RNA Library Prep Kit (NEB, 
USA) according to the manufacturer’s instructions. Nine 

https://www.shimadzu.com.cn/
http://www.appliedbiosystems.com.cn/
http://www.appliedbiosystems.com.cn/
http://www.ehbio.com/test/venn/#/
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libraries were sequenced on the Illumina PE150 platform. 
The sequencing results were deposited in the National 
Center for Biotechnology Information database under 
accession number (PRJNA870703), which was released 
since November  12th, 2022.

Identification of lncRNAs and protein‑coding genes
After RNA-seq, clean reads were generated by trim-
ming the adaptor and removing low-quality reads. The 
clean reads were aligned to the reference genome of 
ginger using Hisat2 software [2, 38]. The mapped reads 
of each sample were assembled using the StringTie and 
Cuffmerge software [39]. Venn diagram of the lncRNAs 
shared among two or three software were analyzed on 
the platform ofhttp:// www. ehbio. com/ test/ venn/#/.

The potential lncRNAs were screened according to the 
follows: (1) transcripts less than 200 nt in length were 
removed; (2) transcripts that were known as protein-
coding genes or other non-coding RNA, such as rRNA 
and tRNA, were also removed; (3) transcripts that pos-
sessed protein-coding ability were removed through 
evaluation by using coding potential calculator 2 (CPC2, 
CPC score > 0), coding-non-coding index (CNCI, CNCI 
score > 0), and predictors of long non-coding RNAs 
and messenger RNAs based on an improved k-mer 
scheme (PLEK) [40]; and (4) based on their location in 
the genome of the remaining transcripts, the remaining 
RNAs were classified into long intergenic non-coding 
RNAs (lincRNAs), anti-sense lncRNAs, and intronic 
lncRNAs [13].

Identification of differentially expressed lncRNAs (DELs) 
and protein‑coding genes (DEPCGs)
To determine the DELs and DEPCGs between any two 
cultivars, including lshj vs. yj1h, tlbj vs. lshj, and tlbj vs. 
yj1h, the expression levels of all lncRNAs and protein-
coding genes in each sample were first quantified using 
fragments per kilobase per million base pairs sequenced 
(FPKM) values using StringTie software [41]. The tran-
scripts of all lncRNAs and protein-coding genes in all 
pairwise comparisons with an adjusted p-value < 0.05, 
and an absolute fold-change value > 2.0, were defined as 
DELs and DEPCGs. In addition, the DELs and DEPCGs 
were clustered using K-means clustering with BMKCloud 
software (http:// www. biocl oud. net) [42]. Venn diagram 
of DELs or DEPCGs shared among two or three compari-
sons were analyzed on the platform ofhttp:// www. ehbio. 
com/ test/ venn/#/.

Prediction of potential cis‑/trans‑targets of DELs 
and functional enrichment analysis of DELs
It has been reported that lncRNAs participate in the 
regulation of target gene expression mainly via cis-acting 

regulation (genes in close genomic proximity) or trans-
acting regulation (genes with long distances and similar 
expression patterns) [27]. Thus, these DEPCGs within 
100 kb upstream or downstream of the DELs were 
screened as cis-targets. Moreover, the protein-cod-
ing genes were identified as the trans-targets of DELs 
based on the correlation coefficient in expression levels 
between DELs and DEPCGs, with a p-value < 0.01 [28].

Functional enrichment analyses of DELs were per-
formed by Gene Ontology (GO) terms and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses [28, 43]. The GO ontologies were 
assigned using Blast2GO [28]. Among them, the GO 
terms (adjusted p-values < 0.05) were identified as sig-
nificantly enriched [11]. Additionally, to understand the 
main pathways of DELs involved, the targets of DELs 
were mapped to the Kyoto Encyclopedia of Genes and 
Genomes (KEGG, www. kegg. jp/ kegg/ kegg1. html), and 
enrichment analysis was conducted using KOBAS 2.0 
(https:// www. biost ars. org/p/ 200126/) [43]. Significantly 
enriched pathways were considered when p-values < 0.05 
[14].

Integrated analysis of the metabolites and transcriptome
To explore the association between metabolites and 
the transcriptome, the Pearson correlation coefficients 
between lncRNAs, protein-coding genes, and metabolites 
expression levels were calculated using the Cor function 
in R language (Metware Biotechnology Co., Ltd. Wuhan, 
China). Correlation analysis was performed using the 
quantitative values of genes and metabolites in all sam-
ples. The threshold of the correlation coefficient was set 
as a p < 0.01 [37]. Co-expression network diagrams were 
drawn by Cytoscape v3.8 software.

The quantitative real‑time PCR and statistical analysis
Total RNAs was isolated from nine ginger rhizome sam-
ples using a FastPure® Plant Total RNA Isolation Kit 
(Polysaccharides & Polyphenolics-rich) according to the 
manufacturer’s instructions (Cat. RC401-01, Vazyme, 
Nanjing, China). cDNA was synthesized using the HiS-
critpt® III 1st Strand cDNA Synthesis Kit (+ gDNA 
wiper) (Cat. R312-01, Vazyme, Nanjing, China). Gene 
expression levels were evaluated using a Bio-Rad CFX 
Connect Real-Time System with iTaq Universal SYBR® 
Green Supermix (Cat. 1725124, Bio-Rad, USA). The reac-
tion conditions were as follows: denaturation at 95 °C for 
3 min, followed by 40 cycles of 95 °C for 15 s, 60 °C for 30 
s, and 72 °C for 45 s. A melting curve analysis was then 
performed. The primers used are listed in Table S1, and 
ZoTUB2 was used as the internal control [1, 3].

http://www.ehbio.com/test/venn/#/
http://www.biocloud.net
http://www.ehbio.com/test/venn/#/
http://www.ehbio.com/test/venn/#/
http://www.kegg.jp/kegg/kegg1.html
https://www.biostars.org/p/200126/
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Statistical analyses
The Student’s t-test was conducted to evaluate differences 
between two groups by SPSS Statistic 17.0. One-way 
ANOVA was performed to measure differences among 
multiple varieties, followed by a Tukey Honest Significant 
Differences (HSD) test for the post-hoc analysis.
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12864- 023- 09553-5.
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