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Abstract
Background Drought stress is a prevalent abiotic stress that significantly hinders the growth and development of 
plants. According to studies, β-aminobutyric acid (BABA) can influence the ABA pathway through the AtIBI1 receptor 
gene to enhance cold resistance in Arabidopsis. However, the Aspartate tRNA-synthetase (AspRS) gene family, which 
acts as the receptor for BABA, has not yet been investigated in poplar. Particularly, it is uncertain how the AspRS gene 
family (PtrIBIs)r can resist drought stress after administering various concentrations of BABA to poplar.

Results In this study, we have identified 12 AspRS family genes and noted that poplar acquired four PtrIBI pairs 
through whole genome duplication (WGD). We conducted cis-action element analysis and found a significant 
number of stress-related action elements on different PtrIBI genes promoters. The expression of most PtrIBI genes 
was up-regulated under beetle and mechanical damage stresses, indicating their potential role in responding to leaf 
damage stress. Our results suggest that a 50 mM BABA treatment can alleviate the damage caused by drought stress 
in plants. Additionally, via transcriptome sequencing, we observed that the partial up-regulation of BABA receptor 
genes, PtrIBI2/4/6/8/11, in poplars after drought treatment. We hypothesize that poplar responds to drought stress 
through the BABA-PtrIBIs-PtrVOZ coordinated ABA signaling pathway. Our research provides molecular evidence for 
understanding how plants respond to drought stress through external application of BABA.

Conclusions In summary, our study conducted genome-wide analysis of the AspRS family of P. trichocarpa and 
identified 12 PtrIBI genes. We utilized genomics and bioinformatics to determine various characteristics of PtrIBIs such 
as chromosomal localization, evolutionary tree, gene structure, gene doubling, promoter cis-elements, and expression 
profiles. Our study found that certain PtrIBI genes are regulated by drought, beetle, and mechanical damage implying 
their crucial role in enhancing poplar stress tolerance. Additionally, we observed that external application of low 
concentrations of BABA increased plant drought resistance under drought stress. Through the BABA-PtrIBIs-PtrVOZ 
signaling module, poplar plants were able to transduce ABA signaling and regulate their response to drought stress. 
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Background
The impact of drought stress on plant production is 
increasing due to the worsening greenhouse effect caused 
by global climate change [1, 2]. Drought stress is one of 
the most common abiotic stressors that can cause sub-
stantial damage to plant growth. Plants subjected to 
drought stress experience reduced gas exchange, chloro-
phyll content, photosynthesis, and water use efficiency, 
and are more likely to produce reactive oxygen species 
(ROS) [3–6]. Moreover, drought stress can alter the levels 
of plant hormones, such as abscisic acid (ABA), jasmonic 
acid, salicylic acid, and cytokinin [7–9]. ABA plays a crit-
ical role as an anti-stress hormone, and it promotes sto-
matal closure to regulate plant water balance and osmotic 
homeostasis in response to drought stress [7, 10]. There-
fore, ABA-mediated regulation of osmotic pressure is 
a vital aspect of the plant’s response to drought stress 
[1]. To activate the ABA signaling pathway and initi-
ate the stress response process, the ABA receptor PYR1 
and Pyr1-like proteins (PYL) bind ABA, and interact 
with PP2C to activate the SnRK/PP2C complex [11–13]. 
The activated SnRK2 then phosphorylates downstream 
ion channels and transcription factors (TFs), leading to 
upregulation of various genes, including NACs, MYBs, 
LEAs, and WRKYs by targeting the ABA response ele-
ments (ABREs) in the promoter regulatory region. These 
TFs eventually activate the ABA signaling pathway and 
the process of stress response [14–17].

The use of specific chemicals can increase the ability of 
plants to withstand abiotic stresses, with β-aminobutyric 
acid (BABA) serving as an important initiator that offers 
protection against a wide range of diseases [18]. The 
study of immune priming in plants has become increas-
ingly popular with the use of β-aminobutyric acid-IR 
(BABA-IR) as a model system, allowing researchers to 
investigate the molecular mechanisms involved [19, 20]. 
Researchers have found that applying BABA topically can 
enhance a plant’s resistance to biotic stresses [21]. BABA 
has been shown to induce enhanced defense responses 
through the immune system of various plants such as 
Capsicum annuum, Potato, Arabidopsis, Hordeumvul-
gare L, Nicotiana tabacum L, Peach, amongst others, by 
initiating a salicylic acid (SA)-dependent defense mecha-
nism, leading to a stronger resistance to diseases [22–27]. 
Additionally, BABA application can significantly increase 
the activity of several defense enzymes against Aphis 
glycines in wheat and soybean [25, 28]. It has also been 
observed that BABA application can result in the reduc-
tion of Sitobion avenae performance on wheat seedlings, 

and it has been suggested that the mechanism behind 
this effect is the direct toxicity of high BABA contents in 
the plant’s phloem [29].

BABA not only enhances plant resistance to diseases, 
but also to abiotic stresses [7]. It plays an important role 
in enhancing salt stress tolerance in Brassica napus L 
and soybean by upregulating antioxidant defense. It also 
attenuates damage from cadmium stress in soybean [30, 
31]. Additionally, BABA has been found to enhance chill-
ing resistance in tobacco and is closely associated with 
Ca2+ signaling status [32]. BABA triggers the accumu-
lation of ABA, reduces reactive oxygen species (ROS) 
production, and increases antioxidant defense enzymes, 
thereby improving drought tolerance in wheat and maize 
[33–35]. Arabidopsis thaliana also shows increased 
drought, salinity, and heat stress resistance after BABA 
treatment [7, 19, 36, 37]. In Arabidopsis, AtIBI1 acts as 
a receptor for BABA and encodes an aspartate tRNA 
synthetase (AspRS). BABA activates AtIBI1, which con-
trols plant immunity and growth. AtVOZ1 and AtVOZ2 
transcription factors (TF) interact with AtIBI1 and are 
induced by ABA transcription. They negatively regulate 
Arabidopsis thaliana response to cold stress [38–40]. 
Several studies have shown that exogenous BABA seems 
to confer the ability of plants to resist stress, but the 
role of BABA and PtrIBIs in poplar drought tolerance is 
unclear.

Here, we identified the BABA receptor Aspartyl tRNA-
synthetase (AspRS) gene family in poplar. And we used 
genomics and bioinformatics to determine the chromo-
somal localization, evolutionary tree, gene structure, 
gene doubling, promoter cis-elements, and expression 
profiles of PtrIBIs. Under drought stress, external appli-
cation of low concentrations of BABA increased drought 
resistance in poplar. We used bioinformatics to dis-
cover that the TF-PtrIBIs module plays a crucial role in 
regulating plant responses to drought stress. Finally, 
the BABA-PtrIBI-PtrVOZ signalling module was ana-
lysed in conjunction with transcriptomic data, and the 
results indicate that the regulation of this module plays 
an important role in the response to drought stress in 
poplar.

Methods
Identification and protein property analysis of AspRS gene 
family in P. trichocarpa
To predict the protein sequences of PtrIBIs, the P. tricho-
carpa 4.0 genome was searched using HMMER and the 
Hidden Markov model of Aspartyl tRNA-synthetase 

These results suggest that the PtrIBI genes in poplar have the potential to improve drought tolerance in plants 
through the topical application of low concentrations of BABA.

Keywords Aspartyl tRNA-synthetase, Poplar, BABA, Drought stress



Page 3 of 15Feng et al. BMC Genomics          (2023) 24:473 

(PF00152) in the Pfam 35.0 database (http://pfam.xfam.
org/, accessed on 22 April 2022) was used as a query [41]. 
The protein BLAST database (https://blast.ncbi.nlm.nih.
gov/Blast.cgi, accessed on 23 April 2022) was utilized 
to confirm the PtrIBI genes family. Extraction of the P. 
trichocarpa 4.0 genome, CDS, transcripts, amino acids, 
and 2000 bp upstream of the ATG promoter region was 
completed from the Phytozome 13.0 database (https://
phytozome-next.jgi.doe.gov/, accessed on 23 April 2022). 
PtrIBIs are named according to their position on the 
chromosome. Gene locations and chromosome sizes of 
PtrIBIs were obtained from the NCBI database (https://
www.ncbi.nlm.nih.gov/, accessed on 25 April 2022) and 
visualized by TBtools (TBtools_windows-x64_1_098748) 
Gene Location Visualize (South China Agricultural Uni-
versity, Guangzhou, China) [42]. Protein physicochemical 
property prediction was performed using the ProtParam 
website (http://www.expasy.org/tools/protparam.html 
accessed on 28 April 2022) [43]. PtrIBIs gene family sub-
cellular localization prediction was performed via the 
Plant-mPLoc website (http://www.csbio.sjtu.edu.cn/bio-
inf/plant-multi/, accessed on 30 April 2022) [44].

Multiply alignments and phylogenetic analysis
We constructed phylogenetic tree in eight species of 
PtrIBIs, AtIBIs and OsIBIs by pairwise deletion and 1000 
bootstraps replicates using the Neighbor-Joining (NJ) 
method parameter on MEGA7.0 [45]. To show the evolu-
tionary relationships more clearly, the phylogenetic trees 
were visualized using the iTOL online program (https://
itol.embl.de/, accessed on 30 April 2022) [46]. We used 
the ClustalW website (https://www.genome.jp/tools-bin/
clustalw, accessed on 30 May 2022) to perform the AspRS 
sequence comparison among different species using the 
Clustal algorithm to obtain the clustalw aln file [47]. We 
used the ENDscript/ESPript website (https://espript.
ibcp.fr/ESPript/cgi-bin/ESPript.cgi, accessed on 30 May 
2022) for column comparison for mapping.

Analysis of conserved motifs, conserved structural 
domains and gene structures
We provided the gff3 annotation file with PtrIBI genes 
family ID numbers to TBtools software to reveal the gene 
structure. Next we submitted the PtrIBIs gene family pro-
tein sequences to the web version of Multiple Expecta-
tion Maximization (https://meme-suite.org/meme/tools/
meme, accessed on 30 May 2022) for Motif (MEME) 
[48]. The number of motifs in the default parameters is 
changed to 10, and the other parameters remain the same 
by default. We submitted the protein sequences to the 
NCBI database to obtain hitdata files. In addition, phy-
logenetic trees stored in Newick format, motifs stored 
in Xtensible Markup Language (XML) format, hitdata 
files describing conserved structural domains, and gene 

structures stored in gff3 format were provided to TBtools 
software for displaying phylogenetic trees, conserved 
motifs and gene structures.

Gene colinearity analysis and identification of gene 
duplication events
We performed a one-step MCScanX study of putative 
replication events using TBtools and default parameters 
applying poplar genome fast files and gff3 files [49]. In 
addition, non-synonymous (Ka) and synonymous (Ks) 
substitution rates of PtrIBI gene pairs were determined 
to assess the selection pressure during the evolution 
of PtrIBIs [50]. We further evaluated the genetic cova-
riance of P. trichocarpa with other plants. We used the 
default parameters of MCScanX to identify putative 
direct homologs. We compared genomic FAST files and 
gff3 files of P. trichocarpa with other plants and obtained 
three important files: control file (ctl), gff and collinearity 
formats. Unnamed chloroplasts and mitochondria were 
first manually removed from the ctl files and reordered, 
and finally visualized by TBtools [51].

Analysis of cis-regulatory elements of PtrIBIs
The cis-acting elements of the promoters of the PtrIBI 
genes family were predicted by the PlantCARE website 
(http://bioinformatics.psb.ugent.be/webtools/plantcare/
html/, accessed on 28 May 2022). We performed a clas-
sification analysis in EXCEL based on the literature and 
visualized the results using EXCEL and TBtools.

Transcriptome analysis and visualization of the PtrIBI 
genes family
To analyze the gene expression patterns of the PtrIBIs 
family, we downloaded the transcriptome data of the 
PtrIBI genes family from the PopGenIE (https://pop-
genie.org/, accessed on 24 May 2022) public database 
[52–54]. In this database, expression data were collected 
for 15 different plant tissues, as well as for three abiotic 
stresses and one biotic stress. Heat map of PtrIBIs is 
drawn with TBtools, and choose row scale for homogeni-
zation, all other parameters are default.

Plant materials and treatments
Populus tomentosa was used as the experimental mate-
rial, were cultivated in a woody plant medium (WPM) 
supplement with 0.05mg/L 1-Naphthylacetic acid (NAA) 
(pH 5.8) [55]. With a 16h light/8h dark photoperiod, the 
poplar varieties were propagated in the greenhouse at 
23°C and 74% humidity. One month later, transplant the 
tissue culture seedlings into nutrient soil. Forty seed-
lings of the same genotype were selected from wild-type 
P. tomentosa with similar growth vigor, divided into four 
groups (10 plants each in the control, drought stress, 
50 mM BABA drought treatment, and 200 mM BABA 
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drought treatment), and incubated for two months. Pop-
lars were subjected to drought treatment, and the con-
trol and drought stress treatment groups were externally 
treated with the same amount of water as the BABA 
treatment group. Leaves and roots were removed from 
poplar plants after 15 days of drought treatment and 
stored in an ultra-low temperature refrigerator at -80°C 
[56].

Quantitative real-time (qRT-PCR) analysis
Our Populus tomentosa transcriptome data obtained by 
high-throughput sequencing for drought treatment and 
drought under different concentrations of BABA treat-
ment (Supplemental Table S9). It was used to extract 
PtrIBI genes expression and visualize the expression heat 
map using TBtools software.

For further analysis of PtrIBI genes expression patterns, 
the total RNA of collected samples was extracted with 
an RNA extraction kit (Vazyme Biotech Co. Ltd. Beijing, 
China). Then, the FastKing RT kit (kit from TIANGEN 
BIOTECH CO. LTD. Beijing, China) was used to synthe-
size first-strand cDNA of the total RNA. The PtrIBI genes 
primers for qRT-PCR were designed according to the 
NCBI Primer-BLAST online tool (https://blast.ncbi.nlm.
nih.gov/Blast.cgi, accessed on 30 January 2023) (Supple-
mental Table S11) [57].

The qRT-PCR was run with the CFX96 Touch™ instru-
ment (Bio-Rad Co. Ltd. Hercules, CA, USA) to detect the 
chemical SYBR Green. The following qRT-PCR proce-
dure was used: the template melting at 95°C for 15min, 
followed by amplification for 45 cycles with a denatur-
ation temperature of 95°C for 10s, an annealing temper-
ature of 58°C for 30s, and an extending temperature of 
72°C for 30s. Quantitative analysis of PtrIBI genes expres-
sion was performed according to the 2−∆∆CT method and 
the PtrUBQ was considered as the internal control [58, 
59].

Bioinformatics analysis of potential TFs in the upstream 
region of PtrIBIs
Possible upstream transcription factors of PtrIBIs were 
identified using the PlantRegMap database (http://
plantregmap.gao-lab.org/network.php, accessed on 26 
January 2023) [60]. Network structure maps of target 
genes and upstream TFs were visualized using Pow-
erPoint. Early in the study, gene expression profiles of 
upstream TFs under different treatments were obtained 
from poplar transcriptome data by high-throughput 
sequencing.

Statistical analyses
We analyzed the experimental data with Microsoft 
Excel 2020 (Microsoft Corporation, Redmond, WA, 
USA) and SPSS v.25.0 (SPSS Inc., Chicago, IL, USA). 

One-way ANOVA with the LSD multiple comparisons 
test (*p < 0.05, **p < 0.01.) was performed for the gene 
relative expression. Before applying the ANOVA test, the 
data were tested for normality and homogeneity of vari-
ance. Student‘s t test (*p < 0.05, **p < 0.01.) was performed 
for the leaf RWC, relative electrical conductance(REC) 
etc.

Results
Genome-wide Identification of PtrIBI Genes in P. 
trichocarpa
We searched for the conserved Aspartyl tRNA-syn-
thetase (AspRS) (PF00152) structural domain in the 
genome-wide protein database of P. trichocarpa. The 
motif map of the structural domains (Fig. S1) and 
the hmm model file were used to finally filter out 19 
sequences of P. trichocarpa. We obtained a total of 12 
PtrIBI genes by manually removing redundant sequences 
and naming the genes according to the order of the corre-
sponding chromosomal positions identified in the NCBI 
database (Supplementary Table S1). The PtrIBI genes are 
distributed on eight chromosomes in the genome of P. 
trichocarpa (Fig. S2). There were three PtrIBI genes on 
each of chromosomes 6 and 18, and only one PtrIBI gene 
on the remaining six chromosomes. A cluster of PtrIBI 
duplicated genes (PtrIBI11/PtrIBI12) was found on chro-
mosome 18.

Next, we analyzed the physicochemical properties of 
the proteins in the entire PtrIBI genes family. The PtrIBI 
genes generally encode 545 to 703 amino acids, with an 
average of 604.5 amino acids. The molecular weights of 
the PtrIBI proteins are relatively large, all being greater 
than 60 kDa. The theoretical pI of PtrIBIs ranges from 
5.64 to 8.26, with 10 genes encoding acidic proteins 
and 2 genes encoding basic proteins. Four members of 
the PtrIBI gene family have instability index values less 
than 40 and are considered stable, while the remaining 
proteins are unstable. All the PtrIBI family proteins are 
hydrophilic (Supplementary Table S2). The Plant-mPLoc 
database predicts the majority of the PtrIBI proteins to be 
located in the cytoplasm.

Evolutionary relationship and sequence analysis of PtrIBIs
We used the amino acid sequences of eight plant AspRS 
to build a biogenetic tree to further investigate the evo-
lution and differences of plant AspRS family proteins 
(Fig.  1). Phylogenetic tree analysis showed that there 
were five PtrIBI genes on branch two and six PtrIBI genes 
on branch three, except for PtrIBI4 on branch one. Some 
of the PtrIBI genes have high homology (e.g., PtrIBI1/
PtrIBI8, PtrIBI5/PtrIBI10, PtrIBI11/PtrIBI12). We 
selected the AspRS amino acid sequences of five species 
and performed sequence comparison using CLUSTALX 
(Fig. S3). The results showed that they are somewhat 
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conserved. In general, the AspRS gene family is highly 
conserved evolutionarily. The analysis revealed that the 
protein tertiary structures of PtrIBI4 (P. trichocarpa) and 
AtIBI1 (A. thaliana) were very similar.

Gene family motifs, conserved structural domains and 
gene structure analysis of PtrIBIs in P. trichocarpa
To gain further insight into the evolutionary relation-
ships among various members of the PtrIBI genes fam-
ily, we constructed an evolutionary tree (Fig. S4a) and 

investigated their conserved protein motifs, structural 
domains, and gene structures (Fig. S4b-d). Our analysis 
revealed 10 conserved motifs (Fig. S4b) (Supplementary 
Table S3) and 7 conserved structural domains (Fig. S4c) 
in the PtrIBI protein sequence. Notably, all PtrIBI genes 
share motif 5/3/1, and the most conserved structural 
domain among PtrIBIs is PLN02502 (aminoacyl-tRNA 
ligase). Additionally, all PtrIBI genes contain introns 
and UTRs, with the number of introns ranging from 5 
to 16 (Fig. S4d). Specifically, PtrIBI11 and PtrIBI2 have a 

Fig. 1 Evolution and phylogenetic analysis of the IBI family among different plants. The genealogical tree of Aspartyl tRNA-synthetase from Populus 
trichocarpa, Salix purpurea, Arabidopsis thaliana, Oryza sativa, Malus domestica, Zea mays, Prunus persica, Brachypodium distachyon
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maximum of 16 introns, while PtrIBI5 and PtrIBI10 have 
a minimum of five introns. Accordingly, the PtrIBI genes 
on each branch of the evolutionary tree exhibit a highly 
similar conserved motif arrangement.

Collinearity Analysis of PtrIBI Genes
During evolution, PtrIBIs have undergone multiple dupli-
cation events. The genes PtrIBI1 and PtrIBI8, PtrIBI6 
and PtrIBI11, PtrIBI5 and PtrIBI10, PtrIBI7 and PtrIBI9 
are whole genome duplication (WGD) pairs, as demon-
strated by Fig. 2 and Supplementary Table S4, indicating 
that they share a common ancestor. The Ka/Ks values of 
all four groups of genes were less than 1, implying that 
these genes underwent purifying selection, as shown in 
Supplementary Table S5. We then created comparative 
collinear graphs of the PtrIBI gene family in P. trichocarpa 
with eight woody plants, such as Malus domestica, Salix 
suchowensis, Prunus persica, Citrus sinensis, Ziziphus 
jujuba, Theobroma cacao, Vitis vinifera, and Punica gra-
natum (Fig. 3) (Fig. S5a-d). The collinear graphs indicate 
that P. trichocarpa has 10 pairs of AspRS homologs with 
Malus domestica, 17 pairs of AspRS homologs with Salix 

suchowensis, six pairs of AspRS homologs with Prunus 
persica, seven pairs of AspRS homologs with Citrus 
sinensis, three pairs of AspRS homologs with Ziziphus 
jujuba, Theobroma cacao, and Vitis vinifera. Moreover, 
Ziziphus jujuba, Theobroma cacao, Vitis vinifera, and 
Punica granatum have 5 and 3 pairs of AspRS homo-
logs, respectively. We also created comparative collinear 
graphs of the PtrIBI gene family in P. trichocarpa with 
four herbaceous plants, including Arabidopsis thaliana, 
Oryza sativa, Triticum aestivum, and Zea mays, demon-
strating that P. trichocarpa has five pairs of AspRS homo-
logs with Arabidopsis thaliana, but no AspRS homologs 
with Oryza sativa, Triticum aestivum, and Zea mays (Fig. 
S5e-h).

PtrIBIs cis-element analysis
To determine the expression pattern of PtrIBI genes 
family, the cis-elements of the PtrIBIs promoter were 
analyzed using the PlantCARE database (Fig.  4). These 
elements are involved in abiotic and biotic stresses, plant 
hormone responses and plant growth and development. 
We visualized the promoter elements at the promoter 

Fig. 2 Evolutionary relationship analysis of the PtrIBI genes family. Evolutionary analysis of the PtrIBI genes family in P. trichocarpa, with different sizes 
of fan-shaped rings represent different sizes of chromosomes. The gray and colourful connecting genes show all collinearity blocks and the fragment 
doubling event
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positions (Fig. S6). The specific functions of these cis-
elements are labeled (Supplemental Table S6). Stress-
related cis-elements (Myb, Myc, ARE) were enriched in 
some genes, suggesting that these PtrIBI genes may play 
a key role in response to adverse conditions. In addition, 
some PtrIBI genes promoters were enriched for ABRE 

(involved in ABA response), such as PtrIBI8/PtrIBI12, 
and these genes may be responsive to ABA hormone. 
Promoters of PtrIBI8/10/11/12 contained LTR elements 
(involved in low temperature stress response), suggesting 
that these genes may be responsive to low temperature 
induction.

Fig. 4 The cis-acting element of the PtrIBI genes. (a) Numbers and gradient red indicate the number of cis-acting elements; (b) color-coded histograms 
indicate the number of cis-acting elements for each type of gene, which are divided into three categories by functional factors: phytohormone respon-
sive, abiotic and biotic stress, plant growth and development

 

Fig. 3 Collinear analysis of PtrIBI genes in P. trichocarpa with 4 other plants. Gray lines in the background represent collinear blocks of P. trichocarpa and 
other species genomes, while red lines emphasize collinear PtrIBI genes pairs. (a) Malus domestica. (b) Salix suchowensis. (c) Prunus persica. (d) Citrus sinensis
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Transcriptome analysis of PtrIBI genes in P. trichocarpa
To further investigate the role of PtrIBI genes in growth, 
development, and stress, we downloaded tissue expres-
sion profiles and stress-induced expression profiles of the 
PtrIBI gene family from the transcriptome database (Sup-
plemental Table S7, S8). We generated a heat map depict-
ing the clustering of samples and genes in two directions 
to examine the expression patterns of PtrIBI genes across 
15 poplar tissues (Fig.  5a). The majority of these genes 
exhibited high expression levels in young shoots, such as 
PtrIBI4/5/6. Some genes, such as PtrIBI4/6, were highly 
expressed in young and expanding leaves, which may be 
associated with the growth and development of poplar. 
To further investigate their response to stress, we exam-
ined the expression of the PtrIBI genes family under con-
ditions of drought, beetle infestation, and mechanical 
damage (Fig. 5b). Most of the genes in the PtrIBI genes 
family were up-regulated under beetle and mechanical 
damage, suggesting that these genes may be responsive to 
leaf damage stress. Some genes were up-regulated under 
drought stress (e.g., PtrIBI11/12), and they may play a 
role in drought stress.

We next subjected poplar to drought and different 
concentrations of BABA treatment under drought. The 
results showed that after the addition of 50 mM BABA 
at the drought treatment, poplar leaves were greener and 
less wilted than those of the drought treatment and 200 
mM BABA drought treatment (Fig. S7a). We measured 

relative electrical conductance (REC), chlorophyll con-
tent, leaf relative water content (leaf RWC), and Fv/Fm 
(maximal PSII quantum yield) under different treat-
ments. The results indicated that the addition of 50 mM 
BABA at drought treatment would alleviate the damage 
of drought stress (Fig. S7b-e).

Expression pattern and analysis of PtrIBI genes in poplar 
under drought treatment
PtrIBI genes encode AspRS proteins, the receptors of 
BABA, which play an important role in ABA signaling-
mediated drought stress. RNA-seq and qRT-PCR were 
performed to analyze the transcript levels of PtrIBI genes 
under drought and different concentrations of BABA 
treatment to verify whether the poplar PtrIBIs fam-
ily can respond to drought stress. Transcriptome data 
showed that the expression levels of PtrIBI6/8/10/11 
genes were elevated in leaves under drought treatment 
(Fig.  6a) (Supplemental Table S9). The expression lev-
els of PtrIBI2/4/11 genes were significantly triggered in 
the leaves under 50 mM BABA drought treatment. The 
expression of PtrIBI1/3/5/7/9 genes was elevated under 
200 mM BABA drought treatment. The expression levels 
of 12 PtrIBI genes under normal conditions and drought 
stress were examined by qRT-PCR to verify the expres-
sion of these genes in the transcriptome (Fig.  6b-m). 
The experimental results showed that PtrIBI2/4/6/11 
were highly expressed in drought-treated leaves and 

Fig. 5 Expression profiles of PtrIBI genes under developmental and stress conditions. (a). The expression levels of PtrIBI genes in different tissues at differ-
ent developmental stages are plotted based on transcriptome data. (b). Depicts a heat map of gene expression levels of PtrIBIs following drought, beetle 
and mechanical injury. The color bar represents the range of maximum and minimum values for relative expressions in the heatmap
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PtrIBI8 were highly expressed in drought-treated stems. 
The results indicated that the poplar PtrIBI genes family 
responded differently to drought treatment in different 
tissues.

Molecular network of PtrIBI genes regulating drought 
stress in P. trichocarpa
Upstream TFs of PtrIBIs were identified using bioin-
formatics to explore the regulatory network of PtrIBIs 
under drought stress (Supplemental Table S10). The 
PtrIBIs interaction network showed that the expres-
sion of PtrIBI2/4/6/11 was regulated by 15, 7, 14 and 7 
TFs (Fig.  7a-d), and PtrIBI3/5/8/9/10/12 was regulated 
by 7, 10, 8, 14, 5 and 27 TFs (Fig. S8). These transcrip-
tion factors include NAC, MYB, BES1, BBR-BPC, Dof, 
ERF, HD-ZIP, Nin-like, AP2, TCP, LBD, GATA, GAGA, 
KNOX, C2H2, and MADS family proteins. In addition, 
the same transcription factor may simultaneously affect 
the expression of different PtrIBI. Potri.014G074200(M_
MADS) may simultaneously affect PtrIBI2/3/4/5/9.

The transcription levels of PtrIBI2/4/6/11 upstream 
TFs in poplar leaves under drought treatment and dif-
ferent concentrations of BABA drought treatment were 
shown in figure (Fig. 7e-h). Under 50 mM BABA drought 
treatment, the upstream TF Potri.002G151700 (MIKC_
MADS ) of PtrIBI2 was significantly upregulated (Fig. 7e), 
and the expression of Potri.014G074200 (M_MADS) 
and Potri.016G053200 (ERF) was slightly upregulated. 
Potri.002G151700 (MIKC_MADS ), Potri.010G101400 
(BBR-BPC), and Potri.014G074200 (M_MADS) expres-
sions in PtrIBI4 upstream TF were also upregulated 

(Fig.  7h). Similarly, Potri.001G044500 (WRKY), 
Potri.006G263600 (WRKY) were significantly up-regu-
lated in PtrIBI6 upstream TF under 50 mM BABA and 
drought treatment (Fig. 8f ), and Potri.002G009700 (Nin-
like), Potri.014G004900 (MYB) were significantly up-reg-
ulated expression in PtrIBI11 upstream TF (Fig. 7g).

Expression analysis of key genes in ABA pathway under 
different treatments
AtVOZ are chaperones of AspRS protein interactions, 
and their transcription is induced by ABA. Our analysis of 
ABA signaling pathway transduction showed that exog-
enous application of BABA resulted in increased PtrVOZ 
gene expression. We found that exogenous application 
of BABA resulted in uneven distribution of pyrabactin 
resistance/pyrabactin resistance-like (PYR/PYL) gene 
expression in stems and leaves, with Potri.001G142500 
(PtrPYR1), Potri.014 G097100 (PtrPYL10) were highly 
expressed in leaves, and Potri.001G092500 (PtrPYL1), 
Potri.003G139200 (PtrPYL5) were highly expressed in 
stems. Most PP2Cs genes were up-regulated in expres-
sion in stems and leaves under 200 mM BABA drought 
treatment. Potri.008G059200 (PtrPP2C) was highly 
expressed in leaves and Potri.015G018800 (PtrPP2C) 
was highly expressed in stems under 50 mM BABA 
drought treatment. Under 50 mM BABA drought treat-
ment, Potri.004G218200 (PtrSnRK2) was expressed 
up-regulated in leaves and down-regulated in stems. 
Under 200 mM BABA drought treatment, PtrSnRK2 
was expressed down-regulated in leaves and significantly 
up-regulated in stems. Potri.001G404100 (PtrRD26), 

Fig. 6 Transcriptome and qRT-PCR analysis of PtrIBI genes expression under drought stress in P. tomentosa. (a) RNA-seq analysis of 12 PtrIBI genes under 
drought, drought + 50 mM BABA and drought + 200 mM BABA. (b-m) Transcriptional levels of the 12 PtrIBI genes in response to drought stress in the 
leaves and stem of P. tomentosa
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Potri.014G0908009 (PtrLEA14) are important genes in 
the ABA pathway associated with drought stress. They 
are highly expressed in leaves under BABA-treated 
drought stress. PtrRD26 is also highly expressed in stems, 
and PtrLEA14 is down-regulatedly expressed in stems.

Discussion
β-aminobutyric acid (BABA) is a priming agent that pro-
vides broad-spectrum disease protection [20]. Aspar-
tyl tRNA-synthetase (AspRS) family genes can encode 
cytoplasmic proteins that specifically bind intracellu-
larly to BABA, which sends atypical defense signals in 
the cytoplasm after pathogen attack [38, 40]. At pres-
ent, the AspRS family has been defined and mined in a 
variety of plants including Arabidopsis, rice, and tomato 
[61–63]. However, its distribution and function in pop-
lar have not been studied. We identified AspRS family 
genes of poplar using comparative genomics and tran-
scriptomics approaches and analyzed their responses to 
abiotic stresses. We next used bioinformatics to analyze 
the transcriptional regulatory network of poplar under 
drought treatment, which provides a molecular basis 
for poplar response to drought stress [3, 5, 8, 53, 67]. 

Transcriptome data showed that the expression levels of 
PtrIBI6/8/10 genes were significantly triggered in leaves 
under drought treatment (Fig. 6a) and PtrIBI2/4/11 genes 
were significantly elevated in leaves under 50 mM BABA 
drought treatment.

Identification and evolutionary analysis of the PtrIBIs 
family in P. trichocarpa
We detected 12 PtrIBI genes in P. trichocarpa and char-
acterized their phylogenetic tree and expression profile. 
These 12 PtrIBI genes were distributed on chromosomes 
(Chr1, 2, 3, 6, 7, 9, 17, and 18) and were named PtrIBI1 
to PtrIBI12 according to their positions (Supplemental 
Table S1 and Fig. S2). Since these 12 genes encode the 
Aspartyl tRNA-synthetase (AspRS) protein family, their 
amino acid sequences are highly hydrophilic (Supple-
mental Table S2). The AspRS proteins are mainly located 
in the cytoplasm and have one conserved structural 
domain (Fig. S4b, c). The conserved structural domain 
ensures that BABA may bind to AspRS proteins and 
thus cause plants to respond to external environmental 
stresses. Multiple introns exist in poplar PtrIBI genes 
(Fig. S4d). It has been shown that genes lacking introns 

Fig. 7 Bioinformatic analysis of transcription factors (TFs) of PtrIBIs in poplar. (a-d) TFs-PtrIBI2/4/6/11 interaction network analysis. Green circles indicate 
TFs upstream of PtrIBIs, and yellow circles represent PtrIBI2/4/6/11. Heat map showing the transcriptional abundance of PtrIBI2(e), PtrIBI6 (f), PtrIBI11 (g) and 
PtrIBI4 (h) upstream transcription factors under drought, drought + 50 mM BABA and drought + 200 mM BABA. The range of fold change in expression 
in the heat map is indicated by the colour bar
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are more likely to complete the transcription process and 
form mRNA. So PtrIBI genes may take time to develop a 
response under stress.

These findings suggest that AspRS share an anti-paral-
lel beta-sheet fold flanked by alpha-helices [63]. We con-
structed a genealogy tree based on eight different plant 
protein sequences and performed amino acid sequence 
comparison for five of them. The results revealed that 
different plant IBI genes have high homology, and their 
amino acid sequence comparisons indicate that they are 
evolutionarily conserved. In addition, phylogenetic anal-
ysis of family genes can explain the evolution of genes. 
Poplar and willow belong to the same genus, so their IBI 
genes are relatively clustered.

The mechanisms of gene family membership increase 
and genome evolution are largely dependent on gene 
duplication events, including whole genome duplication 
(WGD) and tandem duplication (TD) [64]. In the study, 
12 PtrIBI genes were distributed on eight chromosomes 
with four WGD gene pairs and one TD gene pair. Tan-
dem duplicated genes may have similar functions and 
expression patterns (Fig.  5a-b). Significantly, PtrIBI7/9 
with high homology formed gene pairs through WGD, 

and they had similar transcript levels in different tissues 
and under different stresses (Fig. 5a-b).

Potential functional analysis of the poplar PtrIBI genes 
family
Although the function of the AspRS protein family has 
been characterized in many species, it has changed with 
the evolution of different species. The transcript levels 
of genes are important to assess the function of genes. 
We analyzed poplar transcriptome data, the expression 
of PtrIBI genes fluctuated slightly in each poplar tis-
sue. PtrIBI4/5/6 were highly expressed at young shoots, 
which indicated that some of the PtrIBI genes might be 
associated with the growth and development of poplar.

AspRS protein acts as a receptor protein for BABA, 
which triggers defense responses controlled by sali-
cylic acid (SA)-dependent and non-dependent signaling 
pathways [19, 65]. Transcriptome datasets showed that 
most PtrIBI genes were highly expressed under leaves 
beetle damaged and leaves mechanical damage stresses. 
PtrIBI2/11/12 were significantly up-regulated in expres-
sion under drought stress, while PtrIBI1/3/4/7/9 were 
down-regulated under drought stress. It was found that 

Fig. 8 Schematic model of the response of P. tomentosa PtrIBI genes family under drought stress
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the transcript levels of PtrIBI genes were not consistent 
under biotic and abiotic stresses. The transcriptional 
regulation of genes depends largely on their promot-
ers, so we performed promoter analysis of the PtrIBI 
genes family. The results indicate a large number of abi-
otic and biotic stress initiation elements on the promot-
ers of the PtrIBI genes family, especially ABRE and ERE. 
PtrIBI1/8/11/12 all possess five and more ABRE elements 
on their promoters, and PtrIBI8/PtrIBI10 possess five 
and more ERE elements on their promoters. In addi-
tion, ABRE and ERE elements play an important role in 
response to abiotic stresses [51, 57]. In conclusion, plants 
can respond to various stresses and adapt to complex 
external environments by regulating the expression levels 
of PtrIBI genes.

Molecular regulatory networks of PtrIBIs involved in 
drought stress
Previous studies have reported that AspRS proteins in 
plants such as Arabidopsis, rice, and tobacco can bind 
specifically to BABA and thus coordinate downstream 
signaling pathways to resist stress. In Arabidopsis, AtIBI1 
binds to AtVOZ and affects the ABA signaling pathway, 
playing an important role in resisting cold stress [38]. 
The ABA signaling pathway in poplar is activated in 
response to drought stress. Poplar enhances its drought 
resistance by closing stomata and increasing peroxide-
scavenging enzymes. Therefore, it is crucial to explore 
how poplar can regulate the ABA signaling pathway to 
improve its drought resistance [3]. We subjected poplars 
to drought treatment and external application of different 
concentrations of BABA drought treatment, and found 
that external application of low concentration of BABA 
could make poplars resist drought. Poplar leaves showed 
wilting and yellowing after drought treatment, and chlo-
rophyll content and water use efficiency were reduced. 
Topical application of 50 mM BABA resulted in lower 
relative electrical conductance, indicating less damage to 
poplar cell membranes. However, maximal PSII quantum 
yield was higher and poplar trees had higher photosyn-
thetic capacity. It was shown by RNA-seq data that exog-
enous application of BABA during drought affects the 
transcript levels of PtrIBI genes. PtrIBI2/4/11 were highly 
expressed upon external application of 50 mM BABA 
drought treatment, and they may play an important role 
in external application of BABA to resist drought stress. 
The qRT-PCR results revealed that the PtrIBI genes fam-
ily also had inconsistent transcript levels in the stem and 
leaf spaces after drought treatment. Notably, PtrIBI1 
expression was decreased in both stems and leaves after 
drought treatment.

A recent study has shown that the IBI1-VOZ signaling 
module can transduce ABA signaling. However, there 
are few reports on how PtrIBI genes function through 

transcriptional regulation. Transcriptional regulation 
plays a crucial role in all aspects of the plant life cycle and 
transcription factors play a central role in transcription. 
Therefore, it is crucial to identify the upstream transcrip-
tion factors of PtrIBI genes. We therefore used bioinfor-
matic methods to identify upstream transcription factors 
of the PtrIBI genes, and we found that some potential 
upstream transcription factors of PtrIBIs were signifi-
cantly up-regulated in drought-treated leaves. MYB, 
WRKY and ERF TFs can bind to elements (e.g., MYB and 
AREB) on the promoters of downstream genes in many 
plants (e.g., Arabidopsis and poplar). For example, the 
poplar ERF TF ERF16 exerts salt tolerance by binding 
to the promoter of NAC45 (containing the ERF element) 
[66]. WRKY77 negatively regulates plant tolerance to salt 
stress by binding to the RD26 and NAC002 promoters 
[16, 17].

Thus, several TFs (e.g., ERF transcription factors and 
MYB transcription factors) may bind to elements such as 
ERF and MYB in the promoters of PtrIBI genes, thereby 
regulating the expression of PtrIBI genes. In conclusion, 
the TF-PtrIBIs module plays a crucial role in the regula-
tion of plant responses to drought stress. To verify that 
the BABA-PtrIBIs-PtrVOZ signaling module can con-
duct ABA signaling in poplar, we analysed the expression 
of key genes in the ABA pathway in various treatments 
using transcriptomic data. It was found that genes on 
the ABA signaling pathway were transcribed at differ-
ent levels in the stem and leaves, and that the same gene 
family was transcribed at different levels under the same 
treatment (Fig.  9). Transcriptome results revealed that 
both the drought-related genes PtrRD26 and PteLEA14 
were highly expressed in the leaves. PtrRD26 was highly 
expressed in BABA-treated stems and may be associ-
ated with resistance to drought stress in poplar after 50 
mM BABA treatment. In conclusion, the BABA-PtrIBIs-
PtrVOZ signaling module may play an important role in 
ABA signaling in poplar, thereby affecting drought resis-
tance in poplar [67].

Conclusion
Based on the experimental data, we constructed a model 
map of the response of the PtrIBI genes family poplar to 
drought stress (Fig. 8). In summary, genome-wide analy-
sis of the Aspartyl tRNA-synthetase (AspRS) family of 
P. trichocarpa identified 12 PtrIBI genes. Genomics and 
bioinformatics were used to determine the chromosomal 
localization, evolutionary tree, gene structure, gene dou-
bling, promoter cis-elements and expression profiles 
of PtrIBIs. We found that some PtrIBI genes can be sig-
nificantly regulated by drought, beetle and mechanical 
damage, suggesting that PtrIBIs play an important role 
in poplar stress tolerance. Finally, external application 
of low concentrations of BABA increased plant drought 
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resistance under drought stress. Plants can transduce 
ABA signaling in poplar through the BABA-PtrIBIs-
PtrVOZ signaling module, and the module regulates 
their response to drought stress. The results of this study 
allowed us to predict the possible characteristics of the 
PtrIBI genes in poplar and suggest that poplar can be 
improved for drought tolerance with topical application 
of low concentrations of BABA.
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