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Abstract
Background Approximately 4–8% of the world suffers from a rare disease. Rare diseases are often difficult to 
diagnose, and many do not have approved therapies. Genetic sequencing has the potential to shorten the current 
diagnostic process, increase mechanistic understanding, and facilitate research on therapeutic approaches but is 
limited by the difficulty of novel variant pathogenicity interpretation and the communication of known causative 
variants. It is unknown how many published rare disease variants are currently accessible in the public domain.

Results This study investigated the translation of knowledge of variants reported in published manuscripts to 
publicly accessible variant databases. Variants, symptoms, biochemical assay results, and protein function from 
literature on the SLC6A8 gene associated with X-linked Creatine Transporter Deficiency (CTD) were curated and 
reported as a highly annotated dataset of variants with clinical context and functional details. Variants were 
harmonized, their availability in existing variant databases was analyzed and pathogenicity assignments were 
compared with impact algorithm predictions. 24% of the pathogenic variants found in PubMed articles were 
not captured in any database used in this analysis while only 65% of the published variants received an accurate 
pathogenicity prediction from at least one impact prediction algorithm.

Conclusions Despite being published in the literature, pathogenicity data on patient variants may remain 
inaccessible for genetic diagnosis, therapeutic target identification, mechanistic understanding, or hypothesis 
generation. Clinical and functional details presented in the literature are important to make pathogenicity 
assessments. Impact predictions remain imperfect but are improving, especially for single nucleotide exonic variants, 
however such predictions are less accurate or unavailable for intronic and multi-nucleotide variants. Developing 
text mining workflows that use natural language processing for identifying diseases, genes and variants, along with 
impact prediction algorithms and integrating with details on clinical phenotypes and functional assessments might 
be a promising approach to scale literature mining of variants and assigning correct pathogenicity. The curated 
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Background
A rare disease is defined as a life-threatening or chroni-
cally debilitating disease that affects fewer than 200,000 
people in the United States and fewer than 1 in 2,000 or 1 
in 2,500 people in Europe or Japan, respectively [1]. Rare 
diseases may individually be rare but collectively are a 
common problem that have significant medical and soci-
etal impact. Rare diseases were estimated to have cost 
$1 trillion in the United States in 2019 when accounting 
for absenteeism, lost work production, and hiring care-
takers [2]. Between 4 and 8% of the world’s population 
are affected by a rare disease at any point in time [3–5]. 
This includes approximately 20–30  million Americans, 
46 million Europeans, and 470 million people worldwide 
[5]. This number does not include the many rare disease 
patients who do not survive infancy.

Historically, it has been difficult to diagnose rare dis-
orders with a genetic etiology through phenotype or 
symptoms alone. Recent innovations in genome sequenc-
ing are leading to more rapid diagnosis and precise 
molecular-level characterization of rare diseases. Incor-
porating genome sequencing to identify causal variants 
has already shortened the diagnostic odyssey for many 
patients; in one study producing diagnoses for unsolved 
cases that had averaged 19 years since symptom-onset 
without a diagnosis [6]. However, utilizing genetic diag-
nosis requires either an extensive library of definitively 
classified variants, pathogenicity prediction algorithms 
with clinic level trustworthiness, or the logistics and 
funding to support an expert geneticist able to inter-
pret newly discovered variants of uncertain significance 
(VUS) [7]. Pathogenicity information is valuable; each 
classification represents hours of expert labor. In order 
to classify novel variants, an expert needs to be able to 
review primary publications, call for biochemical assays 
to corroborate or refute the molecular diagnosis, and 
perform segregation studies on the family’s variant and 
phenotype inheritance [8]. This process of expert classifi-
cation of variant pathogenicity is prohibitively expensive 
and expertise limited, putting it out of reach for many 
patients.

The National Organization for Rare Disorders (NORD) 
reported in 2021 that fewer than 10% of rare diseases 
have a treatment [9]. Some of these treatments target 
specific mechanisms of dysfunction, such as oligonucle-
otide induced alternative splicing [10] or employing a 
chaperone molecule to correct erroneous protein fold-
ing [11]. The genetic variant’s category of dysfunction 
can determine which interventions are possible. Recent 

FDA approval of therapies specifically targeting different 
classes of genetic variants for cystic fibrosis patients [12] 
exemplifies variant class based therapeutic approaches 
for treating rare diseases. A data set of rare disease vari-
ants and functional consequences could lead to shared 
insights about the mechanisms of action across multiple 
disease genes, and lead to the discovery of therapies that 
target multiple related diseases. Such a database could 
also be potentially used by protein structure model-
ling algorithms to programmatically identify the vari-
ant’s impact on protein structure and function, and its 
potential druggability. Access to collated data on genetic 
variants, their pathogenicity, and associated symptoms, 
is therefore vital for both rare disease diagnosis and 
research on therapeutic interventions.

There are currently well-known initiatives such as the 
ClinVar database [13] that allow researchers and clini-
cians to publicly share newly discovered variants and 
clinical associations with others in the field. Efforts have 
also been made to mine and share variant details found in 
literature. However, while literature curation and mining 
variants for specific diseases has long been recognized as 
essential for research, there are currently no open access 
databases containing all literature curated variants and 
their functional and clinical relevance for all rare dis-
eases. While experts agree that it is critical to share and 
be able to access the known classifications for solved 
variants with indisputable pathogenicity classifications, 
it is not known if all the published pathogenic variants 
are easily findable for use in diagnostic panels or avail-
able for researchers to study functional and therapeutic 
significance.

This investigation set out to understand the gaps 
between variants published in literature and those 
accessible through open access data sources by manu-
ally curating and analyzing a dataset of all variants ever 
published for one rare disease from biomedical litera-
ture. The primary goal was to quantify data translation 
gaps between published variants with well documented 
pathogenicity details, and the variants available in pub-
licly accessible databases. A secondary goal was to assess 
the accuracy of in-silico prediction algorithms at predict-
ing pathogenicity of the published variants. One of the 
important aspects of the study was to collect extensive 
clinical and functional context details. Because it is not 
feasible to perform manual curation of published litera-
ture for the thousands of rare diseases, this data can be 
used to guide automation pipelines for scaling the effort. 
Curating clinical and functional details that contribute to 

variants list created by this effort includes context details to improve any such efforts on variant curation for rare 
diseases.
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pathogenicity assessments helps identify additional data 
that can be integrated into an automated literature cura-
tion workflow.

X-linked Creatine Transporter Deficiency (CTD) (see 
Fig. 1) was chosen as an ideal candidate for manual cura-
tion because it is a monogenic disorder with a phenotype 
largely dependent upon the function of a single gene, 
SLC6A8, at a hemizygous location [14] on the X chromo-
some. CTD symptoms first present at approximately two 
years of age, a time shown to be too late for intervention 
[15] in other cerebral creatine deficiency disorders. Gua-
nidinoacetate methyltransferase (GAMT) deficiency is a 
related disease caused by impaired cerebral creatine syn-
thesis (Table 1). Oral supplementation of creatine started 
in GAMT patients younger than one month old leads to 
normal developmental outcomes, but when treatment is 
initiated later, there is some level of intellectual disability 
[15]. This models what an intervention to restore cerebral 
creatine could do for CTD patients, although one has 
not yet been developed. Unfortunately, one month old is 
before the symptom onset of CTD, so diagnosis depen-
dent upon the appearance of first symptoms at two years 
of age might be too late for intervention. Whole genome 
sequencing is now more affordable than ever [16]. Com-
bining newborn screening with the ability to rapidly and 
correctly interpret pathogenic SLC6A8 variants has the 
potential to identify patients in infancy and allow inter-
vention during the time window when the brain is still 
amenable to therapeutic intervention.

CTD was first described in 2001 in a six year old 
developmentally disabled male patient whose proton 
magnetic resonance spectroscopy (MRS) revealed an 
absence of creatine in the brain [17]. The first pathogenic 
SLC6A8 variant was found through sequence analysis of 
amplified cDNA from this patient’s fibroblasts [18]. The 
hemizygous inheritance pattern and clinical impact of 
the c.1540  C > T, p.R514X, HG38 chrX: NC_000023.11: 
153,694,577  C > T variant in SLC6A8 was documented 

Table 1 Genetic Causes of Cerebral Creatine Deficiency Syndrome (CCDS). Insufficient import (SLC6A8) or synthesis (AGAT, GAMT) of 
creatine can cause CCDS, which results in low or absent cerebral creatine peak as measured by magnetic resonance spectroscopy 
(MRS).
Disease Gene Protein Diagnostic Test Treatment
Creatine 
Transport 
Deficiency

SLC6A8 Creatine transporter, 
Solute Carrier Family 
6 (Neurotransmitter 
Transporter, Creatine), 
Member 8

Brain MRS lacks creatine peak. Males: Elevated urinary creatine:creatinine 
ratio relative to age matched controls. Females: DHPLC or fibroblast creatine 
uptake or D3 labeled creatine wash out assay.

No approved treat-
ments. Potential 
therapies might 
include cyclocre-
atine and 4PBA.

AGAT 
Deficiency

AGAT L-Arginine:Glycine 
Amidinotransferase 
(GATM)

Brain MRS lacks creatine peak. Plasma and urine GAA and creatine + creati-
nine added together are below normal range. Low urinary guanidinoac-
etate excretion (approximately 10% of control).

400 mg/kg 
dietary creatine 
monohydrate

GAMT 
Deficiency

GAMT Guanidinoacetate 
Methyltransferase

Brain MRS lacks creatine peak. Low creatine abundance but elevated gua-
nidinoacetate in plasma, urine, and cerebrospinal fluid. Creatine + creatinine 
added together are decreased in both plasma and urine.

Dietary creatine 
monohydrate, but 
guanidinoacetate 
remains elevated

Fig. 1 Creatine Synthesis. Creatine can be synthesized in cells or trans-
ported via the creatine transporter SLC6A8. Human metabolic synthesis 
of creatine from arginine and glycine via AGAT and GAMT is shown. Loss 
of function in SLC6A8 causes X-linked Creatine Transport Deficiency (CTD).
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in detail in the patient and relatives [19, 20]. In the two 
decades since the disease was described, researchers have 
published dozens of manuscripts on CTD patient symp-
toms [21–40] and classified the pathogenicity of many 
SLC6A8 gene variants. SLC6A8 also has a researcher 
submitted variant list available through the Leiden Open 
Variation Database (LOVD) [41], which can serve as a 
standard dataset for comparative analysis with the manu-
ally curated literature variants.

This study reviewed all published literature on CTD 
and SLC6A8 as of Dec 1st, 2020. Variant mining from 
literature involved: finding the disease associated patho-
genic and benign variants, harmonizing to remove 
duplicates, collecting phenotype, protein function and 
biochemical assay data, and assigning pathogenicity. A 
thorough analysis of the variants, their role in pathoge-
nicity, and comparisons with the variant information in 
prominent clinical and population variant databases is 
included. In addition, pathogenicity predictions by vari-
ant impact algorithms, gaps uncovered through this 
exercise, and approaches for integrated and scalable pro-
cesses to mine the information for other rare diseases are 
explored.

Results
CTD genomic variant analysis
The literature curation of published manuscripts and 
harmonization process to consolidate variants with mul-
tiple names resulted in a list of 185 unique published 
variants in SLC6A8. Harmonizing to genomic location 
revealed that multiple authors had published the same 
variant using different notations. Variants were published 
under multiple names because of the use of IVS nota-
tion method, such as IVS7-99 C > A and IVS12 + 32 C > A 
being the same as c.1142-98  C > A (HG38 chrX: 
NC_000023.11: 153,693,807 C > A) and c.1767 + 32 C > A 
(HG38 chrX: NC_000023.11: 153,694,921 C > A), respec-
tively. The same intronic variant could be referred 
to as starting from the last base of the exon before the 
intron, or from the first base of the exon after the intron. 
Another source of differing notations was due to lack of 
standardization when writing duplicated nucleotides. For 
example, c.1016_41dupTGCCC and c.1016 + 41_45dupT-
GCCC were referring to the same variant but notated 
differently (HG38 chrX: NC_000023.11: 153,693,407 
dup TGCCC). One variant was found to have been pub-
lished using a non-canonical protein transcript reference: 
p.G351R had the same genomic position as p.G466R 
(HG38 chrX: NC_000023.11: 153,694,347 G > A) reported 
by other authors.

Of the 185 unique variants, there were 4 large dele-
tions where multiple exons or the entire SLC6A8 gene 
was deleted. Of the 181 non-large-deletion variants, 63 
were intronic (34%), 116 were exonic (63%) variants, and 

2 were in 5’ or 3’ regions (1%). These 181 published vari-
ants included 92 classified as pathogenic or likely patho-
genic (50%) for CTD, as determined by a clear clinical 
and functional association mentioned in the manuscript, 
68 benign or likely benign (37%), and 21 variants (11%) 
of uncertain significance or without any evidence regard-
ing their association with CTD. Of the total 185 vari-
ants, there were 147 single nucleotide (79%) and 38 multi 
nucleotide variants (21%), see Fig. 2. Figure 3 shows the 
curated variants plotted on the structure of SLC6A8 in 
(A) 2-dimensions, (B) 3-dimensions, and (C) as a lollipop 
plot of pathogenic variants displaying impaired creatine 
uptake relative to wild type on the linear sequence. The 
source for the 3-D model was AlphaFold [42], which was 
developed by DeepMind and EMBL-EBI. The rate of vari-
ants mentioned as de novo (novel in the patient and not 
present in the parents) was 14% amongst the published 
variants.

Detailed analysis was performed on these variants with 
two questions in mind: (i) How likely is it for a rare dis-
ease researcher to find all known variants associated with 
the disease in a well-known publicly accessible database? 
(ii) How likely is it for a variant to be assigned the cor-
rect pathogenicity classification by an impact prediction 
algorithm?

Validation of SLC6A8 curated variants by comparison to 
LOVD
The accuracy of our methodology and results obtained 
were assessed before performing analysis. Similar to vali-
dating results by comparing to a reference standard or 
third party result, our curation process was validated by 
comparing the list of our curated variants to the list com-
piled in the LOVD [41] SLC6A8 database. There were 183 
SLC6A8 variants in the LOVD database accessed April 
2021. Of those, 140 were in our curated variant list, see 
Fig. 4A. Of the 43 variants that were in LOVD but not in 
our curated variant list, 6 were published but not identi-
fied by our curation process, while 37 were entered into 
LOVD via the contribution of researchers sharing their 
unpublished data. Of the six LOVD variants that were 
published but missed by our curation (4%), one was 
missed at the literature access step and five were missed 
in the variant curation step (two due to incomplete cura-
tion of a table inside the main manuscript and three were 
present in a supplemental attachment that was missed 
during curation).

An analysis of the data showed that LOVD had 76% 
of the variants that were in our curated variants list 
(Fig. 4A). The manual curation effort uncovered 45 vari-
ants not reported in the LOVD SLC6A8 database. This 
was somewhat expected as the LOVD SLC6A8 data-
base is largely developed through submissions by indi-
vidual labs, and not all researchers are aware of or have 
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contributed their variant findings to this open-source 
database. LOVD had 88% of the benign and 72% of the 
published pathogenic SLC6A8 variants.

Comparing the curated variant list with ClinVar
Because our curated SLC6A8 variants were of clinical 
relevance, comparisons were performed with the Clin-
Var database (Fig. 4). Our curated variant list contained 
all ClinVar variants that were reported as having been 
published. There were 459 SLC6A8 variants in ClinVar as 
of Aug 2021 (Fig. 4C). ClinVar had 29% of the total vari-
ants curated from PubMed articles. Of these, 94% had 
the same pathogenicity rating in ClinVar and matched 
the curated pathogenicity rating. An example discrep-
ancy is c.76G > A, p.G26R, HG38 chrX: NC_000023.11: 
153,688,650 G > A, which is rated a VUS in ClinVar, but 
was rated benign in the curated dataset because of evi-
dence that its creatine uptake was within 25% of wild type 
transport [43]. 21% of the pathogenic variants curated 
from PubMed published manuscripts were present in 
ClinVar. Figure 4B shows the percent of exonic, intronic, 

large deletion, untranslated region, non-large-deletion 
pathogenic, benign, SNV, and MNV curated variants that 
were present in ClinVar.

Comparing the curated variant list with dbSNP, gnomAD, 
and 1,000 genomes
Overlap with dbSNP [44] was assessed as it’s the larg-
est database of researcher contributed single nucleotide 
polymorphisms, while gnomAD [45] and 1000 genomes 
[46] contain variants identified through whole genome or 
exome sequencing in large cohorts. CTD is an X-linked 
disorder and females can be asymptomatic carriers of 
pathogenic variants, meaning pathogenic variants could 
also be found in control populations. The compari-
sons also allowed analysis on minor allele frequencies 
in any variants uncovered through the large population 
sequencing projects. The variant type percentages for 
total, benign, and pathogenic PubMed published SLC6A8 
variants that were present in these databases are shown 
(Fig.  5). Comparison with the pathogenic variants in 
the curated data set to the public databases found that 

Fig. 2 Curated SLC6A8 Variants. Variants curated from PubMed publications are displayed by subtype. Percent curated variants that were (A) exonic, in-
tronic, large deletions, or in the 5’ or 3’ untranslated regions (UTR) for total, pathogenic, and benign variants. The percent is shown inside the bar. (B) single 
nucleotide (SNV) or multi nucleotide (MNV) variants are shown. (C) The number of variants per subtype is shown. The majority of variants curated from 
PubMed were exonic SNVs. Pathogenic*: Pathogenic variants except large deletions
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dbSNP, gnomAD, and 1,000 Genomes had 27%, 3%, and 
1% of the pathogenic curated variants, respectively.

Type of variant affects translation to databases
24% (22/92) of the pathogenic variants found in PubMed 
articles were not captured in any database used in this 
analysis, compared with 6% (4/68) of benign variants. 
79% of the SLC6A8 variants published in a scientific 
journal with strong clinical evidence for their pathoge-
nicity were not present in the clinical association vari-
ant database ClinVar. The published multi-nucleotide 
variants in our data set were significantly less likely than 
SNVs (p = 0.03, unpaired t test with Mann-Whitney) to 
be included in ClinVar, 1,000 Genomes, gnomAD, and 
dbSNP.

Accuracy of in-silico algorithm predictions of SLC6A8 
variant pathogenicity
We analyzed the number of predictions generated by 
modeling algorithms for different types of variants 
(exonic, intronic, single nucleotide (SNV), and multi-
nucleotide variants (MNV)). Next, we asked how many 
of these predictions correctly matched the pathogenic-
ity rating in the curated variant list. Figure  6 shows the 

variant pathogenicity predictions from commonly used 
in-silico algorithms including SIFT [47], PolyPhen2 
[48], MutationTaster2 [49], Mutation Assessor [50], and 
PROVEAN [51]. Impact predictions from these algo-
rithms are mostly limited to coding regions, as the algo-
rithms use protein sequences to assign functional impact. 
For this reason, CADD [52] scores for single nucleotide 
variants were also included in the analysis.

SIFT generated a prediction for 32% of the curated 
variants. Of these, it accurately predicted pathogenicity 
in 73% of pathogenic variants and 74% of benign variants 
that received a prediction. PolyPhen2 generated a predic-
tion for 32% of the curated variants, accurately predicting 
pathogenicity for 74% of pathogenic and 73% of benign 
curated variants. MutationTaster2 generated predictions 
for 37% of the curated variants, predicting pathogenic-
ity accurately for 86% of curated pathogenic variants 
that received a prediction and 60% of benign variants. 
PROVEAN made a prediction for 31% of the curated 
variants, accurately predicting pathogenicity for 78% of 
pathogenic variants and for 80% of benign variants.

CADD scores were obtained for all single nucleotide 
substitutions and the scores were available for 76% of 
the 185 total curated variants. 72% of the benign variants 

Fig. 3 Variants in SLC6A8. The curated published single nucleotide exonic variant positions are shown on the 2-D (A) and 3-D (B) models of the structure 
of SLC6A8. The source for the 3-D model was AlphaFold, which was developed by DeepMind and EMBL-EBI. Orange: Likely Pathogenic and Pathogenic. 
Gray: Uncertain significance. Blue: Likely Benign and Benign. Full variant details can be found in the Supplemental Information. (C) Pathogenic variants 
are displayed as a lolliplot plot along the protein sequence; variants with available impaired creatine uptake rates are plotted above the line and variants 
with unmeasured creatine uptake are displayed below that line
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received a CADD score of less than 10 and were correctly 
rated benign. Using a cutoff of 20 [53], where a predic-
tion of x < 20 is interpreted to mean benign and x > 20 is 
interpreted to mean pathogenic, CADD accurately pre-
dicted pathogenicity for 65% of the variants. The efficacy 
of a CADD cutoff of 20 was compared versus a cutoff of 
10 or 30. Of the 91, 77, and 23 variants that received a 
CADD score of greater than 10, 20, and 30, respectively, 

66%, 77%, and 90% had evidence of pathogenicity in 
patients. Of the four variants that received a CADD score 
of greater than 30 but were not categorized as patho-
genic, one had 78% of wild type creatine uptake and was 
considered not impaired enough to be pathogenic, one 
was a frameshift closer to the N than C terminus but 
without sufficient published phenotype information to 
rank as pathogenic, one had no evidence for or against 

Fig. 4 Curated Variant List Overlap with LOVD and ClinVar databases. SLC6A8 variants curated from PubMed publications were compared with those 
recorded in LOVD (A) and ClinVar (B). Percent present (above bars) and total number (below x axis) of our curated list of 185 published variants are shown 
for total and by subtype. The percent within the bar shows the percent that matched the pathogenicity classification. (C) Overlap of total and pathogenic* 
variants in the curated list and ClinVar database. Only 53 of the 185 published variants were present in ClinVar. Pathogenic*: Pathogenic variants except 
large deletions
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Fig. 6 Curated SLC6A8 Variants Impact Prediction. (A) The number of predictions made from the total number of curated variants and (B) the accuracy 
of the prediction for in silico pathogenicity predictors are shown. The percentage is above the bar and the number is below the axis. Pathogenic*: Patho-
genic variants except large deletions

 

Fig. 5 Curated SLC6A8 Variants in Population Databases dbSNP, gnomAD, and 1,000 Genomes. Both percent (above bar) and number of variants (below 
x axis) are shown. Pathogenic*: Pathogenic variants except large deletions
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pathogenicity, and another was one of multiple variants 
in the patient.

65% of the 185 total curated variants received an accu-
rate pathogenicity prediction from an algorithm. Of 
those accurate predictions, 54% were solely based on 
CADD scores. 30% of the curated variants did not receive 
an accurate prediction from any algorithm.

Potential impact of curated variants on protein function
Sites of known or predicted protein structural features 
were identified and analyzed for overlap with the curated 
variants. The human SLC6A8 gene has a cDNA length 
of 2,283  bp and encodes a protein of 635 amino acids 
that contains 12 putative hydrophobic transmembrane 
domains [54]. It is a Na+ and Cl− dependent [55] trans-
porter of creatine [56]. Two sites were noted in the lit-
erature to be potentially important in stabilizing alpha 
helices: G132 [57] which is the site of a pathogenic variant 
in patients, and Y148 [58], which has not been published 
as a variant occurring in patients. Amino acids predicted 
to be involved in creatine binding specificity included 
F68 [59], C144 [58], F314 [58], F315 [58], A318 [59], P382 
[57], and G421 [59] – which are also pathogenic variants 
found in patients, and L72 [58], G73 [58], L321 [58], and 
S417 [58], which are locations for which variants have 
not yet been observed in patients. Sites predicted to 
impact phosphorylation [60] included S5, Y11, S12, S14, 
T618, T620, S623, and S625. None of the curated variants 
occurred at these predicted phosphorylation sites. None 
of the sites of glycosylation T171 [61], T175 [61], T178 
[61], N192 [54], N197 [54], or N548 [54] were locations of 
published variants. Leucine zippers have been proposed 
for L286 [54], L293 [54], and L300 [54], none of which 

were locations of published variants. A disulfide bridge 
has been proposed for SLC6A8 between C172 and C181 
[57], and C181 is a site of a pathogenic patient variant.

For CTD, Salazar et al. [57] proposed six classes of vari-
ants for SLC6A8 based on the type of transcription, trans-
lation, retention, folding, or functional disruption caused 
by the variant. These classifications can be used to cluster 
variants with the same mechanism of dysfunction, such 
as suspected misfolding, and investigate whether creatine 
transport could be restored to the multiple variants of 
this class by an intervention, such as the FDA approved 
chaperone protein 4-PBA [62]. Investigation of the 
impact of 4-PBA on creatine transport [57, 61] identified 
some variants for which 4-PBA increased creatine uptake 
(G337W, R391W, A404P, G424D, A448D, V539I, P544L, 
P554L) and some variants for which 4-PBA did not 
increase creatine uptake (Y80H, G87R, G132V, G253R, 
G356V, P382L, P390L, G421R, C491W), see Table 2. The 
classification of each variant based upon type of disrup-
tion is also annotated in the supplemental table.

Discussion
Gaps in translation of published variants from PubMed to 
variant databases
24% of variants pathogenic for CTD were not known 
outside of published manuscripts. This result is likely 
not unique to this disease, but rather representative of 
the current sharing of knowledge for genetic variants for 
other rare diseases. The largest percentage of the pub-
lished pathogenic variants for SLC6A8 were found in the 
well curated LOVD3 variant resource specifically devel-
oped for this gene. However, our analysis showed that 
even when such gene specific resources are available, 

Table 2 Effect of 4-PBA. Impact of 4-PBA on creatine uptake and glycosylation changes for SLC6A8 variants compared to wild type
Variant 4-PBA Impact on Mature Glycosylation 4-PBA Impact on Creatine Uptake
p.Y80H 4-PBA increased mature glycosylation Creatine uptake of 0% of WT was not increased after 4-PBA

p.G87R 4-PBA increased mature glycosylation Creatine uptake of 0% of WT was not increased after 4-PBA

p.G132V 4-PBA did not increase mature glycosylation Creatine uptake of 0% of WT was not increased after 4-PBA

p.G253R 4-PBA did not increase mature glycosylation Creatine uptake of 0% of WT was not increased after 4-PBA

p.G337W 4-PBA did not increase mature glycosylation Creatine uptake increased from 0–15% after 4-PBA

p.G356V 4-PBA did not increase mature glycosylation Creatine uptake of 0% of WT was not increased after 4-PBA

p.P382L 4-PBA increased mature glycosylation 0% of wild type creatine uptake did not increase after 4-PBA

p.P390L 4-PBA increased mature glycosylation Creatine uptake of 0% did not increase after 4-PBA

p.R391W 4-PBA increased mature glycosylation Creatine uptake of < 10% increased to 30% of WT after 4-PBA

p.A404P 4-PBA increased mature glycosylation Creatine uptake of < 10% increased to 30% of WT after 4-PBA

p.G421R Not Measured < 20% wild type creatine uptake not rescued by 4-PBA

p.G424D 4-PBA increased mature glycosylation Creatine uptake of 0% of WT increased to 50% of WT after 
4-PBA

p.A448D 4-PBA increased mature glycosylation Creatine uptake increased from 0–10% of WT after 4-PBA

p.C491W 4-PBA increased mature glycosylation Creatine uptake of 0% of WT was not increased after 4-PBA

p.V539I 4-PBA increased mature glycosylation Creatine uptake increased from 10–50% of WT after 4-PBA

p.P544L 4-PBA increased mature glycosylation Creatine uptake increased from 25–50% of WT after 4-PBA

p.P554L 4-PBA increased mature glycosylation Creatine uptake increased from 0–50% of WT after 4-PBA
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they might not contain all the pathogenic variants already 
identified and published in a literature article. Curated 
variant resources are not available for all rare diseases 
and the available variant details may be scattered across 
multiple information sources and hard to obtain. Cur-
rently, calls for research are focusing on disease-agnostic 
efforts [63] capable of being applied to all rare diseases. 
Text mining algorithms that retrieve variants from the 
literature could be applied to all rare diseases. Algorithms 
are scalable in a way that human curators are not, and 
once properly trained and tuned, a text mining algorithm 
could feasibly retrieve variants from the literature for all 
known [5] rare disease associated genes. This is a com-
plex task requiring collaborations and crosstalk across 
multiple institutes. To aid in this process, all the variants 
and associated pathogenicity evidence on this one mono-
genic rare disease are shared in the supplemental table of 
this manuscript.

Need for harmonizing variant notation
One of the challenges to this investigation were the mul-
tiple naming conventions used to name gene variants. 
12% (25/210) of the initial curated variant list were con-
solidated as duplicates published under multiple names. 
Authors did not uniformly all publish using c. nomen-
clature, with some historical variants using IVS nomen-
clature. Intronic variants were named by both the + or 
– naming convention to denote the end or beginning 
of the nearby exon. There was no consensus on how to 
name variants with repeated bases, for example a variant 
(HG38 chrX: NC_000023.11: 153,693,407 dup TGCCC) 
being published as both c.1016 + 41_45dupTGCCC and 
c.1016 + 41dupTGCCC. Single amino acid nomencla-
ture was inaccurately assigned especially regarding the 
residues K, L, D, and N [64, 65]. It would reduce inac-
curacies to publish variants using three letter amino 
acid nomenclature such as Lys, Leu, Asp, and Asn 
when possible, rather than single letter notation. Stat-
ing the protein’s amino acid change alone is insufficient 
for reporting genetic variants because there are situ-
ations where the amino acid could have been the result 
of multiple possible codons. Synonymous variants can 
cause disease [66]. It should therefore be standard to 
clarify the genetic sequence change, as well as reporting 
the protein sequence variant name. There was a variant 
that was published under the notation c.1151-8 C > T [67] 
with evidence that included trio segregation sequencing, 
symptoms, and decreased MRS measured brain creatine 
supporting a pathogenic classification, but was actually 
located at c.1496-8  C > T (HG38 chrX: NC_000023.11: 
153,694,525 C > T) as notated by Betsalel 2011 [68], Bet-
salel 2012 [64], and Cameron 2017 [69] who used in-
silico prediction algorithms and classified the variant as 
likely benign. Any researcher who had not reviewed and 

mapped the published sequence from Jiang 2018 [67] 
to the right genomic positions would not have known 
that the in-silico predicted likely-benign c.1496-8  C > T 
variant has strong clinical evidence supporting a patho-
genic classification under the notation c.1151-8  C > T. 
Researchers also lacked consensus on which was the 
canonical protein accession number to reference, 
for example the variant HG38 chrX: NC_000023.11: 
153,694,347 G > A being published under the names 
p.Gly466Arg and p.Gly351Arg depending upon choice 
of protein reference. This example demonstrates why 
publishing the protein accession number is useful when 
referring to a variant written in protein notation. The 
harmonization process and the difficulties associated 
with consolidating multiple variant nomenclatures high-
lighted the importance of including Human Genome 
Variation Society (HGVS) position notation for all pub-
lished variants (https://varnomen.hgvs.org/bg-material/
standards/). An automated workflow would need to har-
monize variants to genomic position to avoid ambiguity 
and accurately consolidate variants with repeated names 
to one entry.

Pathogenicity predictions remain imperfect
As genome sequencing data becomes more available, 
there is a greater need to interpret the functional classi-
fication of novel variants of uncertain significance, both 
intronic and exonic, identified in rare disease patients 
[70]. We are currently limited in our ability to pre-
dict which intronic variants cause disease [71], as most 
impact prediction algorithms are trained with protein 
sequences and are limited to coding regions. Algorithms 
such as CADD can generate functional impact scores for 
SNVs in any area of the genome, as seen by pathogenic-
ity prediction scores by CADD for 87% of the intronic 
variants. The majority (88%) of the 92 curated patho-
genic variants were exonic. The major source of failure 
to assign the correct pathogenicity prediction was not 
receiving a prediction; only 31 to 76% of total variants 
received a prediction from the various in-situ predictor 
algorithms (Fig. 6). Prediction failures occurred when the 
variant was intronic, synonymous, not a SNV or because 
the coding region for that variant isn’t well conserved 
between species, as many of these algorithms employ 
sequence homology to determine pathogenicity. Of the 
variants that received a prediction, between 75 and 79% 
were accurately predicted to be pathogenic by in-silico 
prediction algorithms PROVEAN, PP2, SIFT, MA, MT, 
and CADD.

Our findings that fewer than 60% of the published 
exonic pathogenic variants were correctly predicted to 
be pathogenic by any single pathogenicity predictor con-
firms findings from other studies [72] that these algo-
rithms have not yet reached clinical reliability to classify 

https://varnomen.hgvs.org/bg-material/standards/
https://varnomen.hgvs.org/bg-material/standards/
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the pathogenicity of novel variants discovered in patients. 
Assumptions and limitations of the protein function pre-
diction algorithms stresses the importance of reporting 
variant protein activity relative to wild type protein activ-
ity whenever assays are available to the researchers and 
clinicians. Large scale data on protein activity relative to 
wild type function could potentially be used to improve 
future in-silico predictor models.

Possible novel variants in other populations
Most of the variants curated in this effort were contrib-
uted by research groups based in Europe. It is important 
that future sequencing efforts be supported at different 
geographical locations as population-based differences 
will likely uncover novel pathogenic SLC6A8 variants in 
patients.

Scaling the effort
Identifying the pathogenic genetic variant is important 
not only to the individual patient with the rare disease, 
but also to future patients and to researchers seeking to 
understand the protein’s structure-function relationship. 
However, rare disease researchers, clinicians, and patients 
may find themselves siloed alone in their immediate cir-
cle of contacts, unaware of data repositories where they 
could share their discoveries with fellow members of the 
rare disease community. Sharing information worldwide 
to prevent repeated effort is critical. An example failure 
of communication of discoveries would be if one clinical 
research group worked to classify a variant as pathogenic 
but then didn’t know where to share the information, 
and later a second group expended effort to classify the 
same variant already known to the first or to several 
other siloed groups. One attainable goal is for informa-
tion on classified variants to be better disseminated. With 
more than 3,000 rare diseases with known gene associa-
tions [5], and each disease having hundreds of publica-
tions, the task of manually curating literature for each of 
these rare diseases and keeping that curation up to date 
is infeasible. Automatically curating or text mining the 
published literature to retrieve all variants and their phe-
notypes as they are published could help disseminate the 
missed variant details found in published manuscripts 
but not present in any publicly accessible databases. 
Manual curation of phenotype-genotype relationships 
is essential for the production of high-quality databases, 
but it is a costly and time-consuming process. Fully auto-
matic solutions would be needed in order to efficiently 
and cost-effectively address the scale of identifying these 
relationships within biomedical literature [73].

Utilization of Biomedical Natural Language Process-
ing (BioNLP) and text-mining techniques could allow for 
the automatic extraction of critical information found 
in biomedical literature, including genetic diseases and 

the associated variants [74, 75]. One attempt to extract 
triplets of disease-gene-variants from biomedical litera-
ture utilized machine learning tools such as GNormPlus 
[76], tmVar [77], and DNorm [78] to extract the entities 
of diseases, genes, and variants [74]. These tools employ 
algorithms such as the Conditional Random Field (CRF) 
model, which is specifically designed for sequence label-
ing tasks such as Named Entity Recognition (NER). The 
CRF model is trained on a dataset of entities that are 
annotated for each type, allowing for accurate identifi-
cation and labeling of named entities in text. This is fol-
lowed by a normalization step, which harmonizes the 
identified entities to a common nomenclature. This nor-
malization step ensures consistency, disambiguation, and 
linking to external knowledge bases, while also improv-
ing the performance of downstream applications through 
more accurate and consistent information extraction. 
In another study, deep learning extracted variant-gene-
drug relationships from the literature [79]. The authors 
used two computational methods to extract gene-muta-
tion-drug relations from biomedical literature. The first 
method uses the Biomedical Entity Search Tool (BEST) 
scoring results as features in a machine learning classi-
fier. The second method uses BEST scoring results and 
word vectors in a deep convolutional neural network 
model. These methods are able to extract variant-gene 
and variant-drug relations from literature using machine 
learning classifiers like random forest and deep convolu-
tional neural networks. Transformer models, specifically 
the Bidirectional Encoder Representations from Trans-
formers (BERT) model, have revolutionized the field of 
natural language processing (NLP) and have become the 
state of the art technique for a wide range of NLP tasks. 
These methods have excelled in the tasks of named entity 
recognition to extract the diseases, genes, and variants, 
relation extraction, document multilabel classification, 
and inference tasks [80]. Finally, recent advances in trans-
former-based models have allowed for the development 
of domain-specific generative language models that are 
pre-trained on large datasets of biomedical literature 
such as BioGPT [81]. These models outperformed previ-
ous models on tasks such as relation extraction, question 
answering, and document classification.

Although the accuracy of these algorithms is not close 
to manual curation, they do provide a mechanism for 
mining thousands of articles in a timely manner. The 
biggest impediments to the current automated variant 
mining efforts from literature is the ability to map the 
variants to the correct gene and assign the right patho-
genicity categories by capturing context details. Based 
on our analysis and gaps identified, we propose that text 
mining efforts incorporate variant harmonization into 
their workflows and ensure that the base or amino acid 
referred in a variant notation is verified by validating with 
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reference sequences for the specific gene and/or protein. 
In addition, the context details captured through the 
curation effort, also showed the importance of tailoring 
literature curation workflows for each rare disease and 
gene combination. For example, clinical phenotypes and 
creatine uptake ratios mentioned in the articles were 
used to assign pathogenicity tiers in our manual curation 
effort and will be equally important for any automated 
text mining efforts.

For automated systems, it may be possible to design 
a multi-step approach for assigning pathogenicity pre-
dictions from large scale text mining efforts rather than 
being limited to relying on impact prediction algorithms 
alone. The overlap of pathogenicity predictions from mul-
tiple algorithms or an aggregate assessor such as REVEL 
[82] can be used as a first step for assigning pathogenicity 
for those variants that have multiple algorithms agreeing 
on the impact assignment. A second level of assignment 
could rely on algorithms such as CADD and use a high 
cut-off for assigning pathogenicity. A third level of criti-
cal analysis and context mining might be required for 
those variants where pathogenicity could not be assigned 
at the first or second levels. It will be important to mine 
for disease specific phenotypic details as well as gene and 
disease specific functional or biochemical assay details 
for these variants.

The information curated from literature during 
this study was specially tailored for rare disease vari-
ant extraction and pathogenicity classification. To help 
improve text mining workflows, we collected all the vari-
ants, clinical symptoms, and other functional details for 
each of the variants mentioned in a manuscript. This 
curated variant list for SLC6A8 can serve as a training 
or validation data set of known accuracy, coverage, and 
genotype-phenotype associations. Enhanced text mining 
will significantly decrease the time necessary to gather 
data to molecularly characterize a rare disease and ren-
der it possible to mine rare disease phenotype-genotype 
associations for the thousands of rare disease genes [5] in 
a timely fashion.

Conclusions
SLC6A8 was chosen as a rare disease gene for this study 
as it has a well understood X-linked hemizygous inheri-
tance and clear relationship between creatine trans-
porter protein function and CTD disease phenotype. 
We curated hundreds of published manuscripts available 
through PubMed documenting SLC6A8 gene variants in 
CTD patients and found 181 non-large-deletion variants 
for SLC6A8 in PubMed, of which 92 were classified as 
pathogenic or likely pathogenic for CTD, as determined 
by a clear clinical and functional association mentioned 
in the manuscript.

This study investigated the translation of information 
about rare disease genetic variants published in PubMed 
accessible journals to open-source databases. We found 
that for one rare disease gene, 24% of the variants pub-
lished in PubMed were not in any open access databases. 
Pathogenicity prediction algorithms made a predic-
tion for fewer than 60% of published pathogenic vari-
ants. Manual curation of variants from literature is time 
consuming and developing text mining workflows by 
integrating the current state of the art natural language 
processing methods with impact prediction algorithms, 
disease phenotypes and functional assay details will help 
scale the effort to all rare genetic diseases.

While text mining might be the only option for find-
ing variants from already published literature, it is also 
imperative that information on new variants discovered 
be available in structured databases. The genetic disease 
field will benefit from a streamlined dual submission pro-
cess or requirement to submit pathogenic variants to a 
publicly maintained database such as NCBI’s ClinVar and 
use HGVS standardized variant notations in published 
literature. As the field of text mining develops innovative 
methods to extract variant information from published 
literature, it may become possible to use automated text 
mining algorithms to populate gene variant databases 
with pathogenic variant information as soon as it is pub-
lished. Today’s authors can use web tools such as PubRe-
Check [83] to confirm that their manuscript is readable 
by text mining algorithms. Variant information is impor-
tant for diagnosis, research, and treatment. Therefore, 
contributing variant information to the public databases 
and using standard variant notation will ensure that 
important gene disease associations are easily accessible.

As a future direction, we intend to continue the cura-
tion process, both by manually curating variants associ-
ated with other rare diseases, and by contributing to the 
text mining efforts in the rare disease space. The geno-
type and phenotype information curated as a dataset by 
this study is made available in the public domain for any 
researchers working on text mining algorithms. We also 
aim to integrate details from disparate data sources and 
better understand genotype-phenotype correlations in 
rare diseases, facilitating research inquiries that lead to 
further investigations, with the larger goal of improving 
diagnoses and therapeutic interventions for rare disease 
patients.

Methods
The workflow for curating the variants and assigning 
pathogenicity is depicted in Fig. 7A. All known published 
variants associated with CTD were obtained through the 
following steps (i) Variant Retrieval: Search published 
literature for variants in genes associated with CTD, (ii) 
Data Curation: Review, cross reference and document 
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all phenotypic, clinical, and protein function details for 
the variants identified in any published literature, (iii) 
Harmonization: Standardize variant notations from all 
curated variants to remove ambiguity, map to a stan-
dard human reference genome and consolidate duplicate 
names, (iv) Pathogenicity Classification: Review the 
clinical and functional detail provided to assign patho-
genicity categories to each variant based on the ACMG 
standards [84], (v) Annotation: Obtain annotations for 
all variants from public variant databases and predictions 
from impact analysis algorithms. Categories of curated 
information, impact analysis algorithms, and databases 
used in the analysis are shown in Fig. 7B.

Variant retrieval
Our manual curation process for this one rare dis-
ease, CTD, involved reading more than two hundred 
peer reviewed manuscripts indexed in MEDLINE and 
PubMed with the goal of finding all published variants 
and phenotypes for the known disease gene SLC6A8. 
Multiple searches were performed in PubMed using the 
disease name (creatine transport deficiency), disease 
synonyms (CTD, creatine transport disorder, X-linked 

creatine deficiency), gene symbols and biological terms 
of relevance (creatine transporter, CRTR, CT1, SLC6A8). 
A review was conducted to ascertain the relevance of 
the articles in the search results. Relevant citations were 
selected for in depth investigation. Through these itera-
tive searches, more than 200 peer reviewed manuscripts 
including reports of individual patients, articles on pro-
tein structure modeling, the impact of genetic variants 
on signaling pathways, and reviews dating from 1975 to 
2020 were retrieved. All variants, reported using both 
HGVS nomenclature and a variety of non-HGVS nomen-
clatures, were recorded.

Data curation
A spreadsheet list of all SLC6A8 variants was created that 
cited the reference in which the variant was mentioned 
and recorded the variant, clinical symptoms, phenotype, 
patient details, and relevant functional assay results. The 
information extracted for each variant is detailed in the 
curated information category of Fig. 7B. Example terms 
captured in the symptoms and test result categories for 
CTD include developmental delay, mental disability, 
hypotonia, behavioral problems, motor dysfunction, 

Fig. 7 Methodology Workflow. (A) The curator discovered published rare disease genetic variants by searching PubMed for the gene name, disease syn-
onyms, and biological pathways. Variants were compiled into a spreadsheet that included symptoms and phenotype associated with each variant and 
details that informed a pathogenicity assignment. The cDNA or protein variant names were harmonized to standard genetic notation. Impact analysis 
comparing pathogenicity predictions from algorithms to the ones reported in literature and comparisons with public data sources for finding the overlap 
and gaps of published variants were performed. (B) The categories of information collected and impact analysis algorithms and databases consulted. The 
full information is available as supplemental data
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social smile, seizures, cerebral atrophy, creatine to cre-
atinine ratio, delayed language acquisition, creatine peak, 
magnetic resonance spectroscopy (MRS), and apraxia. 
All variant notations used to represent the variant in 
the manuscript including any cDNA, protein, genic and 
genomic location references were captured. A total of 
210 variants were obtained after the curation step. The 
complete information collected for these variants is avail-
able in the supplemental table.

Harmonization
During the harmonization step, all notations of the vari-
ant were converted to standardized genomic notation 
using a custom script. The results were then manually 
validated and variants that could not be harmonized 
with the script were further analyzed and harmonized by 
comparing the genomic positions manually. In general, 
single nucleotide variants were harmonized with mini-
mal issues, while indels were more difficult to convert to 
genomic notation.

After data curation, there were 210 curated variants, 
but harmonization revealed that 12% of these were 
duplicates of the same genomic alteration published 
under different nomenclatures. The harmonization step 
removed duplicates and reduced the variants obtained 
to 185, which included 4 large multi exon or multi gene 
deletions.

Pathogenicity classification
We followed the American College of Medical Genet-
ics (ACMG) guidelines [84] to classify pathogenicity 
based upon clear clinical and functional consequences 
for the variant from the literature source. The evidence 
used for pathogenicity classification included a lower 
cerebral creatine peak as measured by MRS, an elevated 
urine or plasma creatine to creatinine ratio relative to age 
matched controls, DHPLC or fibroblast creatine uptake, 

D3 labeled creatine wash out assay, and an in vitro mea-
sured impaired ability of the protein to transport creatine 
relative to measurements of the wild-type protein. Vari-
ants with clear clinical evidence or functional evidence 
of less than 70% creatine uptake activity were consid-
ered pathogenic. Variants were classified as benign if 
they were reported in males without CTD, did not have 
an inheritance that segregated with phenotype, or if the 
variant protein was shown to have close to wild type 
functionality. When conflicting evidence was reported in 
different manuscripts, they were classified as variants of 
uncertain significance. The curation process also uncov-
ered reports of variants without any clinical or functional 
evidence for CTD. All such variants were not assigned 
a pathogenicity category. Table  3 shows example vari-
ants in each category and types of evidence used for their 
categorization.

Annotation
Annotations were performed on the 181 variants, after 
excluding the 4 large deletions, using AVIA [85] and 
VEP [86] applications. Variant annotations from multiple 
databases such as ClinVar [13], dbSNP [44], gnomAD 
[45] and 1,000 Genomes [46] were obtained, along with 
predictions from multiple variant impact analysis algo-
rithms including SIFT [47], PolyPhen2 [48], Mutation-
Taster2 [49], Mutation Assessor [50], PROVEAN [51], 
and CADD [52]. DisGeNet [87] and HGMD [88], two 
resources that include variants mined from literature, 
were not used for the variant comparisons as they only 
had a small representation of the curated variants in the 
public version.

Abbreviations
4-PBA  4-PhenylButyric Acid
ACMG  American College of Medical Genetics
AVIA  Annotation, Visualization, and Impact Analysis
BERT  Bidirectional Encoder Representations from Transformers

Table 3 Assigning Pathogenicity. A lower MRS measured cerebral creatine peak, elevated plasma creatine to creatinine ratio, and 
impaired ability of the protein to transport creatine relative to the wildtype protein were all used as evidence of variant pathogenicity. 
The table lists a selection of variants from different categories, evidence found in the manuscript and the pathogenicity assignment 
made based on these details
Variant Evidence in the manuscript ACMG category
c.619 C > T, p.R207W Patient had mental disability, increased urine Cr/Crn ratio, and the fibroblasts culti-

vated from patient cells had less than 10% of wild type creatine uptake.
Pathogenic

c.942 C > G, p.F314L 65% of wild type activity, close to the cutoff for residual activity. Likely Pathogenic

c.1162G > A, p.A388T Reported non-pathogenic by Betsalel 2011 but pathogenic by Cameron 2017. 
None of the referenced articles have data for brain MRS creatine peak, plasma cre-
atine, urine creatine to creatinine ratio, or fibroblast creatine uptake rate compared 
to wild type protein.

Variant of Uncertain 
Significance

c.544G > A, p.V182M Detected in a CTD patient, but the authors found that the variant did not segregate 
with phenotype in the family.

Likely Benign

c.394 + 88G > C Detected in 21 of 166 non-CTD individuals. Benign

p.T481I Fibroblast creatine transport rate within 25% of the wild type protein’s creatine 
transport rate.

Benign
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BEST  Biomedical Entity Search Tool
BioNLP  Biomedical Natural Language Processing
CADD  Combined Annotation Dependent Depletion
CTD  X-linked Creatine Transporter Deficiency
CRF  Conditional Random Field
dbSNP  Single Nucleotide Polymorphism Database
FDA  Food and Drug Administration
GAMT  Guanidinoacetate methyltransferase
GARD  Genetic and Rare Diseases Information Center
gnomAD  Genome Aggregation Database
HGMD  Human Gene Mutation Database
HGVS  Human Genome Variation Society
IVS  Intervening Sequence
LOVD  Leiden Open Variation Database
MNV  Multi Nucleotide Variant
MRS  Magnetic Resonance Spectroscopy
NLP  Natural Language Processing
NORD  National Organization for Rare Disorders
PolyPhen2  Polymorphism Phenotyping v2
PROVEAN  Protein Variation Effect Analyzer
SIFT  Sorting Intolerant From Tolerant
SNV  Single Nucleotide Variant
VEP  Variant Effect Predictor
VUS  Variants of Uncertain Significance
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