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Abstract 

Background  The rapid devolvement of single cell RNA sequencing (scRNA-seq) technology leads to huge amounts 
of scRNA-seq data, which greatly advance the research of many biomedical fields involving tissue heterogeneity, 
pathogenesis of disease and drug resistance etc. One major task in scRNA-seq data analysis is to cluster cells in terms 
of their expression characteristics. Up to now, a number of methods have been proposed to infer cell clusters, 
yet there is still much space to improve their performance.

Results  In this paper, we develop a new two-step clustering approach to effectively cluster scRNA-seq data, 
which is called TSC — the abbreviation of Two-Step Clustering. Particularly, by dividing all cells into two types: core 
cells (those possibly lying around the centers of clusters) and non-core cells (those locating in the boundary areas 
of clusters), we first clusters the core cells by hierarchical clustering (the first step) and then assigns the non-core cells 
to the corresponding nearest clusters (the second step). Extensive experiments on 12 real scRNA-seq datasets show 
that TSC outperforms the state of the art methods.

Conclusion  TSC is an effective clustering method due to its two-steps clustering strategy, and it is a useful tool 
for scRNA-seq data analysis.

Keywords  Single cell RNA sequencing, Random walk, Hierarchical clustering

Background
As the basic structural and functional units of all known 
organisms, cells vary broadly in types and states  [1]. 
Assessing cell-to-cell variability in expression is cru-
cial for disentangling heterogeneous tissues and under-
standing dynamic biological processes  [2]. In traditional 
sequencing, gene expression is measured over a bulk of 
cells. Thus, it is hard to study the heterogeneity of cells 
and characterize rare cell types such as stem cells and 
cancer cells  [3]. Encouragingly, the recent breakthrough 
in single cell RNA sequencing (scRNA-seq) enables us to 
screen heterogeneous cells [4, 5].

One important task in scRNA-seq data analysis is to 
infer the categories of cells, which is crucial to elucidate 
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cell types and understand cell functions. Clustering is a 
widely used solution to this task. However, scRNA-seq 
data characteristics of high noise level, dropout events 
(i.e. expressed genes that are fail to be detected) and high 
dimensionality complicate this task [6]. By far, a number 
of clustering methods have been developed for scRNA-
seq data. For example, Prabhakaran et  al. proposed the 
BISCUIT method, which clusters scRNA-seq data by 
incorporating parameters of technical variation into a 
Hierarchical Dirichlet Process mixture model [7]. Lin et al. 
developed an ultrafast algorithm CIDR that takes drop-
out events into account with a simple implicit imputation 
approach [8]. By combining multiple clustering solutions, 
a consensus clustering approach SC3 was designed to 
cluster scRNA-seq data  [9]. DIMM-SC was specifically 
proposed for processing droplet-based scRNA-Seq data, 
which is based on the Dirichlet mixture model  [10]. To 
handle the challenge of high dimensionality in scRNA-
seq data, dimension reduction techniques were widely 
used. For example, pcaReduce integrated principal 
component analysis (PCA) with an agglomerative clus-
tering method  [11]. Shao et  al. adapted nonnegative 
matrix factorization (NMF) to identify subpopulations 
in scRNA-seq data and showed that NMF outperforms 
PCA in accuracy and robustness  [12]. CellTree applies 
latent dirichlet allocation (LDA) and produces the tree 
structure of single cells  [13]. As shared nearest neighbor 
(SNN) has been demonstrated more stable and robust for 
high-dimensional data than traditional distance metrics, 
Chen et  al. proposed SNNCliq, which identifies clusters 
by a quasi-clique-based clustering algorithm on a SNN 
graph [14], while the Seurat method finds clusters of cells 
by a modularity optimization-based clustering algorithm 
on a SNN graph [15]. Other methods like GiniClust and 
RaceID were developed to solve specific clustering task of 
rare cell type detection [16, 17]. Recently, deep learning-
based methods such as scVI and SAUCIE were proposed 
to analyze scRNA-seq data [18, 19].

Although significant progress has been made in clus-
tering scRNA-seq data, existing clustering methods still 
suffer from various limitations and there is much space 
to improve clustering accuracy. Most existing methods 
require to pre-specify the number of clusters to be out-
put, which is impractical or even impossible for complex 
and large-scale datasets. Some methods such as prob-
ability model-based or deep learning-based methods, 
are sensitive to parameters and difficult to implement 
in practice. As for graph theory-based approaches, they 
usually use sparse SNN graphs, which tends to obtain 
excessive amounts of sub-graphs, resulting in low clus-
tering accuracy. In summary, the rapidly increasing of 
scRNA-seq data and the drawbacks of existing methods 
call for novel scRNA-seq data clustering solutions.

In this paper, we propose a new and effective approach 
for scRNA-seq data clustering. It is a two-step clustering 
method called TSC — the abbreviation of Two-Step Clus-
tering. That is, after splitting all cells into core cells that 
are closely connected with their neighbors and possibly 
lie around the centers of the underlying clusters, and non-
core cells that are less closely connected with their neigh-
bors and possibly located in the boundary areas of the 
clusters, we first group the core cells by hierarchical clus-
tering (the first step) and then assign the non-core cells 
into the corresponding nearest clusters (the second step).

Technically, our method features in the following 
aspects: 1) we employ a “two-step clustering” strategy, 
which aims to cluster core cells and non-core cells sepa-
rately, thus alleviate the negative impact of non-core cells 
(or boundary cells) on clustering accuracy. 2) In data-pre-
processing, we propose the right-skewed coefficient (RSC) 
to measure the degree of right-skewedness in scRNA-seq 
data, and with RSC we can correctly determine whether 
or not to conduct Log-transformation on the data. 3) We 
apply random walk to represent the relationship between 
cells and define the random walk distance, which is used 
in hierarchical clustering of scRNA-seq data. 4) To gener-
ate reliable cell graph, we consider five simialrity/distance 
metrics, including three distance metrics and two corre-
lation metrics. 5) We adopt an effective criterion to auto-
matically determine the number of clusters to generate.

To evaluate the proposed method, we conduct exten-
sive experiments on 12 real scRNA-seq datasets. Our 
experimental results show that the proposed method 
outperforms several state of the art methods in clustering 
scRNA-seq data.

Results
In this section, we evaluate TSC in clustering scRNA-seq 
data. First, we introduce 12 publicly available scRNA-seq 
datasets and clustering evaluation metric. Then, we com-
pare the effects of similarity/distance metrics applied in 
TSC on clustering accuracy. Third, we compare the clus-
tering results of TSC with other methods. Fourth, we 
present the advantage of two-step clustering. Finally, we 
discuss the effectiveness of Log-transformation.

Datasets and performance metric
We collected twelve real and publicly available scRNA-
seq datasets from published papers. These datasets 
mainly contain scRNA-seq data about different cell types 
of mouse embryos, mouse cortex and mouse distal lung 
epithelium. The datasets have been widely used in evalu-
ating existing scRNA-seq data clustering methods.

Table 1 presents the statistical information of these data-
sets, including the number of cells, clusters and genes and 
their sequencing protocols. Datasets are named by the 
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accession numbers provided in the original publications. 
We can note that these datasets range in size from dozens 
to thousands, with more than 14,000 genes/transcripts. 
The number of cell types varies from 3 to 14. Units of gene/
transcript levels include FPKM (Fragments Per Kilobase of 
exon model per Million mapped reads), CPM (Counts of 
exon model per Million mapped reads) and UMI (Unique 
Molecule Identifier). Specifically, UMI uses a direct meas-
urement of transcript copies for each transcript  [20], 
while FPKM and CPM normalize the raw read counts 
based on sequencing depth and gene length. In addition, 
these scRNA-seq data were generated from some repre-
sentative sequencing platforms, such as Smart-seq  [21], 
SMARTer [22], Smart-Seq2 [23, 24] and inDrop [25].

In our experiments, we use Adjusted Rand Index (ARI) 
to measure the clustering performance. Given the ground 
truth class assignments labels_true and the predicted 
class assignments labels_predict , ARI measures the simi-
larity of these two assignments [32]. Concretely, the over-
lapping between two assignments can be summarized as 
a contingency table, which reports the intersection car-
dinality of each true-predicted cluster pair. ARI is calcu-
lated as follows:

where m is the number of cells totally in the dataset, tij 
is the value at the ith-row and the jth-column in the con-
tingency table, ai is the sum of the ith-row of the con-
tingency table, bj is the sum of the jth-column of the 
contingency table, and () denotes a binomial coefficient. 
ARI ranges from -1 to 1, where a negative value means 
mismatch and ‘1’ indicates a perfect match. Other three 
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commonly used clustering performance evaluation met-
rics are also applied in this paper, including Normalized 
Mutual Information (NMI) [33], Adjusted Mutual Infor-
mation (AMI) [34] and Accuracy (Acc) [35].

Comparison among different similarity/distance metrics
Here we compare the performance when using the five 
different similarity/distance metrics: ED  (Euclidean dis-
tance), MD (Manhattan distance), PCC (Pearson correla-
tion coefficient), SCC (Spearman correlation coefficient) 
and SNN  (shared nearest neighbors). We denote the 
methods used these metrics as TSCED , TSCMD , TSCPCC , 
TSCSCC and TSCSNN , respectively.

Figure 1 shows the ARI results on the 12 datasets. We 
can see that TSCSCC achieves the best results on the 
first four datasets, and TSCPCC performs best on the 
last nine datasets. Their average ARI values over the 12 
datasets are 0.62 and 0.79 respectively, larger than those 
of the other three metrics. Overall, TSCED and TSCMD 
are in the middle, and TSCSNN performs worst. So in the 
remaining experiments, we consider only TSCSCC and 
TSCPCC.

Comparison with existing methods
Here, we compare our method with six existing meth-
ods, including SC3 [9], CIDR [8], SINCERA [36], pcaRe-
duce [11], Seurat [15] and SNNCliq [14]. They represent 
the state of the art of scRNA-seq data clustering [37, 38]. 
In addition, we also applied spectral clustering (a classical 
graph-based clustering method) to the scRNA-seq data. 
The ARI results are illustrated in Fig. 2, where the value 
in the parentheses following each method’s name in the 
legend is the average ARI over the 12 datasets.

From Fig. 2, we can see that TSCPCC outperforms the 
others on 8 of the 12 datasets, and TSCSCC performs best 
on 4 of the 12 datasets. They achieve 0.79 and 0.62 of 
average ARI over the 12 datasets respectively, which are 
much higher than those of the 6 existing methods. This 
result validates the advantage of our method over the 
existing ones. For the existing methods, SINCERA per-
forms best on average, followed by Seurat, CIDR, SC3, 
pcaReduce and spectral clustering. SNNCliq performs 
worst. Results of the other three clustering performance 
metrics show similar trends as that of ARI, which are pre-
sented in the Additional file (Additional file 1: Table S1).

Advantage of two‑step clustering
Our TSC method adopts a “two-step clustering” strat-
egy. To further demonstrate the advantage of our 
method, here we compare the performance of our 
“two-step clustering” strategy and that of the “one-step 
clustering” strategy. In the “one-step clustering” strat-
egy, we do not split cells to core cells and non-core 

Table 1  A summary of 12 sc-RNAseq datasets

Datasets #Cells #Clusters #Genes Unit Protocol

GSE59892 [26] 49 3 25737 FPKM Smart-seq

GSE52583 [27] 80 5 23837 FPKM SMARTer

E-MTAB-3321 [28] 124 5 28223 CPM Smart-Seq2

E-MTAB-2600 [29] 704 3 21231 CPM Smart-Seq2

GSE71585 [30] 1809 7 24057 Count SMARTer

GSE65525 [25] 2717 4 24175 UMI inDrop

GSM2230757 [31] 1937 14 20125 UMI inDrop

GSM2230758 [31] 1724 14 20125 UMI inDrop

GSM2230759 [31] 3605 14 20125 UMI inDrop

GSM2230760 [31] 1303 14 20125 UMI inDrop

GSM2230761 [31] 822 13 14878 UMI inDrop

GSM2230762 [31] 1064 13 14878 UMI inDrop
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cells, instead we directly cluster all cells. Note that in 
the “one-step clustering” strategy, we use similar data 
processing strategy, random walk distance and hierar-
chical clustering as in the “two-step clustering” strat-
egy. Both use PCC in graph construction for random 
walk. The results are presented in Table  2. Here, the 

2nd column (“ARI-1Step”) presents the ARI results of 
“one-step clustering”. The 3rd column and the 4th col-
umn give the ARI results of TSC_PCC , but the former 
“ARI-2Steps-core” indicates the ARI computed only on 
core cells, and the latter “ARI-2Steps” is the ARI com-
puted on all cells.

Fig. 1  Performance comparison among the 5 similarity/distance metrics. The value in the parentheses following each method’s name 
in the legend is the average ARI

Fig. 2  Performance comparison with seven existing methods on 12 datasets. The value in the parentheses following each method’s name 
in the legend is the average ARI
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From Table 2, we can see that our “two-step clustering” 
strategy is more effective than the “one-step clustering” 
strategy on 10 of the 12 datasets. On average, the ARI of 
our method is 28% higher than that of the “one-step clus-
tering” strategy. Furthermore, by comparing the results 
of “ARI-2steps-core” and “ARI-2steps” over 12 datasets, 
we can find that the ARI of “ARI-2steps-core” is higher 
than that of “ARI-2steps” on all 12 datasets. This is con-
sistent with our expectation that core cells are easier to 
be clustered than non-core cells.

Effectiveness of Log‑transformation
TSC will examine whether or not to perform Log-trans-
formation in data preprocessing. We propose RSC as the 
criterion of Log-transformation. To evaluate the effec-
tiveness of RSC, in Table  3 we present the RSC values 
and the corresponding ARI values of TSCPCC on the 12 
scRNA-seq datasets. The 3rd/4th column is the ARI val-
ues of TSCPCC without/with Log-transformation.

As shown in Table 3, we can see that the first five data-
sets (from E-MTAB-3321 to GSE71585) have relatively 
large RSC ( > 0.80 ), and their ARI values when using Log-
transformation are much larger than that when not using 
Log-transformation. On the contrary, for the other seven 
datasets, they have relatively small RSC ( < 0.5 ), and their 
ARI values when not using Log-transformation are much 
larger than that when using Log-transformation.

In summary, from Table 3 we can conclude that 1) RSC 
is effective in correctly deciding whether or not to per-
form Log-transformation; 2) When Log-transformation 
is properly performed according to our RSC criterion, 
significant improvement on ARI can be achieved.

Effects of parameters in TSC
To select core cells, we adopted a threshold to filter the 
edges from the fully connected graph. Here, we check 
the clustering performance of TSC under four cases, 
i.e., keeping 25% , 50%, 75% and 100% the edges in the 
fully connected graph. From the results shown in the 
Additional file (Additional file 2: Fig. S1), we can see that 
TSC achieves the best clustering accuracy on the twelve 
datasets when keeping 25% edges in the fully connected 
graph.

To calculate the distance between cells, we perform 
random walk on the cell graph, in which the step size 
(parameter t) plays a key role in cells’ similarity evalu-
ation. Here, we analyze the effect of parameter t on the 
clustering performance of TSC. Concretely, we evaluate 
the robustness of TSC to t as follows: changing t’s value 
from 2 to 15, and evaluating the clustering performance 
by ARI, the results are shown in the Additional file 
(Additional file 3: Fig. S2). We can see that TSC has rela-
tively stable ARI when t increases from 2 to 15 on most 
of the datasets, and by setting t to 4 or 6 can get better 
performance.

Discussion
scRNA-seq clustering is the most direct and effective 
method to identify novel cell types and characterize 
the heterogeneous cell populations. Here, we introduce 
TSC, a novel two-step clustering method, to improve 
the clustering accuracy. To create a graph for core cells, 
we considered five different similarity/distance metrics. 
However, each metric owns its advantages, and it is not 
sufficient to choose one metric to measure the similar-
ity between cells. For future work, we will try to improve 
cell graph construction by integrating multiple similarity/

Table 2  Comparison between one-step clustering and two-step 
clustering

Dataset ARI-1Step ARI-2Steps-
core

ARI-2Steps

GSE59892 1 1 1

E-MTAB-3321 0.63 0.87 0.89

E-MTAB-2600 0.38 0.61 0.66

GSE52583 0.01 0.61 0.53

GSE65525 0.41 0.74 0.74

GSE71585 0.27 1 0.82

GSM2230757 0.62 0.86 0.86

GSM2230758 0.76 0.87 0.83

GSM2230759 0.87 0.89 0.85

GSM2230760 0.79 0.87 0.82

GSM2230761 0.67 0.76 0.76

GSM2230762 0.80 0.92 0.78

Average ARI 0.60 0.83 0.79

Table 3  ARI comparison of TSCPCC with/without Log-
transformation

Dataset RSC ARI-NoLog ARI-Log

E-MTAB-3321 1.80 0.22 0.89
E-MTAB-2600 1.31 0.08 0.66
GSE59892 1.29 0.57 1
GSE52583 1.08 0.50 0.53
GSE71585 0.83 0.69 0.82
GSM2230759 0.49 0.85 0.71

GSM2230758 0.48 0.83 0.78

GSM2230761 0.46 0.76 0.48

GSM2230762 0.43 0.78 0.78

GSM2230760 0.42 0.82 0.78

GSE65525 0.39 0.74 0.40

GSM2230757 0.34 0.86 0.67
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distance measurements to make the graphs more reliable, 
thus further boost clustering performance. On the other 
hand, considering that deep learning is effective in pro-
cessing big data, we will also explore new deep learning 
models for effectively clustering scRNA-seq data. Last 
but not least, considering that annotated scRNA-seq data 
are much less than raw data without annotations, we will 
also intend to extend our TSC framework to large data-
sets by exploring semi-supervised strategies.

Conclusion
In this paper, we develop a new and effective scRNA-seq 
data clustering method TSC, which adopts a two-step 
clustering strategy, by first splitting all cells into core 
cells and non-core cells. Then, the core cells are clustered 
by hierarchical clustering with random walk distance, 
and the non-core cells are finally assigned to the clus-
ters according to their distances to these clusters. With 
the two-step clustering strategy, TSC is able to guaran-
tee the clustering accuracy of core cells and improve the 
overall accuracy subsequently. In addition, TSC does 
not need to specify the number of clusters, but deter-
mines the cluster number automatically. Moreover, we 
design the RSC criterion to determine whether or not to 
perform Log-transformation on data before clustering. 
Extensive experiments on 12 real datasets show that the 
proposed method outperforms the state of the art meth-
ods in scRNA-seq data clustering analysis. In addition, 
our experiments also show that 1) the two-step cluster-
ing strategy is much better than the one-step clustering 
strategy (directly clustering all cells); 2) The proposed 
RSC criterion is effective in deciding whether or not to 
perform Log-transformation on scRNA-seq data; 3) PCC 
and SCC are more effective in constructing cell graphs 
for clustering than the other three metrics ED, MD and 
SNN.

Methods
In this section, we describe the TSC method in detail. 
Figure 3 illustrates the pipeline of TSC, which consists of 
four major steps: 1) Data preprocessing; 2) Selecting core 
cells; 3) Calculating distance between core cells by ran-
dom walk; 4) Grouping core cells by hierarchical cluster-
ing (the first clustering step); (5) Assigning the remaining 
non-core cells to the corresponding nearest clusters (the 
second clustering step).

In what follows, we give the technical detail of each 
module above.

Data preprocessing
Since features with excessive amounts of 0 value are not 
informative for clustering, we first remove genes/tran-
scripts that express (expression value >0) in less than 

2% of cells. Actually, a small change to this percent-
age threshold does not significantly impact clustering 
result [9].

In scRNA-seq data, the expression levels of different 
genes vary greatly, which leads to the right-skewed dis-
tribution phenomena, i.e., the mean is greater than the 
median. Thus, the similarity or distance between cells 
would be largely determined by the genes with large val-
ues. Many scRNA-seq clustering approaches employ 
Log-transformation to handle right-skewed distribution. 
However, it is improper to perform Log-transformation 
on data not fitting right-skewed distribution. Otherwise, 
the difference between genes will be distorted. To solve 
this problem, we define a right-skewed coefficient (RSC) to 
measure the degree of right-skewness of data as follows:

where gmax
i  is the maximum expression value of gene i, µ 

is the average of all genes’ maximum values, and l is the 
number of genes whose maximum expression values are 
larger than µ . RSC indicates the average deviation of data 
points that lie in the right of mean. The larger RSC is, 
the more the data are right-skewed. In this paper, when 
RSC is greater than 0.8, we think that the data are heav-
ily right-skewed and Log-transformation is performed. 
To eliminate the effect of outliers, we remove genes that 
do not fall in [Q1-1.5*IQR, Q3+1.5*IQR] before comput-
ing RSC [39]. Here, Q1 and Q3 are the first and the third 
quartile of all genes’ maximum values, and the interquar-
tile range (IQR) is (Q3-Q1).

(2)RSC =

∑l
i=1,gmax

i ≥µ(g
max
i − µ)

l ∗ µ

Fig. 3  The pipeline of TSC



Page 7 of 9Li et al. BMC Genomics          (2022) 23:864 	

Selecting core cells
Given a scRNA-seq dataset, we find the core cells by first 
constructing a fully-connected weighted graph Gc where 
each node corresponds to a cell and each edge-weight 
represents the similarity between the two respective 
cells.

Usually, the similarity between two cells can also evalu-
ated by the difference between 1 and their correspond-
ing distance when the distance is normalized into [0, 
1]. So we can treat similarity and distance equally. We 
consider five similarity/distance measures: Euclidean 
distance (ED), Manhattan distance (MD), Pearson corre-
lation coefficient (PCC), Spearman correlation coefficient 
(SCC) and shared nearest neighbors (SNN) [40]. ED and 
MD are commonly used distance measurements. PCC 
and SCC range from -1 to 1, we use only the positive 
values. SNN is also called second-order distance, which 
measures the similarity between two samples based on 
their shared neighbors.

Then, we set a similarity threshold sc . In the graph 
Gc , we discard all the edges whose weights are less 
than sc . The remaining edges and the nodes connected 
by any of these remaining edges form a new graph Gcc . 
We call the nodes in Gcc core nodes as they are rela-
tively close to their neighbors and possibly lie around 
the centers of the underlying cell clusters. Thus, the 
cells corresponding to the core nodes are core cells, 
and we call Gcc core-cell graph. On the other hand, 
we call the remaining nodes non-core nodes, and the 
corresponding cells non-core cells. Non-core nodes 
are not close to their neighbors as the similarity val-
ues between them and their neighbors are less than sc . 
So they may be located in the boundary areas of the 
underlying clusters.

As a rule of thumb, we choose sc such that the number 
of edges in Gcc is around 25% of the total number of edges 
in Gc.

Calculating distance between core cells by random walk
To calculate the distance between any two core cells, 
we perform random walk on the core-cell graph Gcc 
constructed above. The random walk process is as fol-
lows: Given the transition matrix M where Mij =

wij

Deg(i) , 
Deg(i) =

∑ni
j=1

wij , ni means the number of neighbors 
of cell i, wij is the similarity between cell i and cell j. 
Suppose there are n nodes in Gcc . If a walker starts from 
node (or cell) i, then the initial probability P0

i. is set as a 
n-dimension vector with only the ith dimension value 
being 1 and the others being 0. As the walker goes on 
the graph, the vector of probability is updated accord-
ing to Pt+1

= MT
∗ Pt where Pt

ij is the probability of the 
walker going from node i to node j in t steps. It has 

been shown that if t becomes infinity, the probability Pt
ij 

depends only on the degree of node j. Therefore, it is 
crucial to choose the value of t: too short will not be 
enough to capture the graph’s topological information, 
while too long will result in a stationary distribution. In 
our experiments, we set t = 4, which is empirically 
advised by previous study [41].

For cell i, we can obtain a vector of walking probability 
starting from it. The random walk distance dij between 
cell i and cell j is defined as below:

Grouping core cells by hierarchical clustering
We employ bottom-up hierarchical clustering to cluster 
the core cells. That is, first treat each core cell as a cluster, 
and then merge the nearest cluster pairs iteratively. The 
distance between two cells is calculated by Eq.  (3). The 
distance dCk between cell k and cluster C and the dis-
tance dCiCj between cluster Ci and cluster Cj are defined 
as follows:

where |C| indicates the number of cells in cluster C. One 
important issue in hierarchical clustering is the crite-
ria for selecting two clusters to merge each time. Here, 
we adopt the strategy from the Wards method [42]. The 
change of the average intra-cluster distance before and 
after the merging of cluster Ci and cluster Cj is evaluated 
as follows:

where Cu = Ci ∪ Cj . We select the two clusters with the 
smallest value of �σ to merge each time.

Another important issue is to determine the number of 
clusters to be generated, we use the criteria introduced 
in [41]. First, evaluating the average intra-cluster distance 
σK  of K clusters as follows:

where Ck means the kth cluster. Then, calculating the 
change of the average intra-cluster distance when the 
number of clusters increases from K to K + 1 by

(3)dij =

√

√

√

√

∑n

k=1

(Pt
ik − Pt

jk)
2

Deg(k)
.

(4)dCk =
1

|C|

∑

iǫC
Pt
ik ,

(5)dCiCj =

√

∑n

k=1

(dCik − dCjk)
2

Deg(k)

(6)�σ(Ci ,Cj) =
1

n

(

∑

k∈Cu
d2Cuk

−

∑

k∈Ci

d2Cik
−

∑

k∈Cj

d2Cjk

)

(7)σK =
1

n

∑K

k=1

∑

i∈Ck

d2Ck i
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The optimal number K of clusters is that with the maxi-
mum value of ηK .

Assigning the non‑core cells
After clustering the core cells, we get K clusters. To 
assign the non-core cells to the generated clusters, we 
first evaluate the center of each cluster as follows:

where ckj is the value in the jth dimension of the center 
vector of cluster k, xcj is the expression value of the jth 
gene of core cell c, χk is the set of core cells in cluster k 
and |χk | indicates the number of core cells in cluster k.

For each non-core cell, we then calculate its distance 
to the center of each cluster, and assign it to the cluster 
whose center is nearest to the cell.
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