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Abstract 

Background More and more studies show that lncRNA is widely involved in various physiological processes 
of the organism. However, the functions of the vast majority of them continue to be unknown. In addition, data related 
to lncRNAs in biological databases are constantly increasing. Therefore, it is quite urgent to develop a computing 
method to make the utmost of these data.

Results In this paper, we propose a new computational method based on global heterogeneous networks to predict 
the functions of lncRNAs, called DNGRGO. DNGRGO first calculates the similarities among proteins, miRNAs, and lncR-
NAs, and annotates the functions of lncRNAs according to its similar protein-coding genes, which have been labeled 
with gene ontology (GO). To evaluate the performance of DNGRGO, we manually annotated GO terms to lncRNAs 
and implemented our method on these data. Compared with the existing methods, the results of DNGRGO show 
superior predictive performance of maximum F-measure and coverage.

Conclusions DNGRGO is able to annotate lncRNAs through capturing the low-dimensional features of the het-
erogeneous network. Moreover, the experimental results show that integrating miRNA data can help to improve 
the predictive performance of DNGRGO.

Keywords Gene ontology, lncRNA functions, PPMI, SDAE, Network representation

Background
LncRNA is an RNA molecule that is defined as endog-
enous molecules with a length of more than 200 nucleo-
tides. More and more biologically-functioning lncRNAs 
are continually being found in various organisms. LncR-
NAs are widely involved in animal neurodevelopment, 

cell cycle regulation, cell regulation, tumorigenesis, and 
metastasis [1, 2]. Moreover, it is reported that human dis-
eases and cancers are associated with mutations and dys-
regulations of lncRNAs [3–6]. Thus, identifying functions 
of lncRNAs has become increasingly important. During 
those years, a few functions of long non-coding RNAs 
(lncRNAs) have been annotated by the development of 
high-throughput next-generation sequencing techniques 
and lncRNA chip technology [7–9]. There are still a large 
number of lncRNAs need to be annotated.

Based on biological experiments, biologists can iden-
tify functions of lncRNAs through a variety of mecha-
nisms, such as pIgR, CLIP, RAP, etc. However, the 
experimental characterization of lncRNA functions 
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often costs too much money while there also will be a 
slow process [10]. Besides some biological methods, 
recently, several approaches and tools have been 
designed to identify functions of lncRNAs. Genes with 
similar expression patterns across multiple conditions 
usually have close functional relationship or are associ-
ated with related biological pathways. Therefore, some 
researchers determined the lncRNA functions accord-
ing to the co-expression patterns of genes. Guttman 
et  al. used mouse microarray data and lncRNA-mRNA 
co-expression data to construct a network to predict the 
functions of lncRNAs [11]. Liao et  al. also used those 
microarray expression profiles, as well as local infor-
mation, to annotated functions of 340 lncRNAs, which 
were concluded by constructing the coexpression of 
encoding-non-coding [12]. In addition to these local 
methods, a bichromatic biological network was estab-
lished to predict the functions of lncRNAs based on 
coexpression data and protein interaction data by Guo 
et al. [13]. Recently, Jiang et al. have further proposed a 
method called LncRNA2Function, which was developed 
to identify the functions of 9625 lncRNAs by hypergeo-
metric tests [14]. More recently, Zhang et al. have anno-
tated lncRNAs with gene-ontology terminology based 
on KATZ measures [15]. Functions of lncRNA could 
be investigated based on integrative features includ-
ing sequence-derived features such as ORF, nucleotide 
composition, conservation score, experimental features, 
etc. The COME method integrated sequence-derived 
and experimental features to infer the coding potential 
of lncRNAs [16]. Combining chromatin state data and 
gene expression patterns, LncRNA Ontology employed 
the nearest shrunken centroid algorithm to predict the 
function of lncRNAs [17].

Network learning is a set of techniques that aims to 
map data structures into latent spaces efficiently. Either 
for dimension reduction or for exploring semantic con-
tent, this type of feature embedding has proved to be 
robust for node classification. In this study, based on 
network representations, we developed a novel predic-
tor named DNGRGO, in which we used GO terms as 
functional annotations for lncRNAs. In this method, 
we built a global heterogeneous network at first, 
which contained six networks, namely, lncRNA simi-
larity network, lncRNA-protein association network, 
protein-protein interaction network, miRNA-lncRNA 
association network, miRNA-protein network, and 
miRNA-miRNA co-expression network. Then, we used 
random walk with restart(RWR) and stacked denois-
ing autoencoder to calculate the low-dimensional fea-
tures of each node in the network. Finally, we annotated 

lncRNAs by training an SVM classifier for each GO 
term based on these compact features and annotations 
of the protein. To evaluate DNGRGO, we run it on the 
manually organized independent test set, namely lncR-
NA2GO-68. Moreover, to illustrate the performance 
of our method, we compared our experimental results 
with the three latest methods, KATZGO [15], PLNRGO 
[18], and BIRWLGO [19]. The experimental results 
indicate that our method is better than others in terms 
of F-measure on the independent test set.

Results
Benchmark
We evaluated DNGRGO and compared it with other 
methods through independent validation. However, 
there was no functional annotation dataset for lncRNAs. 
Hence, we manually annotated each gene in lncRN-
A2GO-68 through the sequence, structural information, 
genomic background, expression, and other information 
about lncRNAs that had been experimentally verified in 
the literature (the Additional file 1).

Evaluation measures
We used the trained SVM model to make predictions for 
each lncRNA in the independent dataset. Each lncRNA 
is corresponding to several possible GO terms, and the 
score of each GO term is between 0 and 1. The higher 
the score, the more confident the prediction is. There-
fore, we need to set a threshold of t to determine the 
final predicted term p(t). We considered all GO items 
in each lncRNA which were greater than or equal to t as 
the prediction set p(t), and each lncRNA manually anno-
tated GO items as the experimental verification set T. 
To measure the performace of predictive methods, we 
adopted three commonly used measurements, namely 
precision, recall, and F-measure. For a rank threshold, 
precision and recall are defined as followings:

and

Where, O denotes the data set of the entire gene ontology, 
and f represents a specific GO item in the entire ontology. 
I(x) is the indicator function, which is described as:

(1)Pri(t) =

∑

f ∈O I(f ∈ Pi(t) ∧ f ∈ Ti)
∑

f ∈O I(f ∈ Pi(t)

(2)Rci(t) =
f ∈O I(f ∈ Pi(t) ∧ f ∈ Ti)

f ∈O I(f ∈ Ti)

(3)I(x) =

{

1 x = true
0 x = false
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After prediction, we expected to draw the PR curve by 
calculating the average precision and recall under dif-
ferent thresholds. A predicted lncRNA corresponds to 
several possible GO terms, and each GO term corre-
sponds to a probability score. If at least one probability 
score is greater than or equal to the threshold, we put this 
lncRNA into the m(t)(≦ N ) dataset. Based on these m(t) 
lncRNAs, we can calculate the average precision corre-
sponding to each threshold t. Then we define the average 
precision as:

Similarly, we can use the same way to calculate the aver-
age recall in the independent test dataset containing N 
lncRNAs. Then the average recall can be defined as:

Different thresholds will lead to different precision and 
recall. In large-scale data sets, these two indicators are 
often mutually restrictive. When the threshold is larger, 
fewer GO terms are predicted of each lncRNA, which 
can get higher precision, but this will also lead to a lower 
recall. When the threshold is lower, more GO terms are 
predicted of each lncRNA, which can get a higher recall 
rate but also lead to lower precision. To solve this prob-
lem, we need to weigh these two indicators (precision 
and recall) comprehensively, which is to calculate the 
maximum F-measure for all thresholds. It can be calcu-
lated as the following:

(4)Pr(t) =
1

m(t)
∗

m(t)
∑

i=1

Pri(t)

(5)Rc(t) =
1

N
∗

N
∑

i=1

Rci(t)

Parameter tuning
In our method, we used RWR to extract the structural 
information of the global network. The RWR algorithm 
contains a parameter α , which denotes the restart prob-
ability. The setting α takes the value from 0 to 1. Assum-
ing starting from a certain node, the larger the value of 
α , the greater the probability of returning to the starting 
node. To validate the influence of its different values, we 
increased α from 0.1 to 0.9 with step size 0.1. The dem-
onstration shows that the performance is relatively stable 
when α is set to different values. In the experiment, we 
chose the restart probability α to be 0.5. After obtain-
ing the topological features of the global network, SDAE 
was employed to reduce the dimension of features. In 
the SDAE network, there are many hyperparameters to 
be tuned. We set the same values as Cao et al.’s research 
[20]. The number of layers of the entire network was set 
to 5, and the number of nodes in each layer denoted as M 
equals [36863-10000-3000-1000-512].

We extracted features of different dimensions and cal-
culated Fmax on the lncRNA2GO-68 dataset for evalua-
tion, because features of different dimensions may affect 
the prediction performance of DNGRGO. As shown 
in Fig. 1, Fmax increases first and then decreases gradu-
ally when the dimension increases. It comes to the max 
value when the dimension equals 512. Hence, we finally 
reduced the high-dimensional features to 512 dimensions 
and entered them as input to the classifier.

(6)Fmax = max
t

(
2 ∗ Pr(t) ∗ Rc(t)

Pr(t)+ Rc(t)
)

Fig. 1 Influence of different feature dimension for function prediction
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Effect of integrating miRNA data
There have been several methods for investigating func-
tions of lncRNAs through integrating multiple data 
sources, such as KATZLGO, BiRWLGO, PLNRGO. 
Compared with these methods, DNGRGO has newly 
added miRNA data. To validate the effectiveness of 
miRNA data, we evaluated DNGRGO on two different 
network configurations including: the network without 
miRNAs (miRNA-miRNA similarities, miRNA-protein 
interactions, and miRNA-lncRNA associations removed) 
and the entire network. These two configurations of 
DNGRGO were tested on the lncRNA2GO-68 dataset 
for precision, recall, and Fmax . As shown in Table 1, the 
Fmax score is 0.356 for the entire network, and 0.306 for 
the network without miRNAs. The results show that the 
entire network with integrated miRNA data can signifi-
cantly better predict functions of lncRNAs than the net-
work without integrated miRNAs .

Performance compared with other methods
At present, the most commonly used method for pre-
dicting functions of lncRNAs based on co-expression is 
“guilt-by-association”. The conclusion is that if lncRNAs 
and the coding genes have similar expression patterns, 
they have similar functions [21]. The KATZ measure 
assigns different weights to neighboring nodes, giving 
larger weights to short paths and smaller weights to long 
paths. KATZLGO builds a global network of lncRNA and 
protein, then uses the KATZ measure to calculate the 
correlation scores between each pair of genes, and finally 
selects the GO term corresponding to the protein with 
the high correlation score as the functional annotation of 
lncRNAs [15]. In the BiRWLGO method, a global hetero-
geneous network of lncRNA and protein is constructed, 
and a double random walk is performed to calculate the 
probability scores between all lncRNA-protein pairs. A 
higher probability indicates a higher degree of associa-
tion between the pair of genes. Then, the prediction of 
lncRNA functions can be achieved through the adjacent 
protein annotated with the GO terms [19]. Same as the 
first two methods, PLNRGO first constructs a heteroge-
neous network of lncRNA-proteins, then uses random 
walks to extract network features, and uses SVM to pre-
dict the functions of lncRNAs [18].

In this paper, our method DNGRGO is compared 
with the three methods in precision, recall, and Fmax . 
The detailed comparison results are shown in Table 2. 
Moreover, the precision-recall curves of different 
methods are plotted in Fig.  2. As shown, DNGRGO 
achieves the highest Fmax score of 0.356, which per-
forms better than the other three methods. Besides 
Fmax , our method also gains the highest score of preci-
sion. Besides, the number of lncRNAs correctly anno-
tated is shown in Fig.  3. 66 lncRNAs of the manually 
organized 68 lncRNAs are correctly annotated by our 
method and PLNRGO, KATZLGO and BiRWGO fol-
low with the numbers of 63 and 64.

Case study
To further illustrate the performance of our prediction 
method, we used the prediction results of NEAT1 as 
a case. NEAT1 is a long non-coding RNA that is criti-
cal to speckle integrity. Studies of gain-of-function or 
loss-of-function in C2C12 cells have shown that NEAT1 
promotes myoblast proliferation but inhibits myoblast 
differentiation and fusion [22]. NEAT1 is downregulated 
in acute promyelocytic leukemia, where it promotes leu-
cocyte differentiation [23, 24]. The results show that the 
Wnt signaling pathway is activated by knockdown inac-
tivation of NEAT1. And the Wnt signaling pathway is 
related to many important cell functions, such as can-
cer stem cells [25]. NEAT1 knockdown cells produced 
smaller tumors, demonstrating that NEAT1 promotes 
tumor growth in  vivo [26]. We used the DNGRGO 
method to predict 158 GO annotations for NEAT1, and 
then we ranked the GO terms in descending order of pre-
dicted scores, of which the first 30 GO terms are listed 
in Table  3. As predicted, many of them are related to 
metabolism, which are closely related to the development 
of cancer, such as GO: 0019222 (regulation of metabolic 
process), GO: 0044237 (cellular metabolic process), GO: 
0032946 (positive regulation of Mononuclear cell pro-
liferation), GO: 0051493 (regulation of lipid metabolic 
process), GO: 0050794 (regulation of cellular process), 
GO: 0046434 (organophosphate catabolic process). There 
are also a large number of GO terms related to signal 

Table 1 Performance comparision on two different network 
configurations: the network without miRNAs and the entire 
network

Method Recall Precision Fmax

the entire network 0.395 0.324 0.356

the network without miRNAs 0.515 0.218 0.306

Table 2 Performance comparison with other methods on the 
lncRNA2GO-68 dataset

Method Recall Precision Fmax

DNGRGO 0.395 0.324 0.356

KATZLGO 0.382 0.241 0.297

BiRWLGO 0.422 0.212 0.282

PLNRGO 0.535 0.220 0.312
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channels, such as GO: 0007165 (signal transduction), 
GO: 0005102 (signaling receptor binding), GO: 0007167 
(enzyme-linked receptor protein signaling pathway), GO: 
0009755 (hormone-mediated signaling pathway), GO: 
0016055 (Wnt signaling pathway).

Discussion and conclusion
Many studies have shown that lncRNA plays an impor-
tant role in cell function. However, the functional 
annotation and prediction of lncRNAs have become 

a considerable challenge due to the non-conservative 
primary sequence and unstable secondary structure of 
lncRNAs. In our study, we proposed a deep neural net-
work-based method, DNGRGO, which predicts the GO 
annotation of lncRNAs by extracting low-dimensional 
feature vectors from the global network and training a 
SVM classifier. Based on the manually annotated lncR-
NA2GO-68 dataset, we assessed the performance of 
DNGRGO independently. Experimental results show 
that DNGRGO scores 0.356 and 0.324 on Fmax and 
precision, respectively, far higher than the other three 

Fig. 2 The precision-recall curve is used to estimate the overall performance

Fig. 3 The numbers of lncRNAs that are annotated correctly by different methods, respectively
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methods. In addition, our experiments show that inte-
grating miRNA data into the network can effectively 
improve the performance of lncRNA’s functional pre-
diction. In the end, we believe that DNGRGO, as a sup-
plement to biological protocols, will further enrich the 
study of lncRNA functions.

Methods
To predict the potential functions of lncRNAs, we pro-
posed a new model named DNGRGO, which consisted 
of four steps, as shown in Fig.  4. First, we integrated 
the six networks into a large global network, which 
contained the protein-protein interaction network, 
protein-lncRNA association network, lncRNA similar-
ity network, miRNA-miRNA co-expression network, 

miRNA-protein association network, and miRNA-
lncRNA association network. Then we used the ran-
dom walk with restart (RWR) to extract graph structure 
information and calculated the positive point of mutual 
information (PPMI) matrix. To extract low-dimensional 
features from the PPMI matrix, we used a stack denois-
ing autoencoder to reduce the dimensions. Finally, we 
trained the SVM model based on topological features 
and annotation of protein-coding genes, and applied 
them to annotate the potential functions of lncRNAs.

Materials
lncRNA co‑expression similarities
All human lncRNA co-expression data is obtained from 
NONCODE2016 database [27]. It contains the expres-
sion profiles of 90062 human lncRNAs. We calculated 
Pearson’s correlation coefficient (PCC) between each pair 
of lncRNAs to represent the co-expression similarity of 
lncRNAs. The Ensemble ID list of lncRNA genes and the 
co-expression similarities are provided in the Additional 
file 2 and 3, respectively.

protein‑protein interactions
We downloaded protein-protein interaction data from 
the STRING database V10.0 [28]. The STRING data-
base is a tool for searching for the relationship between 
genes and proteins. It contains 2031 species, 9,637,763 
proteins, and 1,380,838,440 interactions. In the end, we 
obtained 17867232 PPI relationships from the database. 
The Ensemble ID list of coding genes and the PPIs are 
provided in the Additional files 4 and 5, respectively.

lncRNA‑protein associations
To obtain lncRNA protein-data for building a global net-
work, we first downloaded all human lncRNA genes and 
protein-encoding genes from the GENCODE database of 
release 24 [29]. After screening, a total of 15941 lncRNAs 
and 20284 proteins were extracted. To build the lncRNA-
protein associations, we combined three data sources, 
which are as follows:

I. Co-expression data from COXPRESdb [30]. COX-
PRESdb is a database that provides co-expression infor-
mation of 11 animal species. In COXPRESdb, we got a 
pre-processed lncRNA-protein co-expression dataset, 
which mainly refers to the Pearson correlation coefficient 
between human gene pairs. The specific calculation is as 
follows:

where S(l, p) represents the overall correlation between 
lncRNA l and the protein-coding gene p, Sn(l, p) is the 

(7)S(l, p) = 1−

N
∏

n=1

(1− Sn(l, p)) if Sn(l, p) > 0

Table 3 The top 30 predicted BP terms for lncRNA NEAT1 by 
DNGRGO

Rank GO term GO name

1 GO:0007166 cell surface receptor signaling pathway

2 GO:0017076 purine nucleotide binding

3 GO:0016192 vesicle-mediated transport

4 GO:0019222 regulation of metabolic process

5 GO:0044237 cellular metabolic process

6 GO:0008270 zinc ion binding

7 GO:0007165 signal transduction

8 GO:0003676 nucleic acid binding

9 GO:0046907 intracellular transport

10 GO:0016197 endosomal transport

11 GO:0009987 cellular process

12 GO:0000166 nucleotide binding

13 GO:0007159 leukocyte cell-cell adhesion

14 GO:0015711 organic anion transport

15 GO:0005102 signaling receptor binding

16 GO:0006936 muscle contraction

17 GO:0009991 response to extracellular stimulus

18 GO:0007167 enzyme linked receptor protein signaling pathway

19 GO:0046434 organophosphate catabolic process

20 GO:0009755 hormone-mediated signaling pathway

21 GO:0050794 regulation of cellular process

22 GO:0030522 intracellular receptor signaling pathway

23 GO:0030518 intracellular steroid hormone receptor signaling 
pathway

24 GO:0051493 regulation of cytoskeleton organization

25 GO:0051716 cellular response to stimulus

26 GO:0019216 regulation of lipid metabolic process

27 GO:0032946 positive regulation of mononuclear cell prolifera-
tion

28 GO:0016055 Wnt signaling pathway

29 GO:0007154 cell communication

30 GO:0046942 carboxylic acid transport
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correlation score between l and p in the local data set n, 
and N is the number of l-p gene pairs with positive cor-
relation scores. We only considered positive correlation 
scores and removed negative correlation scores of gene 
pairs.

II.Co-expression data from ArrayExpress [31] and 
GEO [32]. Jiang et  al. [14]processed the co-expression 
data in these two databases and built a web server 
for us to download. We used the Pearson correlation 

coefficient to indicate the degree of association between 
lncRNA and protein.

III. LncRNA-protein interactions from NPinter 3.0 
[33]. The lncRNA-protein interactions of ’Homo sapi-
ens’ were downloaded from the NPinter database, 
which contains 491416 ncRNA interaction data with 
other biomolecules, and these data have been experi-
mentally verified. If there are lncRNA-protein pairs in 
the interaction data set, we can set their interaction 
scores to 1, otherwise set to 0.

Fig. 4 Flowchart of DNGRGO. It consists of four steps: (A) Build the global heterogeneous network composed of six component networks. (B) 
capture the topological feature of each node through running RWR algorithm on the global network, and calculate the PPMI according to these 
features. (C) Obtain the low-dimensional feature vectors through SDAE. (D) SVM models are built for different gene ontology terms
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The integrated lncRNA-protein associations are pro-
vided in the Additional file 6.

miRNA‑miRNA co‑expression similarities
The miRNA expressions involving 638 miRNAs (the 
Additional file  7) are curated from the mimiRNA [34] 
database. We calculated the PCC score of each pair of 
miRNAs as the co-expression similarity of miRNAs (the 
Additional file 8).

miRNA‑protein interactions
We downloaded the known miRNA-protein associations 
from RAID V2.0 [35], which covered more than 60 spe-
cies and had more than 5.27 million RNA-related inter-
actions, including more than 1.2 million RNA-protein 
interaction data. Then, we evaluate the reliability of each 
RNA interaction based on the comprehensive confidence 
score. After preprocessing, we finally obtained 2133 
miRNA-protein associations (the Additional file 9).

miRNA‑lncRNA associations
We downloaded miRNA-lncRNA associations from 
the starBase database [36], which provided the experi-
mentally confirmed miRNA-lncRNA interactions. 
After removing the redundant items, we collected 4983 
miRNA-lncRNA associations (the Additional file 10).

Construct the global network
Different types of biological data can be integrated to 
construct networks of biological interactions, thereby 
correlating potential function. Usually, combining more 
interactions can be effective for the lncRNA annotations. 
The theoretical basis for this conclusion is that interact-
ing protein, and lncRNAs tend to have the same or simi-
lar functions [37]. In addition, if genes have transcripts 
with similar expression patterns, they may share related 
biological pathways or have similar functions. Therefore, 
integrating multiple biological datasets can help annotate 
the functions of lncRNAs. In our work, we annotate the 
functions of lncRNAs by integrating six-component net-
works. Let L, P, M, LP, LM, PM represent the adjacency 
matrices for lncRNA similarity network, protein-protein 
interaction network, miRNA-miRNA co-expression net-
work, lncRNA-protein association network, lncRNA-
miRNA association network, protein-miRNA association 
network, respectively. In addition, we represent the global 
network as the following:

Where, T in LPT , LMT , PMT denotes the transpose.

(8)G =





L LP LM

LPT P PM

LMT PMT M





Obtain vector representations of nodes
To capture the topological information of the nodes 
in the global heterogeneous network, we adopted the 
DNGR model to obtain the vector representations of 
nodes [20]. In DNGR, the random walk with restart 
(RWR) algorithm was employed to extract the contex-
tual information for the nodes. RWR considers not only 
the local but also the global structural information of the 
network. It measures the transition probability of the 
nodes on the graph, and the final distribution can be used 
to find out the correlations among the nodes. In the for-
mula, G represents a weighted adjacency matrix, which is 
the global heterogeneous network we build. And A repre-
sents the transition matrix, and the sum of each column 
in the transition matrix is 1. Matrix A can be obtained by 
applying the column normalization of G. And, each entry 
Ai,j in A represents the probability of walking from node i 
to node j, which is given by:

RWR can be formulated as following recurrence relation:

Where, P0 represents the identity matrix, each column in 
the matrix is a 1-hot code, that is, the j-th item is 1, and 
the other items are 0. Pk represents the matrix obtained 
after k steps, and each row of the matrix represents the 
association between the current node and other nodes 
in the graph. Starting from a certain node in the graph, 
each step faces two choices, randomly selects neighbor-
ing nodes or returns to the starting node. And α is the 
probability of restart, means the probability of return-
ing to the original node and restarting the random surf-
ing procedure. 1-α represents the probability of moving 
from the current node to a neighbor node. After multiple 
iterations, the probability distribution reaches a plateau, 
which is called the ’diffusion state’. Intuitively, the closer 
two nodes are, the more intimate the relationship they 
should have. This means they may have similar functions. 
Based on the matrix of the diffusion state, we refactor a 
vector representation of all the nodes in the global net-
work by computing the PPMI matrix.

The PPMI matrix obtained from above approaches is 
highly dimensional when the network is large. As such, 
these features cannot be readily used for prediction. To 
extract the high-quality low-dimensional vector repre-
sentation for nodes from the PPMI matrix, we employed 
stacked denosing autoencoder (SDAE) to generate com-
press low-dimensional vectors.

The stacked denosing autoencoder is based on the 
automatic encoder. We used the backpropagation 

Ai,j =
Gi,j

∑

k Gk ,i

(9)Pk = α ∗ Pk−1 ∗ A+ (1− α) ∗ P0
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algorithm to make the target value equal to the input 
value. An autoencoder can be divided into two parts: the 
encoder and the decoder. The autoencoder first receives 
the input vector, maps it to a low-dimensional latent 
representation space through a mapping function fθ1(.) , 
and then reconstructs the latent representation space 
into the original input vector by a reconstruction func-
tion gθ2(.) . It is assumed that fθ1(x) = σ(W1x + b1) and 
gθ

2
(x) = σ

(

W2y+ b2
)

 , where σ(.) denotes the activa-
tion function, θ1 =

{

W1, b1
}

 and θ2 =
{

W2, b2
}

 are the 
weights in the encoder and the decoder, respectively. The 
aim is to find the optimal θ1 and θ2 by minimizing the loss 
function:

Where, L is the standard squared loss. As shown in Fig. 5, 
the PPMI matrix, which is denoted as xi , is taken as the 
input into the SDAE model. yi denotes the learned repre-
sentations in the first layer, and zi represents the learned 
representations in the second layer. We train the model 
by minimizing the loss function, which can be optimized 
by the standard back-propagation algorithm. When the 
loss function comes to the minimum, we can extract the 
low-dimensional features from its bottleneck layer.

Train the SVM models
In this paper, we build a support vector machine (SVM) 
classifier for each GO term. And the compressed low-
dimensional representations calculated in the previ-
ous step are taken as the input features. We download 
the annotations of proteins from GOA-PDB [38]. The 

(10)min
θ1,θ2

n
∑

i=1

L(x(i), gθ2(fθ1(x̃
(i))))

proteins with length between 50 and 100 amino acids 
are clustered with sequence similarity greater than 
90%. For each cluster, only one protein is selected as 
a representation. In these representations, we deleted 
the proteins without at least a manually assigned (non-
IEA) GO terms. For each GO annotation, the protein-
GO pairs with the protein having the GO annotation 
are considered positive samples, and the protein-GO 
pairs with the protein not having the GO annotation 
are considered negative samples. Generally, the pro-
tein-Go pairs in the positive set are more than those in 
the negative set. To generate a balanced training data 
set, We randomly select the negative samples as many 
as positive samples. Based on the training set consist-
ing of the positive and negative samples, a SVM classi-
fier is built for a specific GO term.
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