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Abstract 

Background  All cancers harbor somatic mutations in their genomes. In principle, mutations affecting between one 
and fifty base pairs are generally classified as small mutational events. Conversely, large mutational events affect 
more than fifty base pairs, and, in most cases, they encompass copy-number and structural variants affecting many 
thousands of base pairs. Prior studies have demonstrated that examining patterns of somatic mutations can be lever‑
aged to provide both biological and clinical insights, thus, resulting in an extensive repertoire of tools for evaluating 
small mutational events. Recently, classification schemas for examining large-scale mutational events have emerged 
and shown their utility across the spectrum of human cancers. However, there has been no computationally efficient 
bioinformatics tool that allows visualizing and exploring these large-scale mutational events.

Results  Here, we present a new version of SigProfilerMatrixGenerator that now delivers integrated capabilities 
for examining large mutational events. The tool provides support for examining copy-number variants and structural 
variants under two previously developed classification schemas and it supports data from numerous algorithms 
and data modalities. SigProfilerMatrixGenerator is written in Python with an R wrapper package provided for users 
that prefer working in an R environment.

Conclusions  The new version of SigProfilerMatrixGenerator provides the first standardized bioinformatics tool 
for optimized exploration and visualization of two previously developed classification schemas for copy number 
and structural variants. The tool is freely available at https://​github.​com/​Alexa​ndrov​Lab/​SigPr​ofile​rMatr​ixGen​erator 
with an extensive documentation at https://​osf.​io/​s93d5/​wiki/​home/.
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Background
Large-scale cancer genomics projects, including, The 
Cancer Genome Atlas (TCGA) and the Pan-cancer Anal-
ysis of Whole Genomes (PCAWG) initiatives, have com-
prehensively surveyed the molecular landscapes of most 
types of human cancer [1, 2]. These studies have provided 
a compendium of somatic mutations for each examined 
cancer genome and revealed both the mutations driv-
ing cancer development and the processes generating 
most somatic mutations within each cancer [1–3]. One 
commonly performed type of genomics analysis is the 
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examination of mutational patterns within a set of can-
cer genomes and the extraction of mutational signatures 
that have generated these patterns [3, 4]. Historically, 
mutational patterns have been predominately examined 
in the context of small mutational events, which include 
single base substitutions (SBS), doublet base substitu-
tions (DBS), and small insertions and deletions (IDs) [3, 
5]. Recent studies have also started exploring the patterns 
of large mutational events, including ones due to copy-
number alterations and/or structural variations [6, 7]. 
Previously, we developed a computational tool, termed, 
SigProfilerMatrixGenerator, designed exclusively for 
examining the mutational patterns of all types of small 
mutational events [8]. Here, we present a new version of 
SigProfilerMatrixGenerator that now provides the capa-
bilities for optimized exploration and visualization of 
large mutational events.

Large mutational events, generally defined as genomic 
alterations greater than 50 base pairs, are an important 
class of somatic aberrations in human cancer [6]. In prin-
ciple, there are two commonly examined and closely 
interrelated types of large mutational events: (i) a struc-
tural variation (SV, also known as a genomic rearrange-
ment), where a large-scale genomic segment gets altered; 
and (ii) a copy number variation (CNV), where the num-
ber of DNA copies of a genomic segment gets modified. 
Not all structural variations are related to CNVs, as SVs 
do not necessarily alter the copy number of a genomic 
segment; examples include copy neutral events such as 
inversions and reciprocal translocations. Similarly, not all 
changes in copy number require prior SVs, as is the case 
of chromosomal duplications and whole-genome dou-
bling. Importantly, SVs and CNVs also differ in the types 
of genomics approaches that can detect them. In most 
cases, comprehensive detection of SVs requires whole-
genome sequencing (WGS) data as it relies on either 
read alignment [9] or genome assembly methods [10]. In 
contrast, in addition to WGS data, CNVs can be detected 
from whole-exome sequencing, RNA-sequencing, single-
cell sequencings approaches, and genotyping microarrays 
[11–13].

Deciphering mutational signatures from catalogues of 
somatic mutations, a process known as de novo signature 
extraction, relies on a biologically meaningful classifica-
tion of mutational events [5]. We previously created the 
mathematical concept of mutational signatures and pro-
vided a set of tools for deciphering signatures of small 
mutational [4, 8]. Mutational patterns of SBSs, DBSs, IDs, 
have been extensively explored with more than 100 dis-
tinct mutational signatures published in the literature [3, 
14]. These signatures reflect the activities of endogenous 
and/or exogenous mutational processes with approxi-
mately half of all signatures being, at least putatively, 

linked with a proposed etiology [15–18]. Recently, muta-
tional signature analyses of larger copy number altera-
tions and structural alterations have emerged [6, 7, 19, 
20]. A crucial first step in extracting mutational signa-
tures is the derivation of features according to a prede-
fined schema for mutational classification. This step 
involves transforming the mutational catalogues of a set 
of cancer genomes into a matrix, which is then amena-
ble to subsequent matrix decomposition techniques 
[8]. Here, we present a computational package for clas-
sification of large-scale alterations and the generation of 
mutational matrices for signature decomposition. Two 
separate classification schemas are implemented: one for 
copy number variations and one for structural variations. 
Both schemas were previously developed and applied to 
large cohorts of cancer samples [7, 19, 21]. To the best of 
our knowledge, SigProfilerMatrixGenerator is the first 
tool that allows matrix generation and visualization of 
the CNV scheme used for generating the global refer-
ence set of Catalogue of Somatic Mutations in Cancer 
(COSMIC) copy-number signatures [7]. SigProfilerMa-
trixGenerator’s capabilities for analyzing SVs and CNVs 
are implemented in Python and R, and the tool allows 
using multiple input formats, including segmentation 
and browser extensible data paired-end (BEDPE) files 
generated by commonly used algorithms for detecting 
copy number variations and structural variations, respec-
tively. Additionally, SigProfilerMatrixGenerator provides 
a comprehensive visualization of mutational patterns of 
large mutational events and an R wrapper package for 
users that prefer working within the R environment.

Implementation
Classification of copy number variations
The schema for classifying copy number variations is 
based on Steele et  al. [7] and it utilizes allele-specific 
copy number, which quantifies the number of segments 
for each allele at each variant loci rather than the total 
number of chromosome copies. In this schema, the 
copy-number profile of a sample can be represented by a 
mutational vector with 48 dimensions. Specifically, copy 
number segments are categorized into three heterozygo-
sity states: heterozygous segments with total copy num-
ber (TCN) of A > 0, B > 0 (numbers reflect the counts for 
major allele A and minor allele B; Fig. 1a), segments with 
loss of heterozygosity (LOH) with total copy number of 
A > 0, B = 0 (Fig.  1b), and segments with homozygous 
deletions and TCN of A = 0, B = 0 (Fig.  1c). Segments 
are further subclassified into 5 categories based on total 
copy number, which reflects the sum of the copies on 
the major allele A and the copies on the minor allele B: 
TCN = 0, TCN = 1, TCN = 2, TCN = 3 or 4, TCN = 5 
to 8, and TCN >= 9. Each of these total copy number 
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states accounts for the phenomenon of whole-genome 
duplication, for example a diploid (TCN = 2) state tran-
sitioning to a doubled state (TCN = 4), and a subse-
quent doubling of this state to TCN = 8 is accounted for 
by the TCN = 5–8 category (Fig.  1a). The categories for 
total copy number have been chosen for biological rel-
evance (Fig.  1): TCN = 0 reflects homozygous deletions, 
TCN = 1 represents a genomic deletion resulting in an 
LOH, TCN = 2 is equivalent to a diploid state including 
copy neutral LOH (a phenomenon whereby one of two 
homologous chromosomal regions is lost, but two identi-
cal copies of this region still remain; Fig. 1b), TCN = 3 or 
4 reflect a gained state of tri- to tetra-ploidy, TCN = 5 to 
8 represent a penta- to octo-ploidy state, and TCN >= 9 

represents high-level amplifications such as ones found 
in samples containing extrachromosomal DNA (ecDNA) 
[22]. Each of the heterozygous and LOH total copy 
number categories are additionally subclassified into 
five additional categories based on the size of their seg-
ments: 0 – 100 kb, 100 kb – 1 Mb, 1 Mb – 10 Mb, 10 Mb 
– 40  Mb, and > 40  Mb. Three size bins are used for the 
additional subcategorization of homozygous deletions: 0 
– 100 kb, 100 kb – 1 Mb, and > 1 Mb. The partitioning by 
segment sizes was chosen to ensure that a sufficient pro-
portion of segments are classified within each category 
[7]. This classification allows summarizing copy num-
ber profiles using 48 distinct channels and can be repre-
sented using a vector with 48 components. For example, 

Fig. 1  Description of the copy number classification schema. The copy number classification schema consists of 48 mutually exclusive channels, 
divided by heterozygosity status, segment size, and total copy number (TCN). a In the heterozygous state, both alleles are retained and either one 
or both alleles can be amplified. This amplification can be focal (top panel) or it can encompass a chromosome or even the whole genome 
(bottom panel). The heterozygous category is further subdivided based on TCN (TCN = 1, TCN = 2, TCN = 3 or 4, TCN = 5 to 8, and TCN >= 9). b In 
a state of loss of heterozygosity (LOH), one of the alleles is lost. The remaining allele can then be duplicated (i.e., copy neutral LOH), and undergo 
more amplification resulting in higher total copy number states. The LOH category is further subdivided based on TCN (TCN = 1, TCN = 2, TCN = 3 
or 4, TCN = 5 to 8, and TCN >= 9). The heterozygous and LOH categories are further divided on the basis of the size of the segment: 0 – 100 kb, 
100 kb – 1 Mb, 1 Mb – 10 Mb, 10 Mb – 40 Mb, > 40 Mb. High-level LOH or heterozygous amplifications (e.g., TCN = 5 to 8 or TCN >= 9) can be carried 
on extrachromosomal DNA (depicted as red circles) as well as on linear chromosomes. c Homozygous deletions result in the loss of both alleles, 
and are divided on the basis of the size of the deleted segment: 0 – 100 kb, 100 kb – 1 Mb, and > 1 Mb
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a sample harboring multiple focal amplifications, either 
contained on linear or extrachromosomal DNA, will have 
many events in the 9+ total copy number category and 
the first 3 size bins (0 – 100 kb, 100 kb – 1 Mb, 1 Mb – 
10 Mb; Fig. 2a, b). Conversely, a sample containing a large 
number of focal deletions or losses of entire chromo-
somes or chromosome arms will have numerous events 
in the LOH category, spanning all size bins (Fig.  2c, d). 
Another example will be a sample with a whole-genome 
doubling where copy number changes will primarily 
encompass segments with large genomic sizes (10 Mb – 
40 Mb; 40 Mb) and total copy number between 3 and 4 
(Fig. 2e, f ). Overall, this 48-channel classification schema 
can effectively summarize a diverse array of copy num-
ber states seen across tumor types [7], whether they con-
tain broad or focal events that result in amplifications or 
deletions.

Input data for classifying copy number variations
SigProfilerMatrixGenerator allows examining allele spe-
cific CNV data that, at a minimum, include the following 
information for each CNV segment: chromosome, start 
coordinate, end coordinate, and copy number of both the 

minor and major alleles. Output files from the following 
tools for detecting CNVs are automatically supported: 
ASCAT [23], ABSOLUTE [24], Sequenza [25], FACETS 
[12], Battenberg [23], and PURPLE [26]. Additionally, 
custom segmentation files from other CNV detection 
tools can be used if these files contain the aforemen-
tioned information.

Classification of structural variants
A classification schema consisting of 32 features, based 
on Nik-Zainal et  al. [21], is used to construct a muta-
tional vector with 32 dimensions for each sample. 
In principle, each structural variant consists of two 
breakpoints which are at single-base resolution, where 
a breakpoint is defined as a junction that indicates a 
structurally variable genomic segment greater than 50 
base pairs [10]. Breakpoints are typically detected using 
three signals from aligned sequencing reads: depth of 
sequence coverage, discordant read-pairs, and split 
read-pairs [27–29]. Breakpoints can also be detected 
via genome assembly, where reads are assembled into 
contigs, the contigs are aligned to the reference genome, 
and these alignments are analyzed for structural 

Fig. 2  Converting copy number segmentation profiles into copy number mutational vectors. The CNV classification schema converts a sample’s 
segmentation profile (a, c, e) into a count vector of 48 mutually exclusive components (b, d, f). These components are based on segment size, 
heterozygosity status, and total copy number. A breast cancer sample with many highly amplified segments, possibly due to the presence 
of extrachromosomal DNA, is shown in (a, b). This sample’s count vector is characterized by peaks in the 5–8 and 9+ total copy number categories. 
A gastric cancer sample with extensive loss of heterozygosity is shown in (c, d). This sample’s count vector is characterized by peaks in the LOH 
category, specifically with a total copy number of 1 indicating a loss of an allele. A sarcoma sample with a whole-genome duplication event, 
characterized by peaks in the 3–4 total copy number category and the 40 + Mb size bin, is shown in (e, f)
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variants [10]. The previously developed classification 
of structural variants considers the following canoni-
cal SVs: tandem duplications, deletions, inversions, 
and translocations (Fig. 3). A tandem duplication refers 
to a segment of genomic material that has been dupli-
cated and inserted on the same chromosome adjacent 
to the original segment (Fig. 3a). It should be noted that 
a tandem duplication is not necessarily the same as a 
copy-number amplification. For example, ecDNA copy-
number amplifications are not tandem duplications as 
they are not inserted adjacent to the original chromo-
some segment. A somatic deletion is an event that has 
removed a set of existing base-pairs from a given loca-
tion of a chromosome (Fig. 3b). An inversion is when a 
segment of the chromosome breaks off and reattaches 
at the same locus but in a reverse orientation (Fig. 3c). A 
translocation event occurs when a piece of one chromo-
some breaks off and some (or all) fragments from that 
piece re-attach to either another chromosome or to a 
different locus of the same chromosome (Fig.  3d). The 
classification schema bins all SVs, apart from transloca-
tions, according to the size of the event in base pairs: 
0–10  kb, 10  kb–100  kb, 100  kb–1  Mb, 1  Mb–10  Mb, 
and > 10  Mb [21]. Translocations, which may involve 

more than one chromosome, are not binned by size 
because they can be either balanced (where there is 
no net loss of genetic material on the chromosomes 
involved and thus the size can be described by one 
number) or unbalanced (where there is a net loss or 
gain of genetic material on the chromosomes involved 
and thus the sizes of the segments cannot be described 
by just one number). Note that whether a translocation 
is balanced or unbalanced is not considered in this clas-
sification schema. The different types of SVs are then 
further divided into clustered and non-clustered events 
to account for the non-random distribution of these 
events along the genome. Clustered events are defined 
as events that occur closer to each other on a chromo-
some than purely expected by chance. These clusters 
often arise as a result of complex events, such as chro-
mothripsis [30] or chromoplexy [31], generating many 
breakpoints in a single instantaneous event as opposed 
to the gradual accumulation of events over many cell 
cycles which results in more dispersed non-clustered 
events. Clusters of breakpoints can also form as a result 
of other mechanisms, including, for example, rearrange-
ment hotspots in the genome [32]. Clustering of SVs is 
determined based on a previously developed algorithm 

Fig. 3  Description of the structural variant classification schema. Structural variants (SVs) are categorized as tandem-duplications, deletions, 
inversions, or translocations. a Tandem duplication of a segment containing the A allele. A tandem duplication occurs when a segment 
is duplicated and inserted adjacent to the original chromosomal segment. b Deletion of the segment containing the A allele. A deletion 
occurs when there is a loss of genetic material from a chromosome. c An inversion of the segment containing the B allele. An inversion occurs 
when a segment breaks off and reattaches in a reverse orientation within the same chromosome. d A translocation of a chromosomal segment. 
A translocation event occurs when a piece of one chromosome breaks off and some (or all) fragments from that piece re-attach to either another 
chromosome or to a different locus of the same chromosome
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that utilizes the Potts’ filter method [33]. This method 
segments a chromosome based on inter-mutational dis-
tance of SV breakpoints, and if the average distance in 
a particular segment is less than 10 times the average 
inter-mutational distance in the sample, all breakpoints 

in the segment are considered clustered. A minimum 
of 10 breakpoints must be present for a given segment 
to be considered clustered, otherwise all breakpoints in 
that segment are considered non-clustered.

Fig. 4  Classifying Structural Variants into Mutational Vectors. a An example of a bone cancer sample from PCAWG with a highly rearranged genome 
consisting of both clustered and non-clustered structural variants (SVs) is shown as a Circos plot representation. b Zooming into SVs specifically 
found on chromosome 12 in the bone cancer sample. SVs are shown as a linear representation (top) and as a rainfall plot (bottom). The rainfall plot 
depicts all breakpoints on chromosome 12 according to their genomic coordinate (x-axis) and the log10 inter-mutational distance (y-axis), which 
is the distance to the breakpoint immediately preceding it. The tendency of breakpoints to cluster in a specific genomic region on chromosome 
12 due to a chromothripsis event is evident in all representations. c Zooming into SVs specifically found on chromosome 8 in the bone cancer 
sample. SVs are shown as a linear representation (top) and as a rainfall plot (bottom). The rainfall plot depicts all breakpoints on chromosome 8 
according to their genomic coordinate (x-axis) and the log10 inter-mutational distance (y-axis), which is the distance to the breakpoint immediately 
preceding it. There are no clustered SVs on chromosome 8 as, per the SV classification schema, clustering requires a minimum of 10 breakpoints 
in a segment of a chromosome. d The SV classification schema is applied to the SVs found on chromosome 12 in the bone cancer sample. SVs are 
classified by the event type (denoted by color) and are binned according to the size of the event (0 – 10 kb, 10 kb – 100 kb, 100 kb – 1 Mb, 1 Mb 
– 10 Mb, and > 10 Mb). e The SV classification schema is applied to the SVs found on chromosome 8 in the bone cancer sample. SVs are classified 
by the event type (denoted by color) and are binned according to the size of the event (0 – 10 kb, 10 kb – 100 kb, 100 kb – 1 Mb, 1 Mb – 10 Mb, 
and > 10 Mb)
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An example of a whole-genome sequenced bone can-
cer with a highly rearranged genome that contains chro-
mosomes with clustered events as well as chromosomes 
with only non-clustered events is shown in Fig.  4a. For 
instance, in this sample, chromosome 12 contains a high 
number of SV breakpoints in close proximity to one 
another (Fig.  4b) and the SV pattern of this chromo-
some can be summarized in a vector with 32 components 
containing a high number of clustered SVs (Fig.  4d). In 
contrast, chromosome 8 has SV breakpoints randomly 
scattered throughout the chromosome (Fig.  4c) and the 
SV pattern of chromosome 8 is exclusively one of non-
clustered SVs (Fig. 4e).

Input data for classifying structural variants
SigProfilerMatrixGenerator allows examining SV data 
that contains genomics information for each of the two 
breakpoints of a structural variant. In principle, the tool 
can process files in browser extensible data paired-end 
(BEDPE) format that, at a minimum, contain the follow-
ing six columns: chrom1, start1, end1, chrom2, start2, 
and end2. Here, the genomics coordinates of the first 
breakpoint are annotated as chrom1, start1, and end1, 
while the genomics coordinates of the second breakpoint 
are provided as chrom2, start2, and end2. If the type of 
SV has been predetermined, then its annotation can be 
provided using a column named svclass. Otherwise, the 
columns strand1 and strand2, which indicate the strands 
of the read mate-pairs, are required. If the mates are on 
the same chromosome, the convention followed is inver-
sion (+/- or -/+), deletion (+/+), and tandem-duplication 
(-/-). If mates are on different chromosomes, the SV is 
automatically classified as a translocation. SigProfiler-
MatrixGenerator supports SV in BEDPE format, which is 
utilized by most bioinformatics tools for detecting SVs, as 
well as being the native output files from BRASS [21].

Discussion
The newly developed version of SigProfilerMatrixGen-
erator allows transforming a set of mutational catalogues 
of copy-number changes and structural rearrangements 
into matrices amenable to decomposition, including, sub-
sequent mutational signature analysis. The tool provides 
support for two previously developed [7, 21] classifica-
tion schemas for large mutational events and seamlessly 
integrates with other components of the SigProfiler soft-
ware suite, such as downstream signature extraction with 
SigProfilerExtractor [4] and visualization of both muta-
tional patterns and signatures with SigProfilerPlotting [8]. 
Plots for CNV and SV patterns can now be generated for 
each cancer sample (as shown in Figs. 2 and 4), and plots 
for CNV and SV signatures are automatically generated 
following signature extraction from a cohort of samples. 

This enables a streamlined workflow for end-to-end 
analysis of mutational signatures of large-scale events. 
Additionally, SigProfilerMatrixGenerator rapidly scales 
to large datasets. For example, the tool can generate an 
SV count matrix for all 2,658 PCAWG samples in 3.6  s 
and a CNV count matrix for the entire TCGA array data 
(9,875 samples) in 14.3  s. SigProfilerMatrixGenerator is 
also the first tool to provide support for the 48 channel 
CNV schema across a wide variety of popular tools for 
detecting CNV. Importantly, this schema can be applied 
across several data modalities, including whole-genome 
sequencing, whole-exome sequencing, RNA-sequenc-
ing, single-cell sequencing approaches, and genotyping 
microarrays. In addition, SigProfilerMatrixGenerator is 
the first Python package that provides support for the 32 
channel SV schema in a fast and intuitive manner with 
minimal preprocessing, and the only package to provide 
support for SV and CNV schemas in both a Python and R 
environment.

Conclusion
A breadth of computational tools exists for exploring the 
patterns for small mutational events, including our initial 
implementation of SigProfilerMatrixGenerator [8]. We 
recently demonstrated that a classification of CNVs into 
48 channels provides the means to better elucidate and 
understand the mutational processes operative in human 
cancer [7]. Similarly, we and others have previously dem-
onstrated that the classification of SVs into 32 channels 
can be used to understand the mutational processes giv-
ing rise to SVs across multiple cancer types [19]. Our 
newly developed version of SigProfilerMatrixGenerator 
provides the capability to examine these classification 
schemas from cancer genomics sequencing data. The tool 
can scale to large datasets and will serve as foundation 
for future analysis of both mutational patterns and muta-
tional signatures of large mutational events.

Availability and requirements
Project name: SigProfilerMatrixGenerator.

Project home page: https://​github.​com/​Alexa​ndrov​
Lab/​SigPr​ofile​rMatr​ixGen​erator, 

Operating system(s): Unix, Linux, and Windows.
Programming language: Python 3 and R.
Other requirements: None.
License: BSD 2-Clause "Simplified" License.
Any restrictions to use by non-academics: None.
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BEDPE	� Browser extensible data paired-end
CNV	� Copy number variation
DBS	� Doublet base substitution
ecDNA	� Extrachromosomal DNA
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LOH	� Loss of heterozygosity
PCAWG​	� Pan-cancer Analysis of Whole Genomes
SBS	� Single base substitution
SV	� Structural variation
TCGA​	� The Cancer Genome Atlas
TCN	� Total copy-number
WGS	� Whole-genome sequencing
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