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Abstract 

Background Liver metastasis is the major challenge in the treatment for malignant tumors. Genomic profiling 
is increasingly used in the diagnosis, treatment and prediction of prognosis in malignancies. In this study, we con-
structed a gene mutation-based risk model to predict the survival of liver metastases.

Method We identified the gene mutations associated with survival and constructed the risk model in the training 
cohort including 800 patients with liver metastases from Memorial Sloan-Kettering Cancer Center (MSKCC) dataset. 
Other 794 patients with liver metastases were collected from 4 cohorts for validation. Furthermore, the analyses 
of tumor microenvironment (TME) and somatic mutations were performed on 51 patients with breast cancer liver 
metastases (BCLM) who had both somatic mutation data and RNA-sequencing data.

Results A gene mutation-based risk model involved 10 genes was constructed to divide patients with liver 
metastases into the high- and low-risk groups. Patients in the low-risk group had a longer survival time compared 
to those in the high-risk group, which was observed in both training and validation cohorts. The analyses of TME 
in BCLM showed that the low-risk group exhibited more immune infiltration than the high-risk group. Furthermore, 
the mutation signatures of the high-risk group were completely different from those of the low-risk group in patients 
with BCLM.

Conclusions The gene mutation-based risk model constructed in our study exhibited the reliable ability of predict-
ing the prognosis in liver metastases. The difference of TME and somatic mutations among BCLM patients with differ-
ent risk score can guide the further research and treatment decisions for liver metastases.
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Introduction
Liver metastases are tumors which have spread from pri-
mary sites of cancers to liver and are the major cause of 
treatment failure and mortality in malignant tumors. The 
most common cancer which metastasizes to the liver is 

colorectal cancer, followed by pancreatic cancer, breast 
cancer, melanoma and lung cancer [1]. Despite variety 
of treatments including surgery, chemotherapy, targeted 
therapy and immune checkpoint inhibitors were used 
in the treatment for liver metastases, poor response and 
rapid recurrence of tumors were often observed in liver 
[2]. It is necessary to construct a model which can predict 
the prognosis of liver metastases and guide the clinical 
treatment.

Genomic profiling is increasingly used to identify 
the pathogenic genes, select the targeted treatments 
and develop prognostic biomarkers [3]. In a phase 
II non-randomized clinical trial of Hayashi et  al. [4], 
molecularly targeted therapies based on profiling gene 
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expressions and gene alterations by next-generation 
sequencing (NGS) were applied in the treatment for can-
cer of unknown primary site and were associated with a 
favorable survival outcome. The study of Goss et  al. [5] 
used NGS to identify patients with lung squamous cell 
carcinoma who would derive additional benefit from 
treatment with afatinib and found ERBB and HER2 
mutations could act as predictive markers for afatinib 
treatment. Furthermore, Long et al. [6] constructed and 
validated a gene mutation-based gene set to predict the 
prognosis of patients treated with immune checkpoint 
therapy.

In the present study, we integrated the cohorts of liver 
metastases to construct and validate a novel risk model 
based on gene mutations to predict the prognosis of 
patients with liver metastases. Additionally, we further 
analyzed the expression profiles of patients with different 
risk scores.

Materials and methods
Study population
The mutation data and clinical information of the train-
ing, primary liver cancer (PLC) and validation cohorts 
were obtained from the cBioPortal database (https:// 
www. cbiop ortal. org). In the training cohort, both muta-
tion data and clinical information were available for 800 
patients with liver metastases from Memorial Sloan 
Kettering Cancer Center (MSKCC) database reported 
by Zehir et  al. [7]. In the validation cohort, both muta-
tion data and clinical information were available for 
136 patients with liver metastases from the cohort of 
Samstein et  al. [8], 312 patients with liver metastases 
from the cohort of Yaeger et  al. [9], and 198 patients 
with liver metastases from the cohort of Pleasance et al. 
[10]. The PLC cohort, including 138 patients with PLC 
from MSKCC database reported by Zehir et  al. [7], 107 
patients with intrahepatic cholangiocarcinoma (ICC) 
from the cohort of Lowery et al. [11], 114 patients with 
hepatocellular carcinoma (HCC) from the cohort of 
Ng et al. [12], 61 patients with combined HCC and ICC 
from the cohort of Xue et al. [13], and 357 patients with 
HCC or ICC from The Cancer Genome Altas (TCGA) 
database, was also used for analysis. The clinical infor-
mation of each sample enrolled in the analysis were 
shown in Additional file 1: Fig. S1 and Additional file 2: 
Table S1-S3.

One hundred forty-eight patients with liver metasta-
sis treated in Department of Hepatic Surgery of Fudan 
University Shanghai Cancer Center (FUSCC) were 
enrolled in the validation cohort. All patients provided 
their informed consents. The study was approved by 
the Institutional Review Board of FUSCC. The clinical 
information was collected retrospectively and shown in 

Additional file 2: Table S2. A customed-designed genetic 
panel, comprising a hybridization-capture-based assay 
of 484 genes, was used to identify the mutant genes. The 
genes used in sequencing were listed in Additional file 2: 
Table  S4. Patient’s genomic DNA was extracted from 
tumor tissues. The libraries were pooled and sequenced 
using an Illumina HiSeq X TEN platform (Illumina Inc., 
San Diego, CA, USA). Data were collected using Illumina 
Real Time Analysis (RTA) and assembled to FASTQ files 
using Illumina Bcl2Fastq2. Then, the high-quality reads 
were mapped to the hg19 version of the human reference 
genome (GRCh37) using BWA aligner with the BWA-
MEM algorithm and default parameters. The Genome 
Analysis ToolKit was used to locally realign the BAM files 
at intervals with mismatched indels and recalibrate the 
base quality scores of the reads in the BAM files. Somatic 
mutations were called from the tissue BAM files using 
GATK4 Mutect2 with the default parameters. Finally, 
the variants and annotation results were transferred into 
Excel spreadsheets for further analyses.

In the cohort of Pleasance et al. [10], 51 patients with 
breast cancer liver metastases (BCLM) were included 
into the transcriptomic cohort, whose RNA-sequenc-
ing data were acquired from UCSC Xena (https:// xenab 
rowser. net/ datap ages/). The clinical data of each sample 
in the transcriptomic cohort were shown in Additional 
file 1: Fig. S1 and Additional file 2: Table S5.

Study design
Figure  1 and Additional file  1: Fig. S1 summarized 
the analysis process and cohorts used in the study 
that included training, validation, PLC and transcrip-
tomic cohorts. First, propensity score matching (PSM) 
method by “MatchIt” R package was used in the train-
ing cohort to balance potentially confounding factors, 
including sex and cancer types, between the mutant-
type and wild-type status of each gene in the MSKCC-
IMPACT panel (Additional file  2: Table  S6). Then 
survival data were compared between the mutant-type 
and wild-type status of each gene using Kaplan–Meier 
method in univariate analysis. Genes with P < 0.05 
in univariate analysis were candidates for entry into 
multivariate Cox regression analysis. Finally, LASSO 
Cox regression analysis using “glmnet” R package was 
applied to identify prognostic genes from genes with 
P < 0.05 in multivariate analysis and constructed a 
gene mutation-based risk model. The risk score was 
calculated according to the formula: Risk score = ∑  Ci 
 Xi where  Ci is the coefficient of each prognostic gene 
and  Xi is the expression value of each prognostic gene. 
 Xi is 0 when the prognostic gene is wild type, and 1 
when the prognostic gene is mutant type. X-tile 3.6.1 
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software was applied to determine the best cutoff for 
classifying patients into high- and low-risk groups 
[14]. The same formula and cutoff were used for the 
validation and transcriptomic cohorts.

Tumor microenvironment analyses
Tumor microenvironment (TME) analyses were com-
pared between the high- and low-risk groups based on 
the RNA-sequencing data of 51 patients with BCLM 
in the transcriptomic cohort. The genes used to quan-
tify the enrichment levels of immune cell types and 
immune-related pathways were acquired from Long 
et al. [6]. The “GSVA” R package based on single-sam-
ple gene set enrichment analysis (ssGSEA) method 
was used to quantify the enrichment levels of these 
immune cells and immune-related pathways in each 
sample [15]. The enrichment scores in ssGSEA analy-
sis were normalized to unity distribution, for which 
the minimal score is zero and maximal score is one. All 
immune-related signatures used in the TME  analyses 
were shown in Additional file 2: Table S7 [6].

Drug sensitivity analysis
The “oncoPredict” package was used to assess the drug 
sensitivity of 198 chemotherapeutic drugs between 
patients in the high- and low-risk groups.

Functional enrichment analysis
Differential expression genes (DEGs) between the high- 
and low-risk groups were identified using the “limma” 
R package with a fold change of 2 and an adjusted 
P-value < 0.05. Functional enrichment analysis of DEGs 
were performed based on Gene Oncology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
using “clusterProfiler” R package [16].

Somatic mutation analyses
The “maftools” R package was used to analyze the dif-
ference of somatic mutations between the high- and 
low-risk groups in the transcriptomic cohort.

Statistical analyses
Statistical analyses were performed using R 4.2.2 and 
GraphPad Prism (Version 9.4.1). Cox regression mod-
els were applied to assess the independent prognostic 
value of the risk model. To evaluate the accuracy of the 
risk model, the receiver operating characteristic (ROC) 
curves were generated by the “timeROC” package, and 
the Area Under Curve (AUC) and C-index were com-
pared with other risk factors. The calibration curve was 
constructed using “rms” R package to explore the pre-
dictive accuracy of the risk model. The Wilcoxon test 
was conducted to compare differences between two 
groups. P-values were two-sided with P < 0.05 consid-
ered significant.

Results
Construction of the gene mutation‑based risk model
We performed PSM analysis and compared the survival 
outcomes between the mutant-type and wild-type sta-
tus of each gene in the training cohort. The mutations 
of 31 genes were found to be associated with survival 
and the multivariate analysis identified 14 prognostic 
gene mutations in patients with liver metastasis (Addi-
tional file 2: Table S8). The LASSO regression analysis 
was applied to identified 10 prognostic gene mutations 
and their coefficients. The risk score was constructed 
as follow: Risk score = APC × (-0.447543265) + B2M × (
1.765754185) + FANCA × (0.231443411) + FAT1 × (-0.2
38096394) + IRS1 × (1.223490281) + MAP3K13 × (0.000
988332) + NTRK1 × (0.840546061) + STK11 × (0.47049
0681) + TP53 × (0.198123143) + YES1 × (0.102246259). 
In the formula, the mutant gene status was coded as 1, 
and the wild gene status was coded as 0. The optimal 

Fig. 1 The workflow of the present study
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cutoff value was zero. The patients with risk score ≥ 0 
were divided to the high-risk group and those with risk 
score < 0 were divided to the low-risk group.

Comparison of survival between the high‑ and low‑risk 
groups
In the training cohort, patients in the low-risk group 
had a longer overall survival (OS) than those in the 
high-risk group (26.5 months vs. 12.6 months, P < 0.001; 
Fig. 2a). Subgroup analysis based on sex and cancer types 
also indicated that the longer OS were observed in the 
patients with low risk scores compared to those with high 
risk scores (Fig. 2b-d).

We also compared the OS of PLC cohort to investigate 
whether the risk model was also applicable to patients 
with PLC. There was no significant difference in sur-
vival between patients in the high- and low-risk groups 
(33.0 months vs. 37.1 months, P > 0.05; Fig. 3a).

The same formula and cutoff were also used in the vali-
dation cohort to evaluate the risk model. In the valida-
tion cohort, patients in the low-risk group exhibited a 
better OS than those in the high-risk group (54.5 months 
vs. 20.7  months, P < 0.001; Fig.  3b). Furthermore, sub-
group analysis based on different cohorts and cancer 
types showed that patients in the low-risk group had a 

longer survival time than those in the high-risk group 
(Fig. 3c-d).

Analyses of the predictive value of the gene 
mutation‑based risk model
The AUC of the gene mutation-based risk model in the 
training cohort was 0.67 at 1  year, 0.64 at 2  years and 
0.61 at 3  years (Additional file  1: Fig. S2a); the AUC in 
the validation cohort was 0.86 at 1  year, 0.73 at 2  years 
and 0.67 at 3 years (Additional file 1: Fig. S2b). The AUC 
for different cancer types of training cohorts (Additional 
file 1: Fig. S2c) and different cohorts of validation cohorts 
(Additional file 1: Fig. S2d) were also assessed. The cali-
bration curve of the risk model was constructed and 
showed good agreement between the observations and 
the predictions in the training (Additional file 1: Fig. S3a) 
and validation cohorts (Additional file 1: Fig. S3b).

To further analyze the predictive value of the gene 
mutation-based risk model, the multivariate Cox analysis 
of sex, age, tumor mutation burden (TMB), primary can-
cer types and risk model were performed. The risk score 
and primary cancer types were the independent prognos-
tic factors for patients with liver metastasis in the train-
ing cohort (Additional file  1: Fig. S3c), which was also 
observed in the validation cohort (Additional file 1: Fig. 
S3d).

Fig. 2 Survival analysis of gene mutation-based risk model in the training cohort and different subgroups. a Survival analysis of gene 
mutation-based risk model in the training cohort. b Survival analysis of gene mutation-based risk model in male and female patients. c Survival 
analysis of gene mutation-based risk model in Colorectal cancer liver metastasis and non-Colorectal cancer liver metastasis. d Survival analysis 
of gene mutation-based risk model in different cancer types (adenocarcinoma liver metastasis, breast cancer liver metastasis, lung cancer liver 
metastasis and pancreatic cancer liver metastasis)



Page 5 of 11Yu et al. BMC Genomics          (2023) 24:489  

We used C-index to compared the performance of the 
gene mutation-based risk model with 10 genes included 
in the risk model and found that the risk model exhibited 
more excellent predictive power than 10 separate genes 
either in the training cohort or in the validation cohort.

TME analyses between the high‑ and low‑risk groups
We explored the difference of TME based on the 
RNA-sequencing data of transcriptomic cohort, in 
which 51 patients with BCLM were classified into 
the high- and low-risk groups using the same for-
mula and cutoff (Additional file  1: Fig. S1d). A bet-
ter OS was observed in the low-risk group compared 
to the high-risk group in the transcriptomic cohort 
(49.2 months vs. 30.9 months, P < 0.01; Fig. 4a). Among 

10 genes included in the risk model, MAP3K13 exhib-
ited a higher expression level in the high-risk group 
than in the low-risk group (Fig. 4b). We evaluated the 
enrichment scores of immune cells infiltration and 
immune-related pathways between the high- and low-
risk groups using ssGSEA method. More immune cell 
infiltrations, including B cells,  CD8+ T cells, Natural 
Killer (NK) cells, plasmacytoid dendritic cells (pDCs), 
follicular helper T cells (Tfh) and tumor infiltrating 
lymphocytes (TILs) were found in the low-risk group 
(Fig. 4c). Furthermore, the low-risk group also show the 
higher activity of pathways related to  C-C chemokine 
receptor (CCR), cytolytic activity and human leuko-
cyte antigen (HLA) than the high-risk group (Fig.  4c). 
The analysis of the expression levels of genes associated 

Fig. 3 Survival analysis of gene mutation-based risk model in the primary liver cancer, validation cohorts and different subgroups. a Survival 
analysis of gene mutation-based risk model in the primary liver cancer cohort. b Survival analysis of gene mutation-based risk model 
in the validation cohort. c Survival analysis of gene mutation-based risk model in different cohorts of validation cohort. d Survival analysis of gene 
mutation-based risk model in Colorectal cancer liver metastasis and non-Colorectal cancer liver metastasis of validation cohort

(See figure on next page.)
Fig. 4 Tumor microenvironment analysis between the high- and low-risk groups in patients with breast cancer liver metastases (BCLM). a Survival 
analysis between the high- and low-risk groups in patients with BCLM. b mRNA expression profiles analysis of 10 genes included in the risk model 
between the high- and low-risk groups in patients with BCLM. c Comparison of the immune infiltration estimated by the ssGSEA method based 
on RNA-sequencing data between the high and low-risk groups in patients with BCLM. d Comparison of genes associated with chemokines 
between the high and low-risk groups in patients with BCLM. e Drug sensitivity analysis between the high- and low-risk groups in patients 
with BCLM. f Volcano plot of differential expression genes (DEGs) between the high and low-risk groups in patients with BCLM. The high-risk group 
was the controlled group. G GO and KEGG functional enrichment analysis of DEGs between the high and low-risk groups in patients with BCLM
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Fig. 4 (See legend on previous page.)
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with chemokines indicated that the high-risk group 
expressed the higher levels of CCL15, CCL16 and 
CCL24 than the low-risk group (Fig.  4d). We assessed 
the drug sensitivity of the high- and low-risk popula-
tions to chemotherapeutic drugs and found that the 
low-risk group had the higher sensitivity to AZD3759, 
AZD 6482 and WEHI-539 (Fig. 4e).

We performed the analysis of DEGs between the 
high- and low-risk groups in the transcriptomic cohort. 
Compared to the high-risk group, a total of 160 DEGs 
were identified with 140 up-regulated genes and 20 
down-regulated genes in the low-risk group (Fig.  4f ). 
The function enrichment analysis of DEGs based on 
GO and KEGG databases showed that DEGs between 
the high- and low-risk groups involved in pathways 
associated with lipid metabolism such as fatty acid 
metabolism, lipid transport, lipid localization and lipo-
protein particle in GO, and PPAR signaling pathway, 
fatty acid degradation and cholesterol metabolism in 
KEGG (Fig. 4g, Additional file 2: Table S9).

Somatic mutation analyses between the high‑ and low‑risk 
groups
Somatic mutation analyses were performed in the tran-
scriptomic cohort. Besides TP53, the high-risk group 
also exhibited higher frequencies of gene mutations in 
PTEN than the low-risk group (Fig.  5a-b). We analyzed 
the mutation signatures and compared the extracted 
mutation signatures against the Catalogue of Somatic 
Mutations in Cancer (COSMIC) by cosine similarity. 10 
mutation signatures were identified. Three mutation sig-
natures that associated with defects in DNA-DSB repair 
by HR were observed in the high-risk group, while other 
seven mutation signatures were found in the low-risk 
group (Fig. 5c-d).

Discussion
Genomic profiling has been increasingly used in con-
structing the risk model to predict either the response 
to immunotherapy or the prognosis of patients with 
malignant tumors [6, 17–19]. To the best of our knowl-
edge, the present multicohort study was the first one 

Fig. 5 Somatic mutation analysis between the high and low-risk groups in patients with breast cancer liver metastases (BCLM). a Comparison 
of gene mutations between the high and low-risk groups in patients with BCLM. b Lillipop plot of TP53 and PTEN mutation between the high 
and low-risk groups in patients with BCLM. c Mutation signatures of patients with BCLM. d Comparison of mutation signatures between the high 
and low-risk groups in patients with BCLM
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that constructed and validated a prognostic risk model 
based on gene mutations to predict the survival out-
comes of patients with liver metastases. In our study, 
10 genes mutations were identified as the prognostic 
genes mutations. Among them, most of gene mutations 
have been reported to be associated with the occurrence 
and progression of cancers. The mutations of TP53 can 
impair antitumor activity and confer mutant p53 protein 
oncogenic properties [20]. FAT1 exhibited complexity 
in modulating tumorigenesis and acted as tumor pro-
moter or suppressor depending on tumor types [21, 22]. 
Furthermore, tumors without mutations of APC were 
reported to be carry a worse prognosis than single APC 
mutation tumors in patients with colorectal cancers [23]. 
In our risk model, the coefficient of FAT1 and APC was 
less than zero, demonstrated the mutations of these two 
genes suppressed the progression of tumors in patients 
with liver metastases.

Patients were divided into the high- and low-risk group 
according to the risk scores and a better OS was observed 
in the low-risk group compared to the high-risk group. 
However, it should be mentioned that of patients with 
colorectal cancer liver metastasis (CRCLM) or other can-
cer liver metastasis (OCLM), only approximately 20% 
were divided into the high-risk group. OCLM contained 
various uncommon cancers which had difference tumor 
characteristics, thus leading to less patients in the high-
risk group. For patients with CRCLM, the reason of the 
imbalanced distribution could be due to the high fre-
quency of APC mutations in CRC and the negative coeffi-
cient of APC in the risk score [24]. Despite of the different 
distribution among the different liver metastases, better 
survival was observed in all low-risk groups. In patients 
with PLC, there was no significant difference of survival 
outcomes between the high- and low-risk groups, indi-
cated the risk model wasn’t applicable to PLC. Further-
more, the multivariate analysis indicated that the risk 
score was also the prognostic factor of patients with 
liver metastases. We also compared predictive accuracy 
of the risk model with that of 10 individual gene muta-
tions and a higher C-index of risk model was observed. In 
summary, based on these analyses and results, our gene 
mutation-based risk model was reliable in the prediction 
of survival of patients with liver metastases.

We explored the impact of 10 gene mutations included 
in the risk model on their gene expression levels. In the 
patients with BCLM, patients in the high-risk group had 
a significantly higher expression level of MAP3K13. High 
MAP3K13 expression was reported to be correlated with 
poor prognosis in breast cancers, which might be one of 
the reasons that a shorter survival time was observed in 
the high-risk group of our study [25].

We used the transcriptomic data of a BCLM cohort 
to explore the difference of TME between the high- and 
low-risk groups. We found that the low-risk group had a 
higher infiltration of immune cells, such as a higher level 
of B cells,  CD8+ T cells, NK cells, Tfh and TILs. These 
immune cells exhibit antitumor effect in the development 
and progression of tumor [26–28]. It was reported that 
the depletion of these immune cells was associated with 
low responses to immunotherapy, thus leading to poor 
prognosis [29–32]. However, the low-risk group also had 
more pDCs which impeding T cell-mediated cytotoxic-
ity, and a higher expression level of CCL15, CCL16 and 
CCL24 that were associated with clinical progression 
[1, 33]. Therefore, immune cells and chemokines with 
antitumor or protumor effects were both play a crucial 
part in the liver metastasis. Furthermore, we found that 
patients in the low-risk group have a higher response to 
chemotherapeutic drugs, such as AZD3759 which is a 
novel epidermal growth factor receptor (EGFR) tyrosine 
kinase inhibitor (TKI) and produced promising antitu-
mor effect on non-small cell lung cancer [34]. In addition 
to AZD3759, AZD6482 (PI3Kβ inhibitor) and WEHI-539 
(a BCL2L1 inhibitor) were also reported to have potential 
antitumor effect. Despite these chemotherapeutic drugs 
have not been widely used, the results might provide 
guidance for further studies on treatments of patients 
with BCLM [35, 36].

In current study, the function enrichment analy-
sis showed that DEGs between the high- and low-risk 
groups were enriched in pathways associated with lipid 
metabolism. It was reported that lipid metabolism exhib-
ited vital effect by supporting proliferation, survival, 
migration, invasion and metastases of cancer cells during 
tumor progression [37]. The high rates of fatty acid oxi-
dation were associated with the high potential metasta-
ses of triple-negative breast cancers [38]. Therefore, our 
study indicated that fatty acid metabolism play a vital 
role in prognosis of patients with BCLM in the high- and 
low-risk groups. Furthermore, PPAR modulates the lipid 
homeostasis in liver and the blockage of PPARγ can sup-
press breast cancer progression [39, 40]. The enrichment 
of PPAR pathway was also observed between the high- 
and low-risk groups in our study, confirmed the impor-
tant role of PPAR in BCLM.

In the analyses of somatic mutation, higher frequen-
cies of mutations in TP53 and PTEN were observed in 
the high-risk patients with BCLM. PTEN is one of the 
most frequently mutated human tumor suppressor genes 
and the breast carcinogenesis is potentially associated 
with PTEN loss of activity owing to PTEN mutation [41]. 
Besides, patients in the high-risk group also had the com-
pletely different mutation signatures with those in the 
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low-risk group, which might lead to the difference of sur-
vival in patients with liver metastases.

This study had several limitations that should be con-
sidered. First, this was a study including various liver 
metastases. Although PSM analysis was performed to 
balance the bias, some potential factors might still influ-
ence the results due to the lack of complete clinical data. 
Second, despite the risk model exhibited the reliable abil-
ity of predicting the survival outcomes in patients with 
liver metastases, the accuracy was not high enough. 
Then, biological insight into the basis for the prognos-
tic significance was obtained through analyses of a small 
(n = 51) cohort of BCLM samples. Different biological 
characteristics can be observed among different cancer 
types. Therefore, analyses of various types of liver metas-
tases were needed to verify the conclusions which were 
obtained from analyses of BCLM patients. Finally, the 
in vivo and in vitro functional experiments were needed 
to verify the difference of TME between the high- and 
low-risk groups and to investigate the molecular mech-
anism underlying the influence of each gene on liver 
metastases.

Conclusion
This study constructed and validated a gene mutation-
based risk model to predict survival time for patients 
with liver metastases. The analyses of TME demonstrated 
that the patients with BCLM in the low-risk group had 
more immune cell infiltrations than those in the high-risk 
group. Furthermore, lipid metabolism played a crucial 
role in BCLM. Our study also revealed distinct muta-
tion signatures for the high- and low-risk groups. Further 
studies were needed to verify the predictive ability of our 
gene mutation-based risk model and explore the biologi-
cal characteristics of patients with different risk scores.
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