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Abstract

Background MicroRNA (miRNA) which can act as post-transcriptional regulators of mRNAs via base-pairing
with complementary sequences within mRNAs is involved in processes of the complex interaction between immune
system and tumors.

In this research, we elucidated the profiles of miRNAs and target mRNAs expression and their associations
with the phenotypic hallmarks of colorectal cancers (CRC) by integrating transcriptomic, immunophenotype, meth-
ylation, mutation and survival data.

Results We conducted the analysis of differential MiRNA/mRNA expression profile by GEO, TCGA and GTEx data-
bases and the correlation between miRNA and targeted mRNA by miRTarBase and TarBase. Then we detected using
gRT-PCR and validated the diagnostic value of miRNA-mRNA regulator pairs by the ROC, calibration curve and DCA.
Phenotypic hallmarks of regulatory pairs including tumor-infiltrating lymphocytes, tumor microenvironment, tumor
mutation burden, global methylation and gene mutation were also described. The expression levels of miRNAs

and target mRNAs were detected in 80 paired colon tissue samples. Ultimately, we picked up two pivotal regula-
tory pairs (MiR-139-5p/ STC1 and miR-20a-5p/ FGL2) and verified the diagnostic value of the complex model which
is the combination of 4 signatures above-mentioned in 3 testing GEO datasets and an external validation cohort.

Conclusions We found that 2 miRNAs by targeting 2 metastasis-related mRNAs were correlated with tumor-infiltrat-
ing macrophages, HRAS, and BRAF gene mutation status. Our results established the diagnostic model containing 2
miRNAs and their respective targeted mRNAs to distinguish CRCs and normal controls and displayed their complex
roles in CRC pathogenesis especially tumor immunity.
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Background

Colorectal cancer (CRC) where the incidence ranked
third has a third largest estimated mortality for all
types of cancers in 2023 according to the World Health
Organization (WHO) [1]. According to the statistical
study of John V et al., from 2004 to 2015, the propor-
tion of persons diagnosed with CRC at an age younger
than 50 years has continued to increase, and younger
adults present with more advanced disease over the
past decade [2].

MicroRNAs (miRNAs), families of small noncod-
ing RNAs, had been reported that were critical for
the progression of cancers by influencing prolifera-
tion, invasion and metastasis [3]. MiRNAs can regulate
gene expression at posttranscriptional level via base-
pairing with complementary sequences within mRNAs
and their interaction plays a key role in the patho-
genesis of CRC. There are some differentially expres-
sion miRNAs which target genes that exert on various
molecular regulation such as SMAD4 targeted by miR-
130a/301a/454 cluster [4] and RND3 targeted by miR-
17 [5] in proliferation, p70S6K1 targeted by miR-145
[6] in angiogenesis, BCL2 targeted by miR-148a [7] in
apoptosis and MMP11 targeted by let-7c [8] in metas-
tasis. They also modulate the balance of resolution of
inflammation and prevent tissue damage by regulating
the immune response in intestine [9]. A comprehensive
meta-analysis of microRNA for predicting colorectal
cancer have shown that multiple miRNAs appeared to
be more favorable than single miRNA by incorporating
103 studies from 36 articles with a total of 3124 CRC
patients and 2579 healthy individuals according to Lin
Y et al. [10]. Therefore, it is efficient for choosing the
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appropriate candidate miRNA and target genes in CRC
and discover the novel molecular biomarker combi-
nations validated via public databases and molecular
techniques.

By Integrative analysis of paired miRNA-mRNA
expression profiles from CRC samples, we identified the
miRNA-mRNA regulatory network and their complex
roles in CRC pathogenesis especially tumor immunity.
An overview of the workflow steps is shown in Fig. 1. In
our study, gene and miRNA profiling data were down-
loaded from The Gene Expression Omnibus (GEO)
database, The Cancer Genome Atlas (TCGA) and The
Genotype-Tissue Expression (GTEx). To find the piv-
otal miRNA-mRNA regulatory pairs, we successively
conducted differential expression analysis, target gene
screening by TarBase and miRTarBase which summa-
rizes experimentally confirmed miRNA-mRNA pairs,
function analysis by DAVID-mirPath which is a miRNA
pathway analysis web-server and Hiplot tools which is a
cloud platform for scientific computation and visualiza-
tion, and connectivity mapping (cMap) for drug discov-
ery [11]. Then, poly(A) reverse transcriptase quantitative
(real-time) polymerase chain reaction (RT-qPCR) assay
was performed to detect the expression of miRNAs and
target mRNAs in formalin-fixed paraffin-embedded
(FFPE) samples, validated using Pearson’s correlation and
finally evaluated by logistic regression model. The pheno-
typic hallmarks provided new insights into miRNA and
target-mRNA expression associated with immune micro-
environment, tumor infiltrating immune cells, global
methylation, tumor mutational burden and RAS gene
family mutation status.
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Fig. 1 Flow chart for identifying the miRNA-mRNA regulatory pairs and the comprehensive analysis of regulatory pairs role in colorectal cancer

(CRO)
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Our research performed extensive analysis of miRNA-
mRNA regulatory pairs in CRC versus adjacent normal
tissue to yield new sights in the underlying mechanism in
CRC tumorigenesis. Combination of bioinformatic analy-
sis and qRT-PCR provided with convenience in identifying
dysregulated miRNA-mRNA regulatory pairs to improve
therapeutic strategies for colorectal cancer patients.

Results

Identification of differentially expressed miRNAs (DEM:s)
and genes (DEGs) in CRC

There were fifty-four gene expression microarray data-
sets, fifty-two of which from tissue, one from periph-
eral blood and one from fibroblast. In addition to these,
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there were also four gene expression RNA-Seq datasets
including two datasets from tissue, one from platelet
and one from CD4+ Treg cell. A total of twenty-five
miRNA expression datasets were filtered out in this
study, which consist of one RNA-Seq datasets from tis-
sue and twenty-four microarray datasets from tissue,
peripheral blood, serum and serum exosome, respec-
tively. The information of 83 GEO datasets is shown in
Table 1. Upregulated and downregulated DEMs/DEGs
in CRCs vs. controls were identified using the log2fold
change (CRC vs. normal). 19 DEMs and 309 DEGs were
the intersection of TCGA, GEO datasets and 3 disease-
related miRNA databases (d(bDEMC, HMDD and miR-
cancer) shown in Fig. 2A.

Table 1 Information pertaining to the selected GEO datasets for colorectal cancer

Experiment Type Source name GEO Accession Platform Group
Tumor Control
GSE108153 GPL19730 21 21
GSE122182 GPL16384 15 10
GSE126093 GPL18058 10 10
GSE30454 GPL8179 32 20
GSE33122 GPL14765 9 9
GSE33125 GPL8179 9 9
GSE35602 GPL8227 13 4
Tissue GSE35834 GPL8786 31 23
GSE35982 GPL14767 8 8
GSE38389 GPL11039 68 70
GSE39845 GPL14613 30 30
Array GSE53592 GPL8786 3 3
microRNA expression GSE54088 GPL8178 9 9
GSE54632 GPL8786 5 5
GSES81581 GPL16384 23
GSES83924 GPL16384 20 20
GSE112264 GPL21263 50 41
GSE113486 GPL21263 40 100
Serum GSE124158 GPL21263 30 275
GSE59856 GPL18941 50 93
GSES85589 GPL19117 5 19
Serum exosome GSE39833 GPL14767 88 11
Peripheral blood GSE39845 GPL14613 42 5
GSE61741 GPL9040 940 94
Sequencing Tissue GSE46622 GPL10999 8 8
GSE103512 GPL13158 57 12
GSE10714 GPL570 7 3
GSE10950 GPL6104 24 24
GSE110223 GPL96 13 13
GSE110224 GPL570 17 17
GSE117606 GPL25373 74 65
GSE126092 GPL21047 10 10
GSE13471 GPL570 4 4
GSE156355 GPL21185 6 6
GSE18105 GPL570 94 17
GSE20842 GPL4133 65 65
GSE20916 GPL570 10 20
GSE21510 GPL570 123 25
GSE21815 GPL6480 132 9
GSE21962 GPL5175 4 4
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Table 1 (continued)
GSE22598 GPL570 17 17
GSE23878 GPL570 35 24
GSE24514 GPL96 34 15
GSE24713 GPL11060 19 30
GSE25070 GPL6883 26 26
GSE26571 GPLS80 12 5
GSE31279 GPL6104 54 52
GSE32323 GPL570 17 17
GSE33113 GPL570 90 6
GSE33126 GPL6947 9 9
Tissue GSE35602 GPL6480 13 4
Array GSE35982 GPL4133 8 8
GSE37182 GPL6947 84 88
Gene expression GSE37364 GPL570 27 38
GSE39582 GPL570 566 19
GSE4107 GPL570 12 10
GSE41258 GPL96 198 54
GSE41328 GPL570 10 10
GSE4183 GPL570 15 8
GSE44076 GPL13667 98 148
GSE44861 GPL3921 56 55
GSE47074 GPL16686 4 4
GSE49355 GPL96 20 18
GSE50117 GPL6480 9 9
GSE5206 GPL570 100 5
GSE5364 GPL96 9 9
GSE62321 GPL97 20 18
GSE62932 GPL570 64 4
GSE68468 GPL96 186 55
GSE71187 GPL6480 47 12
GSE75970 GPL14550 4 4
GSE77199 GPL14550 4 4
GSE77953 GPL96 17 13
GSE79793 GPL14951 16 10
GSES81582 GPL15207 23 9
GSE89287 GPL4133 46 17
GSE97689 GPL6244 23 23
Peripheral blood GSE47756 GPL10558 27 38
Fibroblasts GSE70468 GPL17077 7 7
Tissue GSE76987 GPL11154 4 20
Sequencing GSE104836 GPL21290 10 10
Platelet GSE68086 GPL16791 38 55
CD4+Treg cell GSE116347 GPL18573 11 7

(See figure on next page.)

Fig. 2 (A) The circular-barplot showing the basic information of GEO datasets (GEO accession, source name and experiment type). A total of 83
datasets were included in the study of which 54 were gene expression microarray datasets from tissue, peripheral blood and fibroblast, 4 were
gene expression RNA-Seq datasets from tissue, platelet and CD4 +Treg cell, and 25 were miRNA expression datasets including 1 RNA-Seq datasets
from tissue and 24 microarray datasets from tissue, peripheral blood, serum and serum exosome. Nineteen DEMs and 309 DEGs were screened

in CRCs versus normal controls (NCs). B Nineteen microRNAs (miRNAs) to 309 mRNAs network visualized by Cytoscape. There were 250 miRNA
(up) = mRNA (down) pairs and 343 miRNA (down) — mRNA (up) pairs screened out by miRtarbase and Tarbase which contain experimentally
validated miRNA-mRNA regulatory pairs. Orange dot represents the upregulated miRNAs/mRNAs in CRCs versus NCs, while purple dot represents

the downregulated miRNAs/mRNAs in CRCs versus NCs
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Analysis of function enrichment analysis and pathway
analysis

We performed the enrichment analysis of 7 upregulated
miRNAs and 12 down-regulated miRNAs by DAVID-
mirPath. Targets of 7 upregulated miRNAs (hsa-miR-
17-3p, hsa-miR-17-5p, hsa-miR-182-5p, hsa-miR-183-5p,
hsa-miR-20-5p, hsa-miR-21-5p and hsa-miR-224-5p)
were enriched in 67 KEGG pathways, 197 Gene Ontol-
ogy (GO) biological processes, 14 GO celluar compo-
nents and 21 GO molecular functions listed in Table S2
and the top 15 ordered by -log,,P-value were shown in
Fig. 3A. Targets of 12 downregulated miRNAs (hsa-miR-
139-5p, hsa-miR-145-5p, hsa-miR-150-5p, hsa-miR-
194-3p, hsa-miR-324-3p, hsa-miR-326, hsa-miR-342-5p,
hsa-miR-378a-3p, hsa-miR-378a-5p, hsa-miR-486-5p,
hsa-miR-497-5p and hsa-miR-766-3p) were enriched in
47 KEGG pathways, 169 Gene Ontology (GO) biological
processes, 10 GO cellular components and 12 GO molec-
ular functions listed in Table S3 and the top 15 ordered
by -log,,P-value were shown in Fig. 3A. We also analyzed
309 dysregulated genes using clusterProfiler via Hiplot
platform separately shown in Fig. 3B.

As a result, the enriched KEGG pathways of dysreg-
ulated miRNAs were frequently associated with sig-
nal transduction such as Wnt signaling pathway, FoxO
signaling pathway, TGF-beta signaling pathway, Hippo
signaling pathway, mTOR signaling pathway and MAPK
signaling pathway, tumorigenesis such as proteoglycans
in cancer, colorectal cancer, pancreatic cancer, pros-
tate cancer and bladder cancer, endocytosis and fatty
acid metabolism (full list in Table S3). Lesley M. B et al.
have reported the positive association with high plasma
levels of fatty acid which may contribute to colorec-
tal carcinogenesis and its increased synthesis capacity
on colon cancer risk [12]. Deregulation of these basic
biological processes such as catabolic process and cell
motility may explain the molecular mechanisms of tum-
origenesis in CRC.

CMap analysis of dysregulated genes in CRC
We employed cMap to find potential compounds that
can disturb the dysregulated gene expression pattern.

(See figure on next page.)
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After the query for upregulated tags of 141 genes and
down regulated tags of 150 genes which was ordered by
adjusted p-value in TCGA because of the technical limit
of this tool, 67 compounds, of which the significant nega-
tive raw connectivity score (nraw_cs) and the signifi-
cant negative logl0Q-value (fdr_q_nlogl0) in CRC cell
lines (HT1299, HT29 and SW480) were identified as the
potential drugs for CRC shown in Fig. S1. According to
our analysis, dabrafenib, trametinib and cobimetinib can
inhibit the up-regulated genes in CRC. The combination
of dabrafenib plus trametinib which is a selective MEK
inhibitor has activity in patients of BRAFV600-mutant
metastasis CRC [13]. Cobimetinib can inhibit cell prolif-
eration and induce G1 phase arrest and apoptosis in CRC
cell lines [14].

CMap mode of action (MoA) for 67 drugs tested in CRC
cell lines revealed 38 mechanisms of action shared by the
above compounds shown in Fig. S1B. 9 compounds shared
the MoA of HDAC inhibitor, 5 compounds shared the MoA
of acetylcholine receptor antagonist, 4 compounds shared
the MoA as dopamine receptor antagonist, 4 compounds
shared the MoA as topoisomerase inhibitor, and 4 com-
pounds shared the MoA as histamine receptor antagonist.
PI3K inhibitor, RAF inhibitor, EGFR inhibitor, and MEK
inhibitor are shared as the MoA in every 3 compounds.

CMap target analysis revealed 131 drug-target genes
shared by 67 compounds shown in Fig. S1B. Nineteen
genes are common targets of 16 different compounds-
namely, CYP3A4 (3 drugs), KDR (3 drugs), AHR (2
drugs), AKT1 (2 drugs), CDK2 (2 drugs), CHEK1 (2
drugs), CYP2C19 (2 drugs), GSK3B (2 drugs), HRH1 (2
drugs), LCK (2 drugs), MAPK1 (2 drugs), MAPK14 (2
drugs), PDGFRB (2 drugs), PIK3CB (2 drugs), PIK3CG (2
drugs), RAF1 (2 drugs), TOP2A (2 drugs).

We observed similar mechanisms of action among dif-
ferent compounds that can target the dysregulated genes
and as the possible therapeutic strategies in CRC.

Screening of negative miRNA/mRNA regulatory pairs
associated with CRC.

First, the experimentally validated target mRNAs of 19
differentially expressed miRNAs were selected by miR-
tarbase and Tarbase. 250 miRNA (up)—mRNA (down)
pairs and 343 miRNA (down)—mRNA (up) pairs were

Fig. 3 GO and KEGG pathway analysis show the associated function of the target genes of dysregulated miRNAs in CRCs. A Left: The top 15
enriched KEGG pathways and the combination of GO terms including the top 15 GO biological processes, 5 cellular components and 5 molecular
functions for 7 upregulated miRNAs ordered by -log;,P-value in CRC. Right: The top 15 enriched KEGG pathways and the combination of GO
terms including the top 15 GO biological processes, 5 cellular components and 5 molecular functions for 12 downregulated miRNAs ordered

by -log,P-value in CRC. B Left: The top 15 enriched GO terms and KEGG pathways for 168 upregulated mRNAs ordered by adjust p-value in CRC.
Right: The enriched GO terms for 141 downregulated mRNAs ordered by adjust p-value in CRC. There is no result for KEGG pathways using

“R-clusterProfiler” by Hiplot platform
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screened after intersections of DEGs between 309 DEGs
and two databases shown in Fig. 2B. Then, we filtered
out 11 miRNA-mRNA pairs with significant nega-
tive correlation (adjusted p-value <0.05, adjusted by
Benjamini—-Hochberg (BH) method) in TCGA listed in
Table 2 and full statistical results were listed in Table
S4. Then we validated the correlation of 11 miRNA-
mRNA pairs including 5 DEMs and 10 DEGs in 6 GEO
datasets (GSE35602, GSE41015, GSE126095, GSE33122,
GSE81582, GSE128449) listed in Table S5. In addi-
tion, we conducted the Kaplan—Meier survival analysis
for predicting the prognostic value of these signatures.
In the TCGA training set, we built a prognostic classi-
fier using the LASSO Cox regression model, based on
the association between the expression of miRNAs and
mRNAs and the patients’ overall survival. The partial
likelihood deviance (binomial deviance) curve was plot-
ted versus log(\) through tenfold cross-validation in Fig.
S6A and the LASSO coefficient profile of prognostic sig-
natures was plotted in Fig. S6B. Using the LASSO selec-
tion model, we built a classifier consists of two miRNA/
mRNA negative pairs: hsa-miR-139-5p /STC1 and hsa-
miR-20a-5p/FGL2 based on the best lambda (\) which is
0.0220581.

Validation of miRNAs and mRNAs expression in CRC tissues
In order to investigate whether 5 DEMs and 10 DEGs
are differentially expressed in CRC versus normal tis-
sues, we analyzed their expression in 80 matched-pairs
of tumoral and adjacent normal tissues with ploy(A)
RT-PCR. Three significant upregulated miRNAs in CRC
were miR-17-3p (FDR<0.0001, FC=2.33), miR-182-5p
(FDR<0.0001, FC=2.16) and miR-20a-5p (FDR=0.022,
FC=2.31) and only miR-139-5p was downregulated
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in CRC (FDR<0.0001, FC=0.43) shown in Fig. 4A.
Two significant downregulated genes in CRC were
FGL2 (FDR=0.017, FC=0.44) and CA1l (FDR=0.025,
FC=0.41) and STC1 was significantly overexpressed
in CRC (FDR=0.002, FC=2.43) also shown in Fig. 4A.
We conducted the Pearson’s correlation for interac-
tions of DEMs and DEGs that miR-20a-5p was signifi-
cant associated with FGL2 (FDR=0.0215, »r=-0.3817).
We also found the moderately negative correlation
between miR-139-5p and STC1 in gene expression level
(FDR=0.0264, r=-0.4137) shown in Fig. 4B (see full
results in Table 2).

IHC images in the HPA database evidenced higher
expression of STC1 in CRC cells than in normal colo-
nocytes and lower expression of FGL2 in CRC cells
than in normal colonocytes shown in Fig. 5.

Evaluation of predictive value of miRNA-mRNA regulator
pairs in CRC
The logistic regression analysis was used to evaluated
the predictive value of a panel including 2 miRNA-
mRNA regulator pairs: miR-139-5p/ STC1 and miR-
20a-5p/ FGL2 in testing cohorts GSE35602, GSE126095
and GSE12844, and validation cohort containing 80
CRC tissues by qRT-PCR. Receiver operating charac-
teristic (ROC) curves, calibration curve and decision
curve analysis (DCA) for models were plotted in Fig. 6.
The areas under the curve (AUC) of a complex model
(miR-139-5p + STC1 + miR-20a-5p + FGL2) were 0.98
(95% CI: 0.9583 to 1.000, p<0.001) in GSE126095,
0.9127 (95% CL 0.7972 to 0.9713, p=0.0027) in
GSE128449, 0.8088 (95% CI: 0.6402 to 0.9774,
p=0.0144) in GSE35602 and 0.9049 (95% CI: 0.8463
to 0.9636, p<0.0001) validated by qRT-PCR shown in

Table 2 Pearson’s correlation analysis of miIRNA-MRNA pairs in colorectal cancers in TCGA

adjusted p-value

miRNA (up) mRNA (down) (FDR) r-value
17-3p PEX26 0.0024 -0.1292
CA2 0.0010 -0.1555
17-5p FGL2 0.0004 -0.2676
BMP2 0.0049 -0.1334

AQPS 0.0339 -0.3008

GUCA2B 0.0112 -0.3205
182-5p CAl 0.0129 -0.2180
CHP2 0.0103 -0.1217

CLCA4 0.0378 -0.0987

20a-5p

FGL2 0.0215 -0.3817

miRNA (down) mRNA (up) adjusted p-value r-value

(FDR)
139-5p STCl1 0.0001 -0.2983
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Fig. 6A. The calibration curves for the model in 3 testing
cohorts and validation cohort were shown in Fig. 6B.
We used DCA to verify the clinical applicability of
15 models, of which 1 model containing all 4 signa-
tures (miR-139-5p, STC1, miR-20a-5p and FGL2), 4
models containing 3 signatures, 6 models containing

2 signatures and 4 models containing 1 signature by
quantifying the net benefits at different threshold prob-
abilities. The decision curves in both the external vali-
dation cohort and two testing cohorts GSE128449 and
GSE35602 showed that the complex model based on 4
signatures (the red line shown in Fig. 6C) could predict

Table 3 Pearson’s correlation analysis of miIRNA-mRNA pairs in FFPE colorectal cancer samples

. Fold change Fold change Pearson's correlation
miRNA (up) FDR mRNA (down) FDR

(2-AACT ) (2-A4 CT) FDR r-value
17-3p <0.0001 2.333 PEX26 0.260 0.393 0.0314 -0.1210
CA2 0.308 0.774 0.1890 -0.0842
17-5p 0.715 4.559 FGL2 0.016 0.443 0.9160 -0.2563
BMP2 0.888 0.943 0.1107 0.2966
AQPS 0.925 0.465 0.0327 -0.4954

1825 0.0001 5 166 GUCA2B 0.754 1.784 0.7205 -0.4621

- <

P ' S0 CAl 0.025 0.410 0.8417 0.1882

CHP2 0.020 1.927 0.9027 0.0121
CLCA4 0.807 0.891 0.5114 -0.0344

20a-5p 0.022 2.310

FGL2 0.016 0.443 0.0215 -0.3817

miRNA (down) mRNA (up) p-value r-value
139-5p <0.0001 0.429 STClI 0.002 2.431 0.0264 -0.4137
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Fig. 5 Immunohistochemistry images of STC1 and FGL2 in CRCs and NCs from HPA database. A Low immunostaining of STC1 in normal colon
endothelial cells (antibody HPA023918); (B) Medium immunostaining of STC1 in CRC cells (antibody HPA023918); (C) Medium immunostaining
of FGL2 in normal colon endothelial cells (antibody HPA026682); (D) Immunostaining of FGL2 was not detected in CRC cells (antibody HPA026682)

the colorectal cancer much better than other 14 models
if the threshold probability was between 0-0.60 (in the
testing cohort GSE128449, the threshold probability
was between 0 and 0.33).

Association analysis of clinical pathological features

and miRNA/mRNA expression level in CRC

Clinical pathological data of CRC patients were sum-
marized in Table 4. The anatomical site of the lesion
was in the right colon in the majority of the cases (48,
60%). KRAS mutation was found in almost half of the
patients (51.25%) and BRAF mutation was found in
10% of the cases. Because our clinical samples had no
enough clinical information, we evaluated miRNAs
and mRNAs expression levels in multiple subgroups
in TCGA-CRC RNA-Seq data shown in Fig. S3A-F.
Receiver operating characteristic (ROC) curve was
used to find the best cutoff which was as the basis for
grouping of expression levels of miRNAs and mRNAs
shown in Fig. S2. MiR-139-5p overexpression was asso-
ciated with the stage of CRC and age (FDR=0.0056,
FDR=0.0066, respectively). The expression level of
FGL2 was significantly upregulated in microsatellite
instable (MSI) CRC versus microsatellite stable (MSS)
CRC (FDR=0.013).

We evaluated the association of the expression level of
2 miRNA-mRNA regulatory pairs which were detected
to be differentially expressed in CRC versus normal tis-
sue and gene mutations in BRAF gene and 3 Ras family
oncogenes HRAS, KRAS and NRAS. The level of miR-
139-5p was found to be higher in HRAS wild-type CRC
tissues than HRAS-mutated CRC tissues (FDR=0.030,
FC=3.33). The level of miR-20a-5p was upregulated and
FGL2 was downregulated in BRAF wild-type CRC tis-
sues versus BRAF-mutated CRC tissues (FDR=0.004,
FC=2.05; FDR=0.026, FC=0.33, respectively) shown
in Fig. S3F (all results listed in Table S6).

As shown in Table S7, human cancer metastasis data-
base (HCMDB) was analyzed that miR-20a-5p by tar-
geting FGL2 and miR-139-5p by targeting STC1 could
play a role mainly in liver metastatic CRC.

Analysis of overall survival

Since our clinical tissue samples and the GEO data had
no clinical information, the survival analysis was con-
ducted in TCGA data. The Hazard ratio (HR) of differ-
ent clinical features in TCGA testing set (n=239) was
estimated by univariate and multivariate cox regression
analysis. As shown in Table 5 STC1 expression was sig-
nificantly correlated with the overall survival (OS) with
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Fig. 6 Receiver operating characteristic (ROC) curves, calibration curve and decision curve analysis (DCA) of the complex predictive model
including 4 signatures (miR-139-5p, STC1, miR-20a-5p and FGL2) to distinguish CRC samples from normal samples. A ROC curves of the complex
predictive model in testing datasets GSE126095, GSE128449 and GSE35602, and external validation cohort. B Calibration curve of the complex
predictive model in testing datasets and validation cohort. C The decision curve analysis of 15 models, of which a complex predictive model
containing all 4 signatures (miR-139-5p, STC1, miR-20a-5p and FGL2), 4 models containing 3 signatures, 6 models containing 2 signatures and 4

models containing 1 signature

hazard ratio of 1.316 (95% CI: 1.224 to 2.393, p=0.024) in
TCGA. The result showed that gender and stage could be
as independent risk factors for CRC (HR: 1.649, 95%CI:
1.113 to 3.02, p=0.032; HR: 1.91, 95%CI: 1.422 to 2.813,
p=0.011, respectively). We don’t have extra survival
data to estimate prognostic model and more research is
required about the prognostic value of 2 miRNA-mRNA
regulatory pairs in CRC.

Kaplan—Meier (K-M) survival for multiple subgroups
in TCGA were carried out at least avoiding curves cross.
As shown in Fig. S4, the horizontal axis indicated the
overall survival time in days, and the vertical axis indi-
cates the survival probability. We found that high expres-
sion of STC1 was associated with poor overall survival in
patients with colorectal carcinoma.

We also calculated risk scores of each patient in
TCGA-COAD based on expression levels and risk coef-
ficients of hsa-miR-139-5p /STC1 and hsa-miR-20a-5p/
FGL2 based on the LASSO Cox regression analysis
above. The equation Risk score (TCGA testing set) =hsa-
miR-139-5p  (-0.10571) + STC1 % (0.01165) + hsa-
miR-20a-5p * (0.06809) + FGL2  (-0.05036) shows the
formulae for calculating the risk score for TCGA testing
set. The cohort were divided into the high-risk and low-
risk group according to the median risk score. We found
that colorectal cancer patients in the high-risk group had
a shorter overall survival than patients in the low-risk
group (log-rank p=0.0007, HR=2.137, 95%CI: 1.388 to
3.289) shown in Fig. S6C.
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Table 4 Clinicopathological and molecular features of colorectal cancer patients

Colorectal cancer

Rate (%)
(n=80)
Age(year)
mean (SD) 57.3 (13.2)
median [min, max] 59 (31,82)
Gender
female 32 40
male 48 60
Tumor location
left colon 18 22.5
right colon 48 60
rectum 14 17.5
Grade
G1 1 2.5
G2 52 65
G3 26 32.5
TNM stage
I 13 16.25
I 38 47.5
m 23 28.75
v 6 7.5
Microsatellite instability
instable 40 50
stable 40 50
KRAS mutation status
wild-type 39 48.75
mutated 41 51.25
BRAF V600E mutation status
wild-type 72 90
mutated 8 10

Analysis of tumor-related phenotypes associated

with signatures

We applied an established computational method (CIB-
ERSORT) to bulk gene expression profiles of colorectal
cancer to infer the proportions of 22 subsets of immune
cells. As shown in Fig. S5A, there were 12 types of
immune cells differentially expressed in CRC versus con-
trol (all results listed in Table S8). We further investigated
associations between each cell type and miRNA/ target
mRNA expression using Spearman’s correlation. “\” was
placed through the cell when padj (BH) value > 0.05 in Fig.
S5B-C. The levels of miR-20a-5p and target gene FGL2,

and miR-139-5p and target gene STC1 were significantly
correlated with M1/M2 macrophages shown in Fig. S5B.
MiR-139-5p and target gene STC1 were also associated
with activated memory CD4*T cells and plasma cells. In
our study, 2 miRNA-mRNA regulatory pairs could inter-
act with DNA methylation, tumor immunity and inflam-
mation in the tumor microenvironment shown in Fig.
S5C. According to our analysis, the high expression level
of FGL2 could lead to the high tumor mutation burden.
This result was consistent with the analysis of gene muta-
tion status above that FGL2 was upregulated in MSI CRC
and BRAF-mutated CRC shown in Fig. S1.
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Table 5 Univariate and multivariate analysis of overall survival in colorectal cancer patients

Univariate analysis Multivariate analysis
TCGA testing set (n=239) HR (95% CI) P value HR (95% CI) P value
age 1.461(0.806-2.649) 0.211
gender 2.698(1.142-3.063) 0.029 1.649(1.113-3.02) 0.032
stage 2.732(1.097-3.008) 0.047 1.91(1.422-2.813) 0.011
site 0.845(0.488-1.461) 0.546
msi status 0.52(0.647-3.568) 0.314
BRAF mutation status 0.639(0.346-1.883) 0.259
KRAS mutation status 1.186(0.681-2.064) 0.547
NRAS mutation status 0.594(0.212-1.661) 0.32
HRAS mutation status 0.42(0.15-0.977) 0.099
RAS-family mutation status 0.854(0.491-1.485) 0.576
miR-139-5p 1.35(0.768-2.373) 0.298
STC1 1.441(1.183-2.496) 0.027 1.316(1.224-2.393) 0.024
miR-20a-5p 1.457(0.82-2.59) 0.199
FGL2 1.008(0.579-1.755) 0.978
Discussion (16.42+4.2 h) in blood samples by Chong.W et al. [16].

MicroRNAs which can act as regulators of target genes’
expression and regular biological processes, molecular
functions and cellular components had been reported
to be critical for the progression of cancers by influenc-
ing cell proliferation, cell invasion and tumor metastasis.
Combination of miRNAs and mRNAs have a potential
clinical value in diagnosis, prognosis and treatment effi-
cacy in colorectal cancer. Identifying the miRNA-mRNA
regulatory networks and elucidate their complex roles in
immune function, tumorigenesis and molecular mecha-
nisms has a profound meaning.

These regulatory pairs of miRNA-mRNA differed
in different cancers presenting the disease-specific
expression profiles. Nowadays, various bioinformat-
ics approaches are used as screening tools to identify
miRNA-mRNA regulatory pairs such as computational
target prediction. Accurately predicting miRNA tar-
gets remains challenging due to factors such as imper-
fect sequence specificity, target site availability and the
thermodynamic stability of the structure of mRNA itself
[15]. In our research, we conducted the Pearson’s corre-
lation analysis of the miRNAs and target mRNAs in six
GEO datasets which examined the expression values of
miRNAs and mRNAs from the same patient shown in
the Table S5. We found the correlation coefficients of
two negative miRNA-mRNA regulatory pairs were low
in FFPE tissue samples by RT-qPCR. One reason is per-
haps that repeated washing, centrifugation, purifica-
tion and other steps can cause a considerable amount of
nucleic acid loss and increase the possibility of nucleic
acid fragmentation and hydrolysis. The half-live of
mRNAs was 16.4 h which were shorter than circRNAs
(24.56+5.2 h), IncRNAs (17.46+3.0 h) and miRNAs

The coding DNA sequence length, %GC content, and
3UTR length were found that might be associated with
the transcript degradation rates by Romero et al. [17].
The findings of the Li et al.were that cytidine-contain-
ing poly(A) tails can substantially enhance the protein
production rate and duration of synthetic mRNAs [18].
Another reason may be that the Pearson correlation
captures only linear dependency between expression of
mRNA and miRNA. The correlation network between
miRNA and mRNA can be more complex. We screened
the target genes of potential DE-miRNAs using TarBase
and miRTarBase, which contain experimentally veri-
fied miRNA/ target-gene pairs. The direct interaction
between hsa-miR-139-5p and STC1 is validated using
crosslinking immunoprecipitation (CLIP), coupled with
high throughput sequencing (HITS-CLIP) by Karginov
FV et al. [19]. The direct interaction between hsa-miR-
20a-5p and FGL2 is validated using photoactivatable
ribonucleoside enhanced CLIP (PAR-CLIP) by Gottwein,
Eva et al. [20]. There are other experimental procedures
using high-throughput sequencing for verifying the
authenticity of the identified miRNA-mRNA regulatory
pairs such as crosslinking, ligation, and sequencing of
hybrids (CLASH), biotin-Microarrays and western blot.
Alternatively, there are additional methodologies that
DIANA-microT-CDs [21] is based on PAR-CLIP data
and DeepMirTar tool [22] is based on stacked de-nois-
ing auto-encoders at the site level, LeMoNe [23] which
are similarity-based methods contains the high intrinsic
correlation between miRNA and mRNA, and DIABLO
[24] is built on canonical correlation analysis (CCA) [25]
which describes the strength of the linear dependence in
terms of the best low-dimensional linear projections of
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two variables, matrix factorization such as the Joint and
Individual Variation Explained (JIVE) [26], Multi-Omics
Factor Analysis (MOFA) [27], and the Independent com-
ponent analysis (ICA) [28]. Therefore, it is essential that
the comprehensively and precisely dissection of miRNA-
mRNA associations need to combine results obtained by
different methodologies such as miRNA targets identi-
fication, experimentally validated miRNA targets data-
bases, miRNA targets prediction based on binding sites
and deep learning algorithms developing for integration
of miRNA and mRNA expression data. Despite strengths
and weaknesses characterizing each strategy, the accu-
racy of these prediction tools can be improved only by
obtaining more experimentally validated expression pro-
file data. Identifying the miRNA-mRNA regulatory pairs
which have good accuracy will aid to deepen the under-
standing of miRNA functions in tumor development and
tumorigenesis.

Conclusions

We performed extensive analysis of miRNA-mRNA regu-
latory pairs in CRC versus adjacent normal tissue. In 83
GEO datasets, the expression profiles of miRNAs and
mRNAs were screened using GEO2R, “R-limma” and
“R-edgeR” Then, combination of TCGA data and GTEx
data from normal tissues was used to identify the candi-
date DEMs and DEGs which were compared with results
of 4 cancer-related databases (miRCancer, dbDEMC,
HMDD and HColonDB) simultaneously. Through the
muti-step method, 19 differentially expressed miRNAs
and 309 differentially expressed mRNAs were identified.

Function analysis and cMap analysis were conducted
that candidate DEMs and DEGs which were screened
from TCGA, GEO, GTEx and 4 databases were associated
with classic cancer-related signaling pathways such as Wnt
signaling pathway, TGF-beta signaling pathway and mTOR
signaling pathway. Notably, fatty acid metabolism which is
the enriched KEGG pathways has been paid enough atten-
tion to so far. High-fat diet (HFD) which is risk factor for
cancers promotes regeneration capacity and tumorigenesis
by enhancing intestinal stem cell (ISC) located at the base
of intestinal crypts and cell proliferation [29]. The find-
ings of MEK inhibitors trametinib and cobimetinib, and
BRAFV600-mutatant-related dabrafenib considered as
therapeutic strategies of cancers demonstrated the impor-
tance of 309 dysregulated genes in colorectal cancer.

In this study, we adopted the strict criterion to iden-
tify vital miRNA-mRNA regulatory pairs. Briefly,
the target mRNA of DEMs should be differentially
expressed, significant negative correlated with DEM
regulator by Pearson’s correlation, and further vali-
dated by two databases containing experimentally
validated miRNA-target interactions, miRTarbase and
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Tarbase. At first, 250 miRNA (up)—mRNA (down)
pairs and 343 miRNA (down)—mRNA (up) pairs were
screened after intersections of DEGs between 309
DEGs and two databases shown in Fig. 2B. Then, we
filter out 11 significantly negative correlated miRNA-
mRNA pairs (adjusted p-value <0.05) which were also
estimated in 6 GEO datasets listed in Table 2 and Table
S5. We further detected the expression level of 11
miRNA-mRNA regulatory pairs in 80 pairs FFPE colon
tissues by poly(A) qRT-PCR.

Ultimately, two pivotal negative correlated miRNA-
mRNA regulatory pairs (miR-20a-5p/ FGL2 and miR-
139-5p/ STC1) were considered for inclusion in the
logistic regression model. The following analysis will
support the predictive value of miRNA-mRNA pairs.
On one hand, receiver operating characteristic (ROC)
curve was used to evaluate a total of 15 randomly com-
binations of 4 signatures and calibration curve was
used to estimate the calibration performance of the
complex model including 4 signatures. On other hand,
we used decision curve analysis (DCA) to evaluate
clinical utility of 15 models. The complex model (miR-
139-5p+ STC1 + miR-20a-5p+ FGL2) was the best
predictive model when compared with other 14 combi-
nations in 2 testing cohorts GSE35602 and GSE12844,
and the validation cohort containing 80 CRC tissues.
Some researchers have reported the functional role for
miR-139-5p in breast cancer cell motility and invasion
[30], in colorectal cancer epithelial-mesenchymal tran-
sition [31] and cell proliferation [32], and in cervical
cancer cell proliferation and migration [33]. Compared
with previous studies on the miRNA expression profile
of CRC, it has the possibility to serve as a molecular
therapeutic target and prognostic marker in colorectal
cancer (CRC) [34], tongue squamous cell carcinoma
(TSCC) [35], breast cancer (BC) [36], glioblastoma
multiforme (GBM) [37] and non-smalll cell lung can-
cer (NSCLC) [38]. MiR-20a-5p belongs to the miR-
17-92 cluster which is reported to be overexpressed in
hepatocellular carcinoma (HCC) [39], triple-negative
BC [40], renal cell carcinoma (RCC) [41] and CRC in
many studies including our research. According to
recent studies, it is also linked to cell proliferation,
activation of monocyte/macrophage lineage, B cells,
Th1, Th2, Th17 and TFH cells in innate and adaptive
immunity [42]. FGL2, MAPK-mediated upregulation
of fibrinogen-like protein 2, was downregulated in
CRC tissues. The knockdown of FGL2 can reduce the
proliferation, migration and invasion in CRC cell lines
[43]. STC1, secreted glycoprotein stanniocalcin-1, is
the mediator of metastasis by platelet-derived growth
factor (PDGF) related to cancer-associated fibroblasts
(CAF) in CRC [44].
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We summarized the clinical pathological features in
TCGA and miR-139-5p was found to be differentially
expressed in stage I-II versus stage III-IV, while the high
expression of FGL2 was associated with microsatellite
instability in CRC. HRAS mutation status and BRAF muta-
tion status were confirmed to interact with the expression
level of miR-139-5p and FGL2, respectively. In metasta-
sis CRC versus controls, two pivotal negative correlated
miRNA-mRNA regulatory pairs (miR-20a-5p/ FGL2 and
miR-139-5p/ STC1) could be considered to associate with
tumor metastasis in CRC. High STC1 expression is a signif-
icant independent predictor of poor survival in colorectal
cancer by SHUZO T et al. [45]. Although STC1 wasn’t cor-
related with the OS of CRC in validation set (n=71) (HR:
1.025, 95%CI: 0.468 to 2.244, p=0.952) and Kaplan—Meier
(K-M) survival curves didn't give any indication about
the influence of STC1 expression in overall survival, we
couldn’t rule out the prognostic value of STC1. However,
a detailed analysis could not be performed due to insuffi-
cient information and there is ambiguity in the prognostic
value of two miRNA-mRNA regulatory pairs in CRC. MiR-
20a-5p by targeting FGL2 and miR-139-5p by targeting
STC1 could have an impact on tumor microenvironment
by interacting with tumor-related inflammation and infil-
tration of macrophages and CD4™T cells. Especially, FGL2
which was upregulated in MSI CRC and BRAF-mutated
CRC could lead to high tumor mutation burden.

Methods

Data acquisition and processing of miRNA and gene
expression profiles

The Cancer Genome Atlas (TCGA) colon adenocar-
cinoma (COAD) and rectal adenocarcinoma (READ)
miRNA and mRNA sequencing expression profiles and
associated clinicopathological data were downloaded
from the GDC data portal at the National Cancer Insti-
tute (https://portal.gdc.cancer.gov/). There is no apparent
difference between colon and rectal samples validated by
Principal component analysis (PCA) and merging sam-
ples is no need to adjust [46]. So, we combined TCGA-
COAD and TCGA-READ samples into a single colorectal
adenocarcinoma (COADREAD or CRC) cohort. GTEx
data were obtained from UCSC Xena browser which is
a combined cohort of TCGA, TARGET and GTEx sam-
ples (https://xenabrowser.net/datapages/). We processed
the data from GTEx and TCGA using perl. A total of 453
tumor tissue samples, 41 normal samples from TCGA
and 308 normal samples from GTEx were included in this
article. Then we searched colorectal cancer relevant gene
microarray expression datasets and high-throughput
sequencing expression datasets from the Gene Expres-
sion Omnibus (GEO) database (http://www.ncbi.nlm.
nih.gov/geo/) with the following keywords: “colorectal
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cancer”. Filters were set to “series” and “Expression pro-
filing by array’, “Expression profiling by high-throughput
sequencing’, “Non-coding RNA profiling by array’, “Non-
coding RNA profiling by high-throughput sequencing”
and “Homo sapiens” We also collected differentially
expressed miRNAs in 3 databases: miRCancer [47],
Database of Differentially Expressed MiRNAs in human
Cancers (dbDEMC) [48], Human MicroRNA Disease
Database (HMDD) [49] and genes in Human Colon
cancer Database (HColonDB) [50]. RNA-Seq data
were analyzed by “edgeR” R package. The differentially
expressed genes (DEGs) and differentially expressed
miRNAs (DEMs) were obtained from microarray expres-
sion profiles using the web analysis tool GEO2R, which
is used to compare groups of samples by the GEOquery
and limma R packages from the Bioconductor project
in the GEO database (http://www.ncbi.nlm.nih.gov/
geo/geo2r/). The cut-off criteria were adjusted p-value
(FDR) <0.05 and |log2 (fold change) |>1.

Identification and function analysis of miRNA/target-
gene pairs .

Firstly, we screened the target genes of potential DE-
miRNAs using TarBase and miRTarBase, which contain
experimentally verified miRNA/ target-gene pairs. Then
the expression correlation between miRNA-mRNA with
negative correlations identified from the above databases
was evaluated using Pearson’s correlation. Visualization
of the miRNA-mRNA negative regulatory network was
conducted using Cytoscape software (v3.8.0) [51]. Gene
ontology (GO) functional analysis and a Kyoto Ency-
clopedia of Genes Genomes (KEGG) pathways analysis
[52] against the DEGs and DEMs in the network were
performed by using DAVID-mirPath which is a miRNA
pathway analysis web-server [53] and the clusterProfiler
tool in Hiplot (https://hiplot.com.cn), a comprehen-
sive web platform for scientific data visualization [54].
Adjusted p-value (FDR)<0.05 was considered to indi-
cate a statistically significant difference of enriched GO/
KEGG terms.

Connectivity map analysis of potential compounds
capable of targeting the differentially expressed genes

We employed the Connectivity Map (cMap) analysis by
querying dysregulated genes (at least 10 genes) in colorectal
cancers versus normal controls for discovering candidate
compounds that might target pathways related to CRC via
clue.io software platform (https://clue.io/query). The nor-
malized connectivity score (norm_cs) ranging from -3 to
3 was used to estimate the closeness between up-regulated
genes and compounds. The positive score ranging from 0
to 3 indicated a promotive effect of compound on the up-
regulated genes. Negative logl0 transformed FDR g-values
(fdr_q_nlog10) > 2 was set as the filter condition.
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Survival analysis

Univariate and multivariate Cox regression analyzed by
“survival” package (http://cran.r-project.org/web/packa
ges/survival/index.html) [55]. The hazard ratio (HR) and
95% confidence interval (CI) were estimated. Kaplan—
Meier method was also used to calculate overall sur-
vivals, and the log-rank test analyzed the differences. P
value < 0.05 was the significant cutoff.

Evaluation of interactions of miRNA-mRNA pairs

and tumor-relative phenotypes and gene mutation status
The fraction of 22 infiltrating immune cell types was
calculated using CIBERSORT, a gene-based decon-
volution algorithm (https://cibersort.stanford.edu/
index.php/) [56]. The differences of these immune
cells between TCGA-CRCs and normal controls were
compared via the Wilcoxon rank-sum test. ESTI-
MATE software based on the mRNA-seq data was
used to estimate the stromal and immune levels for
TCGA-CRC samples [46]. The methylation levels of
the CpG sites in TCGA-COAD and TCGA-READ
samples were obtained using UCSC Xena platform
(https://xena.ucsc.edu/) detected by the Illumina
Infinium HumanMethylation450 BeadChips plat-
form, which covered 485,577 CpG loci. The sum
of the methylation levels of all 485,577 CpG sites in
each sample was calculated as overall DNA meth-
ylation level. Tumor mutational burden (TMB) was
used to measure the total number of somatic variants
per megabase (MB) of the genome. Masked Somatic
Mutation data (varscan. Somatic. Maf) were obtained
using the “maftools”in R package [57]. We used
38 Mb as the estimate of the exome size. TMB esti-
mate for each sample is equal to the total mutation
frequency/38. TCGA-CRC samples were grouped into
wild-type and mutated in RAS genes family KRAS,
HRAS, NRAS and BRAF based on TCGA-COAD and
TCGA-READ somatic mutation datasets obtained
from UCSC Xena.

Sample collection and RNA isolation

80 paired formalin-fixed paraffin-embedded (FFPE)
CRC tissues and corresponding adjacent normal tissues
were obtained from patients who underwent surgery at
the First Affiliated Hospital of Nanjing Medical Univer-
sity. All samples used in this study were collected with
patients’ consent. The present study has been approved by
the institutional ethics committee and the patients writ-
ten informed consent has been obtained (ID: 2016-SRFA-
148). The clinical characteristics of the 80 colorectal cancer
patients are showed in Table 4. Total RNA was extracted
from FFPE tissues using RNAprep Pure FFPE Kit (TIAN-
GEN) according to the manufacturer’s instructions. RNA
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concentrations were measured with NanoDrop ND-1000
spectrophotometer (Thermo Fisher Scientific).

Quantitative reverse transcription PCR (qRT-PCR) assay
Selected DEGs and DEMs were verified by qRT-PCR
using PrimeScript RT reagent Kit (Takara) and SYBR
Premix Ex Taq II (Takara) after adding a poly(A) tail to
RNA by Poly(A) Polymerase Kit (Takara). All kits were
used according to the manufacturer’s protocol. The
PrimeScript RT reagent Kit and SYBR Premix Ex Taq
II kit contain the commercial Uni-RT primer and Uni-
Reverse primer. The PCR reactions were carried out in
final volumes of 10 pL on the gTOWER? 84 (Analytik
Jena) at 95 °C for 20 s, followed by 40 cycles of 10 s at
95 °C, 20 s at 60 °C. The sequences of PCR primers are
listed in the Table S1. RUN6B (U6), GAPDH and 18S
rRNA were considered as reference genes for normali-
zation, and the comparative cycle threshold (2’AACt)
method was used to analyze the relative expression of
miRNAs and genes by Livak K] et al. [58].

Statistical analysis

IBM SPSS Statistics v.26 software (IBM Corpora-
tion, Armonk, NY, USA), R language v3.6.3 (https://
cran.r-project.org/) or GraphPad Prism software were
used to analyze the data. Continuous variables were
reported using the mean and standard deviation (SD).
Student’s t-tests were performed, and p-values and
adjusted p-values were calculated. MiRNA and gene
with a |log2FC|>0.58, P<0.05 and FDR (False Dis-
covery Rate) <0.05were considered to be statistically
significant. The association between the expression
of miRNAs and genes was analyzed by Pearson’s cor-
relation in MSI and MSS CRC tissues. The predictive
value of miRNA-mRNA pairs was assessed by the area
under the ROC curves (AUC) which is used to evalu-
ate the discrimination of the model, and calibration
curve which is used to evaluate the accuracy of the
model. P<0.05 was considered statistically signifi-
cant. Decision curve analysis (DCA) based on Logis-
tic regression is used to verify the clinical applicability
of the model. Pearson’s correlation method was used
to calculate correlation between DEGs or DEMs and
all tumor-related phenotypes. OS was defined as the
interval from surgery to the date of death. Survival
curves plotted by the Kaplan—-Meier method were ana-
lyzed by the log-rank test and p < 0.05 was regarded as
statistically significant. Cox regression analyses were
performed and the hazard ratio (HR) and 95% confi-
dence interval (CI) were calculated to identify sta-
tistically significant DEGs or DEMs (p-value<0.05)
associated with survival. We draw plots using R v3.6.3,
GraphPad Prism and Hiplot software.
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