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Abstract 

Background MicroRNA (miRNA) which can act as post-transcriptional regulators of mRNAs via base-pairing 
with complementary sequences within mRNAs is involved in processes of the complex interaction between immune 
system and tumors.

In this research, we elucidated the profiles of miRNAs and target mRNAs expression and their associations 
with the phenotypic hallmarks of colorectal cancers (CRC) by integrating transcriptomic, immunophenotype, meth-
ylation, mutation and survival data.

Results We conducted the analysis of differential miRNA/mRNA expression profile by GEO, TCGA and GTEx data-
bases and the correlation between miRNA and targeted mRNA by miRTarBase and TarBase. Then we detected using 
qRT-PCR and validated the diagnostic value of miRNA-mRNA regulator pairs by the ROC, calibration curve and DCA. 
Phenotypic hallmarks of regulatory pairs including tumor-infiltrating lymphocytes, tumor microenvironment, tumor 
mutation burden, global methylation and gene mutation were also described. The expression levels of miRNAs 
and target mRNAs were detected in 80 paired colon tissue samples. Ultimately, we picked up two pivotal regula-
tory pairs (miR-139-5p/ STC1 and miR-20a-5p/ FGL2) and verified the diagnostic value of the complex model which 
is the combination of 4 signatures above-mentioned in 3 testing GEO datasets and an external validation cohort.

Conclusions We found that 2 miRNAs by targeting 2 metastasis-related mRNAs were correlated with tumor-infiltrat-
ing macrophages, HRAS, and BRAF gene mutation status. Our results established the diagnostic model containing 2 
miRNAs and their respective targeted mRNAs to distinguish CRCs and normal controls and displayed their complex 
roles in CRC pathogenesis especially tumor immunity.
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Background
Colorectal cancer (CRC) where the incidence ranked 
third has a third largest estimated mortality for all 
types of cancers in 2023 according to the World Health 
Organization (WHO) [1]. According to the statistical 
study of John V et  al., from 2004 to 2015, the propor-
tion of persons diagnosed with CRC at an age younger 
than 50  years has continued to increase, and younger 
adults present with more advanced disease over the 
past decade [2].

MicroRNAs (miRNAs), families of small noncod-
ing RNAs, had been reported that were critical for 
the progression of cancers by influencing prolifera-
tion, invasion and metastasis [3]. MiRNAs can regulate 
gene expression at posttranscriptional level via base-
pairing with complementary sequences within mRNAs 
and their interaction plays a key role in the patho-
genesis of CRC. There are some differentially expres-
sion miRNAs which target genes that exert on various 
molecular regulation such as SMAD4 targeted by miR-
130a/301a/454 cluster [4] and RND3 targeted by miR-
17 [5] in proliferation, p70S6K1 targeted by miR-145 
[6] in angiogenesis, BCL2 targeted by miR-148a [7] in 
apoptosis and MMP11 targeted by let-7c [8] in metas-
tasis. They also modulate the balance of resolution of 
inflammation and prevent tissue damage by regulating 
the immune response in intestine [9]. A comprehensive 
meta-analysis of microRNA for predicting colorectal 
cancer have shown that multiple miRNAs appeared to 
be more favorable than single miRNA by incorporating 
103 studies from 36 articles with a total of 3124 CRC 
patients and 2579 healthy individuals according to Lin 
Y et  al. [10]. Therefore, it is efficient for choosing the 

appropriate candidate miRNA and target genes in CRC 
and discover the novel molecular biomarker combi-
nations validated via public databases and molecular 
techniques.

By Integrative analysis of paired miRNA-mRNA 
expression profiles from CRC samples, we identified the 
miRNA-mRNA regulatory network and their complex 
roles in CRC pathogenesis especially tumor immunity. 
An overview of the workflow steps is shown in Fig. 1. In 
our study, gene and miRNA profiling data were down-
loaded from The Gene Expression Omnibus (GEO) 
database, The Cancer Genome Atlas (TCGA) and The 
Genotype-Tissue Expression (GTEx). To find the piv-
otal miRNA-mRNA regulatory pairs, we successively 
conducted differential expression analysis, target gene 
screening by TarBase and miRTarBase which summa-
rizes experimentally confirmed miRNA-mRNA pairs, 
function analysis by DAVID-mirPath which is a miRNA 
pathway analysis web-server and Hiplot tools which is a 
cloud platform for scientific computation and visualiza-
tion, and connectivity mapping (cMap) for drug discov-
ery [11]. Then, poly(A) reverse transcriptase quantitative 
(real-time) polymerase chain reaction (RT-qPCR) assay 
was performed to detect the expression of miRNAs and 
target mRNAs in formalin-fixed paraffin-embedded 
(FFPE) samples, validated using Pearson’s correlation and 
finally evaluated by logistic regression model. The pheno-
typic hallmarks provided new insights into miRNA and 
target-mRNA expression associated with immune micro-
environment, tumor infiltrating immune cells, global 
methylation, tumor mutational burden and RAS gene 
family mutation status.

Fig. 1 Flow chart for identifying the miRNA-mRNA regulatory pairs and the comprehensive analysis of regulatory pairs role in colorectal cancer 
(CRC)
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Our research performed extensive analysis of miRNA-
mRNA regulatory pairs in CRC versus adjacent normal 
tissue to yield new sights in the underlying mechanism in 
CRC tumorigenesis. Combination of bioinformatic analy-
sis and qRT-PCR provided with convenience in identifying 
dysregulated miRNA-mRNA regulatory pairs to improve 
therapeutic strategies for colorectal cancer patients.

Results
Identification of differentially expressed miRNAs (DEMs) 
and genes (DEGs) in CRC 
There were fifty-four gene expression microarray data-
sets, fifty-two of which from tissue, one from periph-
eral blood and one from fibroblast. In addition to these, 

there were also four gene expression RNA-Seq datasets 
including two datasets from tissue, one from platelet 
and one from CD4 + Treg cell. A total of twenty-five 
miRNA expression datasets were filtered out in this 
study, which consist of one RNA-Seq datasets from tis-
sue and twenty-four microarray datasets from tissue, 
peripheral blood, serum and serum exosome, respec-
tively. The information of 83 GEO datasets is shown in 
Table  1. Upregulated and downregulated DEMs/DEGs 
in CRCs vs. controls were identified using the log2fold 
change (CRC vs. normal). 19 DEMs and 309 DEGs were 
the intersection of TCGA, GEO datasets and 3 disease-
related miRNA databases (dbDEMC, HMDD and miR-
cancer) shown in Fig. 2A.

Table 1 Information pertaining to the selected GEO datasets for colorectal cancer
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Table 1 (continued)

Fig. 2 (A) The circular-barplot showing the basic information of GEO datasets (GEO accession, source name and experiment type). A total of 83 
datasets were included in the study of which 54 were gene expression microarray datasets from tissue, peripheral blood and fibroblast, 4 were 
gene expression RNA-Seq datasets from tissue, platelet and CD4 + Treg cell, and 25 were miRNA expression datasets including 1 RNA-Seq datasets 
from tissue and 24 microarray datasets from tissue, peripheral blood, serum and serum exosome. Nineteen DEMs and 309 DEGs were screened 
in CRCs versus normal controls (NCs). B Nineteen microRNAs (miRNAs) to 309 mRNAs network visualized by Cytoscape. There were 250 miRNA 
(up) – mRNA (down) pairs and 343 miRNA (down) – mRNA (up) pairs screened out by miRtarbase and Tarbase which contain experimentally 
validated miRNA-mRNA regulatory pairs. Orange dot represents the upregulated miRNAs/mRNAs in CRCs versus NCs, while purple dot represents 
the downregulated miRNAs/mRNAs in CRCs versus NCs

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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Analysis of function enrichment analysis and pathway 
analysis
We performed the enrichment analysis of 7 upregulated 
miRNAs and 12 down-regulated miRNAs by DAVID-
mirPath. Targets of 7 upregulated miRNAs (hsa-miR-
17-3p, hsa-miR-17-5p, hsa-miR-182-5p, hsa-miR-183-5p, 
hsa-miR-20-5p, hsa-miR-21-5p and hsa-miR-224-5p) 
were enriched in 67 KEGG pathways, 197 Gene Ontol-
ogy (GO) biological processes, 14 GO celluar compo-
nents and 21 GO molecular functions listed in Table S2 
and the top 15 ordered by -log10P-value were shown in 
Fig. 3A. Targets of 12 downregulated miRNAs (hsa-miR-
139-5p, hsa-miR-145-5p, hsa-miR-150-5p, hsa-miR-
194-3p, hsa-miR-324-3p, hsa-miR-326, hsa-miR-342-5p, 
hsa-miR-378a-3p, hsa-miR-378a-5p, hsa-miR-486-5p, 
hsa-miR-497-5p and hsa-miR-766-3p) were enriched in 
47 KEGG pathways, 169 Gene Ontology (GO) biological 
processes, 10 GO cellular components and 12 GO molec-
ular functions listed in Table S3 and the top 15 ordered 
by -log10P-value were shown in Fig. 3A. We also analyzed 
309 dysregulated genes using clusterProfiler via Hiplot 
platform separately shown in Fig. 3B.

As a result, the enriched KEGG pathways of dysreg-
ulated miRNAs were frequently associated with sig-
nal transduction such as Wnt signaling pathway, FoxO 
signaling pathway, TGF-beta signaling pathway, Hippo 
signaling pathway, mTOR signaling pathway and MAPK 
signaling pathway, tumorigenesis such as proteoglycans 
in cancer, colorectal cancer, pancreatic cancer, pros-
tate cancer and bladder cancer, endocytosis and fatty 
acid metabolism (full list in Table S3). Lesley M. B et al. 
have reported the positive association with high plasma 
levels of fatty acid which may contribute to colorec-
tal carcinogenesis and its increased synthesis capacity 
on colon cancer risk [12]. Deregulation of these basic 
biological processes such as catabolic process and cell 
motility may explain the molecular mechanisms of tum-
origenesis in CRC.

CMap analysis of dysregulated genes in CRC 
We employed cMap to find potential compounds that 
can disturb the dysregulated gene expression pattern. 

After the query for upregulated tags of 141 genes and 
down regulated tags of 150 genes which was ordered by 
adjusted p-value in TCGA because of the technical limit 
of this tool, 67 compounds, of which the significant nega-
tive raw connectivity score (nraw_cs) and the signifi-
cant negative log10Q-value (fdr_q_nlog10) in CRC cell 
lines (HT1299, HT29 and SW480) were identified as the 
potential drugs for CRC shown in Fig. S1. According to 
our analysis, dabrafenib, trametinib and cobimetinib can 
inhibit the up-regulated genes in CRC. The combination 
of dabrafenib plus trametinib which is a selective MEK 
inhibitor has activity in patients of BRAFV600-mutant 
metastasis CRC [13]. Cobimetinib can inhibit cell prolif-
eration and induce G1 phase arrest and apoptosis in CRC 
cell lines [14].

CMap mode of action (MoA) for 67 drugs tested in CRC 
cell lines revealed 38 mechanisms of action shared by the 
above compounds shown in Fig. S1B. 9 compounds shared 
the MoA of HDAC inhibitor, 5 compounds shared the MoA 
of acetylcholine receptor antagonist, 4 compounds shared 
the MoA as dopamine receptor antagonist, 4 compounds 
shared the MoA as topoisomerase inhibitor, and 4 com-
pounds shared the MoA as histamine receptor antagonist. 
PI3K inhibitor, RAF inhibitor, EGFR inhibitor, and MEK 
inhibitor are shared as the MoA in every 3 compounds.

CMap target analysis revealed 131 drug-target genes 
shared by 67 compounds shown in Fig. S1B. Nineteen 
genes are common targets of 16 different compounds-
namely, CYP3A4 (3 drugs), KDR (3 drugs), AHR (2 
drugs), AKT1 (2 drugs), CDK2 (2 drugs), CHEK1 (2 
drugs), CYP2C19 (2 drugs), GSK3B (2 drugs), HRH1 (2 
drugs), LCK (2 drugs), MAPK1 (2 drugs), MAPK14 (2 
drugs), PDGFRB (2 drugs), PIK3CB (2 drugs), PIK3CG (2 
drugs), RAF1 (2 drugs), TOP2A (2 drugs).

We observed similar mechanisms of action among dif-
ferent compounds that can target the dysregulated genes 
and as the possible therapeutic strategies in CRC.

Screening of negative miRNA/mRNA regulatory pairs 
associated with CRC .

First, the experimentally validated target mRNAs of 19 
differentially expressed miRNAs were selected by miR-
tarbase and Tarbase. 250 miRNA (up)—mRNA (down) 
pairs and 343 miRNA (down)—mRNA (up) pairs were 

(See figure on next page.)

Fig. 3 GO and KEGG pathway analysis show the associated function of the target genes of dysregulated miRNAs in CRCs. A Left: The top 15 
enriched KEGG pathways and the combination of GO terms including the top 15 GO biological processes, 5 cellular components and 5 molecular 
functions for 7 upregulated miRNAs ordered by -log10P-value in CRC. Right: The top 15 enriched KEGG pathways and the combination of GO 
terms including the top 15 GO biological processes, 5 cellular components and 5 molecular functions for 12 downregulated miRNAs ordered 
by -log10P-value in CRC. B Left: The top 15 enriched GO terms and KEGG pathways for 168 upregulated mRNAs ordered by adjust p-value in CRC. 
Right: The enriched GO terms for 141 downregulated mRNAs ordered by adjust p-value in CRC. There is no result for KEGG pathways using 
“R-clusterProfiler” by Hiplot platform
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Fig. 3 (See legend on previous page.)
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screened after intersections of DEGs between 309 DEGs  
and two databases shown in Fig.  2B. Then, we filtered 
out 11 miRNA-mRNA pairs with significant nega-
tive correlation (adjusted p-value < 0.05, adjusted by  
Benjamini–Hochberg (BH) method) in TCGA listed in 
Table  2 and full statistical results were listed in Table 
S4. Then we validated the correlation of 11 miRNA-
mRNA pairs including 5 DEMs and 10 DEGs in 6 GEO 
datasets (GSE35602, GSE41015, GSE126095, GSE33122, 
GSE81582, GSE128449) listed in Table S5. In addi-
tion, we conducted the Kaplan–Meier survival analysis 
for predicting the prognostic value of these signatures. 
In the TCGA training set, we built a prognostic classi-
fier using the LASSO Cox regression model, based on 
the association between the expression of miRNAs and 
mRNAs and the patients’ overall survival. The partial 
likelihood deviance (binomial deviance) curve was plot-
ted versus log(λ) through tenfold cross-validation in Fig. 
S6A and the LASSO coefficient profile of prognostic sig-
natures was plotted in Fig. S6B. Using the LASSO selec-
tion model, we built a classifier consists of two miRNA/
mRNA negative pairs: hsa-miR-139-5p /STC1 and hsa-
miR-20a-5p/FGL2 based on the best lambda (λ) which is 
0.0220581.

Validation of miRNAs and mRNAs expression in CRC tissues
In order to investigate whether 5 DEMs and 10 DEGs 
are differentially expressed in CRC versus normal tis-
sues, we analyzed their expression in 80 matched-pairs 
of tumoral and adjacent normal tissues with ploy(A) 
RT-PCR. Three significant upregulated miRNAs in CRC 
were miR-17-3p (FDR < 0.0001, FC = 2.33), miR-182-5p 
(FDR < 0.0001, FC = 2.16) and miR-20a-5p (FDR = 0.022, 
FC = 2.31) and only miR-139-5p was downregulated 

in CRC (FDR < 0.0001, FC = 0.43) shown in Fig.  4A. 
Two significant downregulated genes in CRC were 
FGL2 (FDR = 0.017, FC = 0.44) and CA1 (FDR = 0.025, 
FC = 0.41) and STC1 was significantly overexpressed 
in CRC (FDR = 0.002, FC = 2.43) also shown in Fig. 4A. 
We conducted the Pearson’s correlation for interac-
tions of DEMs and DEGs that miR-20a-5p was signifi-
cant associated with FGL2 (FDR = 0.0215, r = -0.3817). 
We also found the moderately negative correlation 
between miR-139-5p and STC1 in gene expression level 
(FDR = 0.0264, r = -0.4137) shown in Fig.  4B (see full 
results in Table 2).

IHC images in the HPA database evidenced higher 
expression of STC1 in CRC cells than in normal colo-
nocytes and lower expression of FGL2 in CRC cells 
than in normal colonocytes shown in Fig. 5.

Evaluation of predictive value of miRNA‑mRNA regulator 
pairs in CRC 
The logistic regression analysis was used to evaluated 
the predictive value of a panel including 2 miRNA-
mRNA regulator pairs: miR-139-5p/ STC1 and miR-
20a-5p/ FGL2 in testing cohorts GSE35602, GSE126095 
and GSE12844, and validation cohort containing 80 
CRC tissues by qRT-PCR. Receiver operating charac-
teristic (ROC) curves, calibration curve and decision 
curve analysis (DCA) for models were plotted in Fig. 6.

The areas under the curve (AUC) of a complex model 
(miR-139-5p + STC1 + miR-20a-5p + FGL2) were 0.98 
(95% CI: 0.9583 to 1.000, p < 0.001) in GSE126095, 
0.9127 (95% CI: 0.7972 to 0.9713, p = 0.0027) in 
GSE128449, 0.8088 (95% CI: 0.6402 to 0.9774, 
p = 0.0144) in GSE35602 and 0.9049 (95% CI: 0.8463 
to 0.9636, p < 0.0001) validated by qRT-PCR shown in 

Table 2 Pearson’s correlation analysis of miRNA-mRNA pairs in colorectal cancers in TCGA 
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Fig. 6A. The calibration curves for the model in 3 testing 
cohorts and validation cohort were shown in Fig. 6B.

We used DCA to verify the clinical applicability of 
15 models, of which 1 model containing all 4 signa-
tures (miR-139-5p, STC1, miR-20a-5p and FGL2), 4 
models containing 3 signatures, 6 models containing 

2 signatures and 4 models containing 1 signature by 
quantifying the net benefits at different threshold prob-
abilities. The decision curves in both the external vali-
dation cohort and two testing cohorts GSE128449 and 
GSE35602 showed that the complex model based on 4 
signatures (the red line shown in Fig. 6C) could predict 

Fig. 4 Validating the expression of 5 differentially expressed miRNAs and 11 differentially expressed mRNAs by RT-qPCR. A The miRNA expression 
levels of miR-182-5p, miR-20a-5p, miR-17-3p were upregulated in CRCs, while the miR-139-5p was downregulated in CRCs. The mRNA expression 
levels of CHP2 and STC1 were upregulated, while FGL2 and CA1 were downregulated in CRCs. B Pearson’s correlation analysis of miRNA-mRNA 
regulatory pairs in 80 paired samples. Four negative correlated miRNA-mRNA regulatory pairs were plotted. Data are presented as mean ± SEM. 
*p.adj < 0.05, **p.adj < 0.01 and ***p.adj < 0.001 (Student’s t-test). p-values are listed in Table 3

Table 3 Pearson’s correlation analysis of miRNA-mRNA pairs in FFPE colorectal cancer samples
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the colorectal cancer much better than other 14 models 
if the threshold probability was between 0–0.60 (in the 
testing cohort GSE128449, the threshold probability 
was between 0 and 0.33).

Association analysis of clinical pathological features 
and miRNA/mRNA expression level in CRC 
Clinical pathological data of CRC patients were sum-
marized in Table  4. The anatomical site of the lesion 
was in the right colon in the majority of the cases (48, 
60%). KRAS mutation was found in almost half of the 
patients (51.25%) and BRAF mutation was found in 
10% of the cases. Because our clinical samples had no 
enough clinical information, we evaluated miRNAs 
and mRNAs expression levels in multiple subgroups 
in TCGA-CRC RNA-Seq data shown in Fig. S3A-F. 
Receiver operating characteristic (ROC) curve was 
used to find the best cutoff which was as the basis for 
grouping of expression levels of miRNAs and mRNAs 
shown in Fig. S2. MiR-139-5p overexpression was asso-
ciated with the stage of CRC and age (FDR = 0.0056, 
FDR = 0.0066, respectively). The expression level of 
FGL2 was significantly upregulated in microsatellite 
instable (MSI) CRC versus microsatellite stable (MSS) 
CRC (FDR = 0.013).

We evaluated the association of the expression level of 
2 miRNA-mRNA regulatory pairs which were detected 
to be differentially expressed in CRC versus normal tis-
sue and gene mutations in BRAF gene and 3 Ras family 
oncogenes HRAS, KRAS and NRAS. The level of miR-
139-5p was found to be higher in HRAS wild-type CRC 
tissues than HRAS-mutated CRC tissues (FDR = 0.030, 
FC = 3.33). The level of miR-20a-5p was upregulated and 
FGL2 was downregulated in BRAF wild-type CRC tis-
sues versus BRAF-mutated CRC tissues (FDR = 0.004, 
FC = 2.05; FDR = 0.026, FC = 0.33, respectively) shown 
in Fig. S3F (all results listed in Table S6).

As shown in Table S7, human cancer metastasis data-
base (HCMDB) was analyzed that miR-20a-5p by tar-
geting FGL2 and miR-139-5p by targeting STC1 could 
play a role mainly in liver metastatic CRC.

Analysis of overall survival
Since our clinical tissue samples and the GEO data had 
no clinical information, the survival analysis was con-
ducted in TCGA data. The Hazard ratio (HR) of differ-
ent clinical features in TCGA testing set (n = 239) was 
estimated by univariate and multivariate cox regression 
analysis. As shown in Table 5 STC1 expression was sig-
nificantly correlated with the overall survival (OS) with 

Fig. 5 Immunohistochemistry images of STC1 and FGL2 in CRCs and NCs from HPA database. A Low immunostaining of STC1 in normal colon 
endothelial cells (antibody HPA023918); (B) Medium immunostaining of STC1 in CRC cells (antibody HPA023918); (C) Medium immunostaining 
of FGL2 in normal colon endothelial cells (antibody HPA026682); (D) Immunostaining of FGL2 was not detected in CRC cells (antibody HPA026682)
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hazard ratio of 1.316 (95% CI: 1.224 to 2.393, p = 0.024) in 
TCGA. The result showed that gender and stage could be 
as independent risk factors for CRC (HR: 1.649, 95%CI: 
1.113 to 3.02, p = 0.032; HR: 1.91, 95%CI: 1.422 to 2.813, 
p = 0.011, respectively). We don’t have extra survival 
data to estimate prognostic model and more research is 
required about the prognostic value of 2 miRNA-mRNA 
regulatory pairs in CRC.

Kaplan–Meier (K-M) survival for multiple subgroups 
in TCGA were carried out at least avoiding curves cross. 
As shown in Fig. S4, the horizontal axis indicated the 
overall survival time in days, and the vertical axis indi-
cates the survival probability. We found that high expres-
sion of STC1 was associated with poor overall survival in 
patients with colorectal carcinoma.

We also calculated risk scores of each patient in 
TCGA-COAD based on expression levels and risk coef-
ficients of hsa-miR-139-5p /STC1 and hsa-miR-20a-5p/
FGL2 based on the LASSO Cox regression analysis 
above. The equation Risk score (TCGA testing set) = hsa-
miR-139-5p ∗  (-0.10571) + STC1 ∗ (0.01165) + hsa-
miR-20a-5p ∗ (0.06809) + FGL2 ∗ (-0.05036) shows the 
formulae for calculating the risk score for TCGA testing 
set. The cohort were divided into the high-risk and low-
risk group according to the median risk score. We found 
that colorectal cancer patients in the high-risk group had 
a shorter overall survival than patients in the low-risk 
group (log-rank p = 0.0007, HR = 2.137, 95%CI: 1.388 to 
3.289) shown in Fig. S6C.

A C

B

Fig. 6 Receiver operating characteristic (ROC) curves, calibration curve and decision curve analysis (DCA) of the complex predictive model 
including 4 signatures (miR-139-5p, STC1, miR-20a-5p and FGL2) to distinguish CRC samples from normal samples. A ROC curves of the complex 
predictive model in testing datasets GSE126095, GSE128449 and GSE35602, and external validation cohort. B Calibration curve of the complex 
predictive model in testing datasets and validation cohort. C The decision curve analysis of 15 models, of which a complex predictive model 
containing all 4 signatures (miR-139-5p, STC1, miR-20a-5p and FGL2), 4 models containing 3 signatures, 6 models containing 2 signatures and 4 
models containing 1 signature
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Analysis of tumor‑related phenotypes associated 
with signatures
We applied an established computational method (CIB-
ERSORT) to bulk gene expression profiles of colorectal 
cancer to infer the proportions of 22 subsets of immune 
cells. As shown in Fig. S5A, there were 12 types of 
immune cells differentially expressed in CRC versus con-
trol (all results listed in Table S8). We further investigated 
associations between each cell type and miRNA/ target 
mRNA expression using Spearman’s correlation. “\” was 
placed through the cell when padj (BH) value > 0.05 in Fig. 
S5B-C. The levels of miR-20a-5p and target gene FGL2, 

and miR-139-5p and target gene STC1 were significantly 
correlated with M1/M2 macrophages shown in Fig. S5B. 
MiR-139-5p and target gene STC1 were also associated 
with activated memory  CD4+T cells and plasma cells. In 
our study, 2 miRNA-mRNA regulatory pairs could inter-
act with DNA methylation, tumor immunity and inflam-
mation in the tumor microenvironment shown in Fig. 
S5C. According to our analysis, the high expression level 
of FGL2 could lead to the high tumor mutation burden. 
This result was consistent with the analysis of gene muta-
tion status above that FGL2 was upregulated in MSI CRC 
and BRAF-mutated CRC shown in Fig. S1.

Table 4 Clinicopathological and molecular features of colorectal cancer patients
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Discussion
MicroRNAs which can act as regulators of target genes’ 
expression and regular biological processes, molecular 
functions and cellular components had been reported 
to be critical for the progression of cancers by influenc-
ing cell proliferation, cell invasion and tumor metastasis. 
Combination of miRNAs and mRNAs have a potential 
clinical value in diagnosis, prognosis and treatment effi-
cacy in colorectal cancer. Identifying the miRNA-mRNA 
regulatory networks and elucidate their complex roles in 
immune function, tumorigenesis and molecular mecha-
nisms has a profound meaning.

These regulatory pairs of miRNA-mRNA differed 
in different cancers presenting the disease-specific 
expression profiles. Nowadays, various bioinformat-
ics approaches are used as screening tools to identify 
miRNA-mRNA regulatory pairs such as computational 
target prediction. Accurately predicting miRNA tar-
gets remains challenging due to factors such as imper-
fect sequence specificity, target site availability and the 
thermodynamic stability of the structure of mRNA itself 
[15]. In our research, we conducted the Pearson’s corre-
lation analysis of the miRNAs and target mRNAs in six 
GEO datasets which examined the expression values of 
miRNAs and mRNAs from the same patient shown in 
the Table S5. We found the correlation coefficients of 
two negative miRNA-mRNA regulatory pairs were low 
in FFPE tissue samples by RT-qPCR. One reason is per-
haps that repeated washing, centrifugation, purifica-
tion and other steps can cause a considerable amount of 
nucleic acid loss and increase the possibility of nucleic 
acid fragmentation and hydrolysis. The half-live of 
mRNAs was 16.4  h which were shorter than circRNAs 
(24.56 ± 5.2  h), lncRNAs (17.46 ± 3.0  h) and miRNAs 

(16.42 ± 4.2  h) in blood samples by Chong.W et  al. [16]. 
The coding DNA sequence length, %GC content, and 
3’UTR length were found that might be associated with 
the transcript degradation rates by Romero et  al. [17]. 
The findings of the Li et  al.were that cytidine-contain-
ing poly(A) tails can substantially enhance the protein 
production rate and duration of synthetic mRNAs [18]. 
Another reason may be that the Pearson correlation 
captures only linear dependency between expression of 
mRNA and miRNA. The correlation network between 
miRNA and mRNA can be more complex. We screened 
the target genes of potential DE-miRNAs using TarBase 
and miRTarBase, which contain experimentally veri-
fied miRNA/ target-gene pairs. The direct interaction 
between hsa-miR-139-5p and STC1 is validated using 
crosslinking immunoprecipitation (CLIP), coupled with 
high throughput sequencing (HITS-CLIP) by Karginov 
FV et  al. [19]. The direct interaction between hsa-miR-
20a-5p and FGL2 is validated using photoactivatable 
ribonucleoside enhanced CLIP (PAR-CLIP) by Gottwein, 
Eva et al. [20]. There are other experimental procedures 
using high-throughput sequencing for verifying the 
authenticity of the identified miRNA-mRNA regulatory 
pairs such as crosslinking, ligation, and sequencing of 
hybrids (CLASH), biotin-Microarrays and western blot. 
Alternatively, there are additional methodologies that 
DIANA-microT-CDs [21] is based on PAR-CLIP data 
and DeepMirTar tool [22] is based on stacked de-nois-
ing auto-encoders at the site level, LeMoNe [23] which 
are similarity-based methods contains the high intrinsic 
correlation between miRNA and mRNA, and DIABLO 
[24] is built on canonical correlation analysis (CCA) [25] 
which describes the strength of the linear dependence in 
terms of the best low-dimensional linear projections of 

Table 5 Univariate and multivariate analysis of overall survival in colorectal cancer patients
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two variables, matrix factorization such as the Joint and 
Individual Variation Explained (JIVE) [26], Multi-Omics 
Factor Analysis (MOFA) [27], and the Independent com-
ponent analysis (ICA) [28]. Therefore, it is essential that 
the comprehensively and precisely dissection of miRNA-
mRNA associations need to combine results obtained by 
different methodologies such as miRNA targets identi-
fication, experimentally validated miRNA targets data-
bases, miRNA targets prediction based on binding sites 
and deep learning algorithms developing for integration 
of miRNA and mRNA expression data. Despite strengths 
and weaknesses characterizing each strategy, the accu-
racy of these prediction tools can be improved only by 
obtaining more experimentally validated expression pro-
file data. Identifying the miRNA-mRNA regulatory pairs 
which have good accuracy will aid to deepen the under-
standing of miRNA functions in tumor development and 
tumorigenesis.

Conclusions
We performed extensive analysis of miRNA-mRNA regu-
latory pairs in CRC versus adjacent normal tissue. In 83 
GEO datasets, the expression profiles of miRNAs and 
mRNAs were screened using GEO2R, “R-limma” and 
“R-edgeR”. Then, combination of TCGA data and GTEx 
data from normal tissues was used to identify the candi-
date DEMs and DEGs which were compared with results 
of 4 cancer-related databases (miRCancer, dbDEMC, 
HMDD and HColonDB) simultaneously. Through the 
muti-step method, 19 differentially expressed miRNAs 
and 309 differentially expressed mRNAs were identified.

Function analysis and cMap analysis were conducted 
that candidate DEMs and DEGs which were screened 
from TCGA, GEO, GTEx and 4 databases were associated 
with classic cancer-related signaling pathways such as Wnt 
signaling pathway, TGF-beta signaling pathway and mTOR 
signaling pathway. Notably, fatty acid metabolism which is 
the enriched KEGG pathways has been paid enough atten-
tion to so far. High-fat diet (HFD) which is risk factor for 
cancers promotes regeneration capacity and tumorigenesis 
by enhancing intestinal stem cell (ISC) located at the base 
of intestinal crypts and cell proliferation [29]. The find-
ings of MEK inhibitors trametinib and cobimetinib, and 
BRAFV600-mutatant-related dabrafenib considered as 
therapeutic strategies of cancers demonstrated the impor-
tance of 309 dysregulated genes in colorectal cancer.

In this study, we adopted the strict criterion to iden-
tify vital miRNA-mRNA regulatory pairs. Briefly, 
the target mRNA of DEMs should be differentially 
expressed, significant negative correlated with DEM 
regulator by Pearson’s correlation, and further vali-
dated by two databases containing experimentally 
validated miRNA-target interactions, miRTarbase and 

Tarbase. At first, 250 miRNA (up)—mRNA (down) 
pairs and 343 miRNA (down)—mRNA (up) pairs were 
screened after intersections of DEGs between 309 
DEGs and two databases shown in Fig.  2B. Then, we 
filter out 11 significantly negative correlated miRNA-
mRNA pairs (adjusted p-value < 0.05) which were also 
estimated in 6 GEO datasets listed in Table 2 and Table 
S5. We further detected the expression level of 11 
miRNA-mRNA regulatory pairs in 80 pairs FFPE colon 
tissues by poly(A) qRT-PCR.

Ultimately, two pivotal negative correlated miRNA-
mRNA regulatory pairs (miR-20a-5p/ FGL2 and miR-
139-5p/ STC1) were considered for inclusion in the 
logistic regression model. The following analysis will 
support the predictive value of miRNA-mRNA pairs. 
On one hand, receiver operating characteristic (ROC) 
curve was used to evaluate a total of 15 randomly com-
binations of 4 signatures and calibration curve was 
used to estimate the calibration performance of the 
complex model including 4 signatures. On other hand, 
we used decision curve analysis (DCA) to evaluate 
clinical utility of 15 models. The complex model (miR-
139-5p + STC1 + miR-20a-5p + FGL2) was the best 
predictive model when compared with other 14 combi-
nations in 2 testing cohorts GSE35602 and GSE12844, 
and the validation cohort containing 80 CRC tissues. 
Some researchers have reported the functional role for 
miR-139-5p in breast cancer cell motility and invasion 
[30], in colorectal cancer epithelial-mesenchymal tran-
sition [31] and cell proliferation [32], and in cervical 
cancer cell proliferation and migration [33]. Compared 
with previous studies on the miRNA expression profile 
of CRC, it has the possibility to serve as a molecular 
therapeutic target and prognostic marker in colorectal 
cancer (CRC) [34], tongue squamous cell carcinoma 
(TSCC) [35], breast cancer (BC) [36], glioblastoma 
multiforme (GBM) [37] and non-smalll cell lung can-
cer (NSCLC) [38]. MiR-20a-5p belongs to the miR-
17–92 cluster which is reported to be overexpressed in 
hepatocellular carcinoma (HCC) [39], triple-negative 
BC [40], renal cell carcinoma (RCC) [41] and CRC in 
many studies including our research. According to 
recent studies, it is also linked to cell proliferation, 
activation of monocyte/macrophage lineage, B cells, 
Th1, Th2, Th17 and TFH cells in innate and adaptive 
immunity [42]. FGL2, MAPK-mediated upregulation 
of fibrinogen-like protein 2, was downregulated in 
CRC tissues. The knockdown of FGL2 can reduce the 
proliferation, migration and invasion in CRC cell lines 
[43]. STC1, secreted glycoprotein stanniocalcin-1, is 
the mediator of metastasis by platelet-derived growth 
factor (PDGF) related to cancer-associated fibroblasts 
(CAF) in CRC [44].
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We summarized the clinical pathological features in 
TCGA and miR-139-5p was found to be differentially 
expressed in stage I-II versus stage III-IV, while the high 
expression of FGL2 was associated with microsatellite 
instability in CRC. HRAS mutation status and BRAF muta-
tion status were confirmed to interact with the expression 
level of miR-139-5p and FGL2, respectively. In metasta-
sis CRC versus controls, two pivotal negative correlated 
miRNA-mRNA regulatory pairs (miR-20a-5p/ FGL2 and 
miR-139-5p/ STC1) could be considered to associate with 
tumor metastasis in CRC. High STC1 expression is a signif-
icant independent predictor of poor survival in colorectal 
cancer by SHUZO T et al. [45]. Although STC1 wasn’t cor-
related with the OS of CRC in validation set (n = 71) (HR: 
1.025, 95%CI: 0.468 to 2.244, p = 0.952) and Kaplan–Meier 
(K-M) survival curves didn’t give any indication about 
the influence of STC1 expression in overall survival, we 
couldn’t rule out the prognostic value of STC1. However, 
a detailed analysis could not be performed due to insuffi-
cient information and there is ambiguity in the prognostic 
value of two miRNA-mRNA regulatory pairs in CRC. MiR-
20a-5p by targeting FGL2 and miR-139-5p by targeting 
STC1 could have an impact on tumor microenvironment 
by interacting with tumor-related inflammation and infil-
tration of macrophages and  CD4+T cells. Especially, FGL2 
which was upregulated in MSI CRC and BRAF-mutated 
CRC could lead to high tumor mutation burden.

Methods
Data acquisition and processing of miRNA and gene 
expression profiles
The Cancer Genome Atlas (TCGA) colon adenocar-
cinoma (COAD) and rectal adenocarcinoma (READ) 
miRNA and mRNA sequencing expression profiles and 
associated clinicopathological data were downloaded 
from the GDC data portal at the National Cancer Insti-
tute (https:// portal. gdc. cancer. gov/). There is no apparent 
difference between colon and rectal samples validated by 
Principal component analysis (PCA) and merging sam-
ples is no need to adjust [46]. So, we combined TCGA-
COAD and TCGA-READ samples into a single colorectal 
adenocarcinoma (COADREAD or CRC) cohort. GTEx 
data were obtained from UCSC Xena browser which is 
a combined cohort of TCGA, TARGET and GTEx sam-
ples (https:// xenab rowser. net/ datap ages/). We processed 
the data from GTEx and TCGA using perl. A total of 453 
tumor tissue samples, 41 normal samples from TCGA 
and 308 normal samples from GTEx were included in this 
article. Then we searched colorectal cancer relevant gene 
microarray expression datasets and high-throughput 
sequencing expression datasets from the Gene Expres-
sion Omnibus (GEO) database (http:// www. ncbi. nlm. 
nih. gov/ geo/) with the following keywords: “colorectal 

cancer”. Filters were set to “series” and “Expression pro-
filing by array”, “Expression profiling by high-throughput 
sequencing”, “Non-coding RNA profiling by array”, “Non-
coding RNA profiling by high-throughput sequencing” 
and “Homo sapiens”. We also collected differentially 
expressed miRNAs in 3 databases: miRCancer [47], 
Database of Differentially Expressed MiRNAs in human 
Cancers (dbDEMC) [48], Human MicroRNA Disease 
Database (HMDD) [49] and genes in Human Colon  
cancer Database (HColonDB) [50]. RNA-Seq data 
were analyzed by “edgeR” R package. The differentially 
expressed genes (DEGs) and differentially expressed 
miRNAs (DEMs) were obtained from microarray expres-
sion profiles using the web analysis tool GEO2R, which 
is used to compare groups of samples by the GEOquery 
and limma R packages from the Bioconductor project 
in the GEO database (http:// www. ncbi. nlm. nih. gov/ 
geo/ geo2r/). The cut-off criteria were adjusted p-value 
(FDR) < 0.05 and |log2 (fold change) |≥ 1.

Identification and function analysis of miRNA/target-
gene pairs .

Firstly, we screened the target genes of potential DE-
miRNAs using TarBase and miRTarBase, which contain 
experimentally verified miRNA/ target-gene pairs. Then 
the expression correlation between miRNA-mRNA with 
negative correlations identified from the above databases 
was evaluated using Pearson’s correlation. Visualization 
of the miRNA-mRNA negative regulatory network was 
conducted using Cytoscape software (v3.8.0) [51]. Gene 
ontology (GO) functional analysis and a Kyoto Ency-
clopedia of Genes Genomes (KEGG) pathways analysis 
[52] against the DEGs and DEMs in the network were 
performed by using DAVID-mirPath which is a miRNA 
pathway analysis web-server [53] and the clusterProfiler 
tool in Hiplot (https:// hiplot. com. cn), a comprehen-
sive web platform for scientific data visualization [54]. 
Adjusted p-value (FDR) < 0.05 was considered to indi-
cate a statistically significant difference of enriched GO/
KEGG terms.

Connectivity map analysis of potential compounds 
capable of targeting the differentially expressed genes
We employed the Connectivity Map (cMap) analysis by 
querying dysregulated genes (at least 10 genes) in colorectal 
cancers versus normal controls for discovering candidate 
compounds that might target pathways related to CRC via 
clue.io software platform (https:// clue. io/ query). The nor-
malized connectivity score (norm_cs) ranging from -3 to 
3 was used to estimate the closeness between up-regulated 
genes and compounds. The positive score ranging from 0 
to 3 indicated a promotive effect of compound on the up-
regulated genes. Negative log10 transformed FDR q-values 
(fdr_q_nlog10) > 2 was set as the filter condition.

https://portal.gdc.cancer.gov/
https://xenabrowser.net/datapages/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
https://hiplot.com.cn
https://clue.io/query
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Survival analysis
Univariate and multivariate Cox regression analyzed by 
“survival” package (http:// cran.r- proje ct. org/ web/ packa 
ges/ survi val/ index. html) [55]. The hazard ratio (HR) and 
95% confidence interval (CI) were estimated. Kaplan–
Meier method was also used to calculate overall sur-
vivals, and the log-rank test analyzed the differences. P 
value < 0.05 was the significant cutoff.

Evaluation of interactions of miRNA‑mRNA pairs 
and tumor‑relative phenotypes and gene mutation status
The fraction of 22 infiltrating immune cell types was 
calculated using CIBERSORT, a gene-based decon-
volution algorithm (https:// ciber sort. stanf ord. edu/ 
index. php/) [56]. The differences of these immune 
cells between TCGA-CRCs and normal controls were 
compared via the Wilcoxon rank-sum test. ESTI-
MATE software based on the mRNA-seq data was 
used to estimate the stromal and immune levels for 
TCGA-CRC samples [46]. The methylation levels of 
the CpG sites in TCGA-COAD and TCGA-READ 
samples were obtained using UCSC Xena platform 
(https:// xena. ucsc. edu/) detected by the Illumina 
Infinium HumanMethylation450 BeadChips plat-
form, which covered 485,577 CpG loci. The sum 
of the methylation levels of all 485,577 CpG sites in 
each sample was calculated as overall DNA meth-
ylation level. Tumor mutational burden (TMB) was 
used to measure the total number of somatic variants 
per megabase (MB) of the genome. Masked Somatic 
Mutation data (varscan. Somatic. Maf ) were obtained 
using the “maftools”in R package [57]. We used 
38  Mb as the estimate of the exome size. TMB esti-
mate for each sample is equal to the total mutation 
frequency/38. TCGA-CRC samples were grouped into 
wild-type and mutated in RAS genes family KRAS, 
HRAS, NRAS and BRAF based on TCGA-COAD and 
TCGA-READ somatic mutation datasets obtained 
from UCSC Xena.

Sample collection and RNA isolation
80 paired formalin-fixed paraffin-embedded (FFPE) 
CRC tissues and corresponding adjacent normal tissues 
were obtained from patients who underwent surgery at 
the First Affiliated Hospital of Nanjing Medical Univer-
sity. All samples used in this study were collected with 
patients’ consent. The present study has been approved by 
the institutional ethics committee and the patients writ-
ten informed consent has been obtained (ID: 2016-SRFA-
148). The clinical characteristics of the 80 colorectal cancer 
patients are showed in Table 4. Total RNA was extracted 
from FFPE tissues using RNAprep Pure FFPE Kit (TIAN-
GEN) according to the manufacturer’s instructions. RNA 

concentrations were measured with NanoDrop ND-1000 
spectrophotometer (Thermo Fisher Scientific).

Quantitative reverse transcription PCR (qRT‑PCR) assay
Selected DEGs and DEMs were verified by qRT-PCR 
using PrimeScript RT reagent Kit (Takara) and SYBR 
Premix Ex Taq II (Takara) after adding a poly(A) tail to 
RNA by Poly(A) Polymerase Kit (Takara). All kits were 
used according to the manufacturer’s protocol. The 
PrimeScript RT reagent Kit and SYBR Premix Ex Taq 
II kit contain the commercial Uni-RT primer and Uni-
Reverse primer. The PCR reactions were carried out in 
final volumes of 10 μL on the  qTOWER3 84 (Analytik 
Jena) at 95 °C for 20 s, followed by 40 cycles of 10 s at 
95 °C, 20 s at 60 °C. The sequences of PCR primers are 
listed in the Table S1. RUN6B (U6), GAPDH and 18S 
rRNA were considered as reference genes for normali-
zation, and the comparative cycle threshold  (2−△△Ct) 
method was used to analyze the relative expression of 
miRNAs and genes by Livak KJ et al. [58].

Statistical analysis
IBM SPSS Statistics v.26 software (IBM Corpora-
tion, Armonk, NY, USA), R language v3.6.3 (https:// 
cran.r- proje ct. org/) or GraphPad Prism software were 
used to analyze the data. Continuous variables were 
reported using the mean and standard deviation (SD). 
Student’s t-tests were performed, and p-values and 
adjusted p-values were calculated. MiRNA and gene 
with a |log2FC|> 0.58, P < 0.05 and FDR (False Dis-
covery Rate) < 0.05were considered to be statistically 
significant. The association between the expression 
of miRNAs and genes was analyzed by Pearson’s cor-
relation in MSI and MSS CRC tissues. The predictive 
value of miRNA-mRNA pairs was assessed by the area 
under the ROC curves (AUC) which is used to evalu-
ate the discrimination of the model, and calibration 
curve which is used to evaluate the accuracy of the 
model. P < 0.05 was considered statistically signifi-
cant. Decision curve analysis (DCA) based on Logis-
tic regression is used to verify the clinical applicability 
of the model. Pearson’s correlation method was used 
to calculate correlation between DEGs or DEMs and 
all tumor-related phenotypes. OS was defined as the 
interval from surgery to the date of death. Survival 
curves plotted by the Kaplan–Meier method were ana-
lyzed by the log-rank test and p < 0.05 was regarded as 
statistically significant. Cox regression analyses were 
performed and the hazard ratio (HR) and 95% confi-
dence interval (CI) were calculated to identify sta-
tistically significant DEGs or DEMs (p-value < 0.05) 
associated with survival. We draw plots using R v3.6.3, 
GraphPad Prism and Hiplot software.

http://cran.r-project.org/web/packages/survival/index.html
http://cran.r-project.org/web/packages/survival/index.html
https://cibersort.stanford.edu/index.php/
https://cibersort.stanford.edu/index.php/
https://xena.ucsc.edu/
https://cran.r-project.org/
https://cran.r-project.org/


Page 17 of 19Liu et al. BMC Genomics          (2023) 24:724  

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12864- 023- 09635-4.

Additional file 1: Fig. S1. Connectivity map potential compounds and 
mechanisms of action analysis of differentially expressed genes based 
on clue.io software platform. Fig. S2. ROC curves for miRNAs and target 
mRNAs to calculate the best cutoff value for the clinical pathological 
features analysis and survival analysis of colorectal cancers. Fig. S3. 
MiRNAs and target mRNAs expression level analysis in subgroups based 
on clinical pathological features of colorectal cancer patients in TCGA. 
Fig. S4. Kaplan-Meier survival analysis for differentially expressed miRNAs 
and target mRNAs in colorectal cancer. Fig. S5. The association between 
immune-related phenotypes and miRNAs/ target mRNAs expression lev-
els in colorectal cancer. Fig. S6. Potential prognostic predictors selection 
using LASSO Cox regression model and Kaplan-Meier survival curves for 
CRC patients with high-risk group and low-risk group which show statisti-
cally significant difference. 

Additional file 2: Table S1. The sequences of primers for candidate 
miRNAs and targeted mRNAs. Table S2. Function annotation and pathway 
enrichment analysis of 7 upregulated microRNAs. Table S3. Function 
annotation and pathway enrichment analysis of 12 downregulated micro-
RNAs. Table S4. Pearson’s correlation of miRNAs and mRNAs which were 
screened from 2 databases (miRTarBase and TarBase) containing experi-
mentally validated miRNA-mRNA regulatory pairs. Table S5. Pearson’s 
correlation analysis of the screened miRNA-mRNA pairs validated in 6 GEO 
datasets. Table S6. Analysis of microRNAs and mRNAs expression level 
in 5 subgroups based on 4 genes mutation status. Table S7. Expression 
analysis for DEMs and DEMGs in metastatic colorectal cancer by HCMDB. 
Table S8. Analysis of CIBERSORT scores of 22 types of immune cells in 
colorectal cancers versus controls.

Acknowledgements
We thank openbiox community and Hiplot team (https:// hiplot. com. cn) 
for providing technical assistance and valuable tools for data analysis and 
visualization.

Authors’ contributions
Conception: Cheng Liu, Chun Yu, Wei Zhu and Wenfang cheng. Interpreta-
tion or analysis of data: Cheng Liu, Chun Yu and Guoxin Song. Preparation 
of the manuscript: Cheng Liu, Chun Yu, Guoxin Song, Xingchen Fan, Shuang 
Peng, Shiyu Zhang, Xin Zhou, Cheng zhang, Xiangnan Geng, Tongshan 
Wang. Revision for important intellectual content: Wei Zhu and Wenfang 
Cheng. Supervision: Wei Zhu and Wenfang Cheng. All authors reviewed the 
manuscript.

Funding
The authors declare that no funds, grants, or other support were received dur-
ing the preparation of this manuscript.

Availability of data and materials
The datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
All procedures performed in studies involving human participants were in 
accordance with the ethical standards of the institutional and/or national 
research committee and with the 1964 Helsinki Declaration and its later 
amendments or comparable ethical standards. The study was approved by 
the Bioethics Committee of the First Affiliated Hospital of Nanjing Medical Uni-
versity. (ID: 2016-SRFA-148). Informed consent was obtained from all individual 
participants included in the study.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Gastroenterology, the First Affiliated Hospital of Nanjing 
Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China. 
2 Department of Pathology, the First Affiliated Hospital of Nanjing Medical 
University, Nanjing 210029, China, Jiangsu. 3 Department of Oncology, the 
First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 
Nanjing 210029, China, Jiangsu. 4 Department of Science and Technology, the 
First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China, 
Jiangsu. 5 Department of Clinical Engineer, the First Affiliated Hospital of Nan-
jing Medical University, Nanjing 210029, China, Jiangsu. 

Received: 20 June 2023   Accepted: 29 August 2023

References
 1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics 2023. CA 

Cancer J Clin. 2023. https:// doi. org/ 10. 3322/ caac. 21763.
 2. Virostko J, Capasso A, Yankeelov TE, Goodgame B. Recent trends in the 

age at diagnosis of colorectal cancer in the US national cancer data 
base, 2004–2015. Cancer. 2019. https:// doi. org/ 10. 1002/ cncr. 32347.

 3. Lopez-Serra P, Esteller M. DNA methylation-associated silencing of tumor-
suppressor microRNAs in cancer. Oncogene. 2012. https:// doi. org/ 10. 
1038/ onc. 2011. 354.

 4. Liu L, Nie J, Chen L, Dong G, Du X, Wu X, Tang Y, Han W. The oncogenic 
role of microRNA-130a/301a/454 in human colorectal cancer via target-
ing Smad4 expression. PLoS ONE. 2013. https:// doi. org/ 10. 1371/ journ al. 
pone. 00555 32.

 5. Luo H, Zou J, Dong Z, Zeng Q, Wu D, Liu L. Up-regulated miR-17 pro-
motes cell proliferation, tumour growth and cell cycle progression by 
targeting the RND3 tumour suppressor gene in colorectal carcinoma. 
Biochem J. 2012. https:// doi. org/ 10. 1042/ BJ201 11517.

 6. Xu Q, Liu LZ, Qian X, Chen Q, Jiang Y, Li D, Lai L, Jiang BH. MiR-145 directly 
targets p70S6K1 in cancer cells to inhibit tumor growth and angiogen-
esis. Nucleic Acids Res. 2012. https:// doi. org/ 10. 1093/ nar/ gkr730.

 7. Zhang H, Li Y, Huang Q, Ren X, Hu H, Sheng H, Lai M. MiR-148a promotes 
apoptosis by targeting Bcl-2 in colorectal cancer. Cell Death Differ. 2011. 
https:// doi. org/ 10. 1038/ cdd. 2011. 28.

 8. Xie Y, Zhang H, Guo XJ, Feng YC, He RZ, Li X, Yu S, Zhao Y, Shen M, Zhu F, 
Wang X, Wang M, Balakrishnan A, Ott M, Peng F, Qin RY. Let-7c inhibits 
cholangiocarcinoma growth but promotes tumor cell invasion and 
growth at extrahepatic sites. Cell Death Dis. 2018. https:// doi. org/ 10. 
1038/ s41419- 018- 0286-6.

 9. Runtsch MC, Round JL, O’Connell RM. MicroRNAs and the regulation of 
intestinal homeostasis. Front Genet. 2014. https:// doi. org/ 10. 3389/ fgene. 
2014. 00347.

 10. Yan L, Zhao W, Yu H, Wang Y, Liu Y, Xie C. A comprehensive meta-analysis 
of MicroRNAs for predicting colorectal cancer. Medicine (Baltimore). 2016. 
https:// doi. org/ 10. 1097/ MD. 00000 00000 002738.

 11. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, Gould J, 
Davis JF, Tubelli AA, Asiedu JK, Lahr DL, Hirschman JE, Liu Z, Donahue M, 
Julian B, Khan M, Wadden D, Smith IC, Lam D, Liberzon A, Toder C, Bagul 
M, Orzechowski M, Enache OM, Piccioni F, Johnson SA, Lyons NJ, Berger 
AH, Shamji AF, Brooks AN, Vrcic A, Flynn C, Rosains J, Takeda DY, Hu R, 
Davison D, Lamb J, Ardlie K, Hogstrom L, Greenside P, Gray NS, Clemons 
PA, Silver S, Wu X, Zhao WN, Read-Button W, Wu X, Haggarty SJ, Ronco LV, 
Boehm JS, Schreiber SL, Doench JG, Bittker JA, Root DE, Wong B, Golub 
TR. A next generation connectivity map: L1000 platform and the first 
1,000,000 profiles. Cell. 2017. https:// doi. org/ 10. 1016/j. cell. 2017. 10. 049.

 12. Butler LM, Yuan JM, Huang JY, Su J, Wang R, Koh WP, Ong CN. Plasma fatty 
acids and risk of colon and rectal cancers in the Singapore Chinese health 
study. NPJ Precis Oncol. 2017. https:// doi. org/ 10. 1038/ s41698- 017- 0040-z.

 13. Corcoran RB, Atreya CE, Falchook GS, Kwak EL, Ryan DP, Bendell JC, Hamid 
O, Messersmith WA, Daud A, Kurzrock R, Pierobon M, Sun P, Cunning-
ham E, Little S, Orford K, Motwani M, Bai Y, Patel K, Venook AP, Kopetz S. 
Combined BRAF and MEK inhibition With Dabrafenib and Trametinib in 

https://doi.org/10.1186/s12864-023-09635-4
https://doi.org/10.1186/s12864-023-09635-4
https://hiplot.com.cn
https://doi.org/10.3322/caac.21763
https://doi.org/10.1002/cncr.32347
https://doi.org/10.1038/onc.2011.354
https://doi.org/10.1038/onc.2011.354
https://doi.org/10.1371/journal.pone.0055532
https://doi.org/10.1371/journal.pone.0055532
https://doi.org/10.1042/BJ20111517
https://doi.org/10.1093/nar/gkr730
https://doi.org/10.1038/cdd.2011.28
https://doi.org/10.1038/s41419-018-0286-6
https://doi.org/10.1038/s41419-018-0286-6
https://doi.org/10.3389/fgene.2014.00347
https://doi.org/10.3389/fgene.2014.00347
https://doi.org/10.1097/MD.0000000000002738
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1038/s41698-017-0040-z


Page 18 of 19Liu et al. BMC Genomics          (2023) 24:724 

BRAF V600-mutant colorectal cancer. J Clin Oncol. 2015. https:// doi. org/ 
10. 1200/ JCO. 2015. 63. 2471.

 14. Gong S, Xu D, Zhu J, Zou F, Peng R. Efficacy of the MEK inhibitor cobi-
metinib and its potential application to colorectal cancer cells, cellular 
physiology and biochemistry : international journal of experimental 
cellular physiology. Cell Physiol Biochem. 2018. https:// doi. org/ 10. 1159/ 
00049 0022.

 15. Roberts JT, Borchert GM. Computational prediction of MicroRNA target 
genes, target prediction databases, and web resources. Methods Mol Biol. 
2017. https:// doi. org/ 10. 1007/ 978-1- 4939- 7046-9_8.

 16. Wang C. Liu, H, Factors influencing degradation kinetics of mRNAs and 
half-lives of microRNAs, circRNAs, lncRNAs in blood in vitro using quanti-
tative PCR. Sci Rep. 2022. https:// doi. org/ 10. 1038/ s41598- 022- 11339-w.

 17. Gallego Romero I, Pai AA, Tung J, Gilad Y. RNA-seq: impact of RNA deg-
radation on transcript quantification. BMC Biol. 2014. https:// doi. org/ 10. 
1186/ 1741- 7007- 12- 42.

 18. Li CY, Liang Z, Hu Y, Zhang H, Setiasabda KD, Li J, Ma S, Xia X, Kuang Y. 
Cytidine-containing tails robustly enhance and prolong protein produc-
tion of synthetic mRNA in cell and in vivo. Mol Ther Nucleic Acids. 2022. 
https:// doi. org/ 10. 1016/j. omtn. 2022. 10. 003.

 19. Karginov FV, Hannon GJ. Remodeling of Ago2-mRNA interactions upon 
cellular stress reflects miRNA complementarity and correlates with 
altered translation rates. Genes Dev. 2013. https:// doi. org/ 10. 1101/ gad. 
215939. 113.

 20. Gottwein E, Corcoran DL, Mukherjee N, Skalsky RL, Hafner M, Nusbaum 
JD, Shamulailatpam P, Love CL, Dave SS, Tuschl T, Ohler U, Cullen BR. 
Viral microRNA targetome of KSHV-infected primary effusion lym-
phoma cell lines. Cell Host Microbe. 2011;10:515. https:// doi. org/ 10. 
1016/j. chom. 2011. 09. 012.

 21. Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis 
T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG. DIANA-
microT web server v5.0: service integration into miRNA functional 
analysis workflows. Nucleic Acids Res. 2013;41:W169. https:// doi. org/ 
10. 1093/ nar/ gkt393.

 22. Wen M, Cong P, Zhang Z, Lu H, Li T. DeepMirTar: a deep-learning 
approach for predicting human miRNA targets. Bioinformatics. 
2018;34:3781. https:// doi. org/ 10. 1093/ bioin forma tics/ bty424.

 23. Bonnet E, Tatari M, Joshi A, Michoel T, Marchal K, Berx G, Van de Peer 
Y. Module network inference from a cancer gene expression data set 
identifies microRNA regulated modules. PLoS ONE. 2010. https:// doi. 
org/ 10. 1371/ journ al. pone. 00101 62.

 24. Singh A, Shannon CP, Gautier B, Rohart F, Vacher M, Tebbutt SJ, Lê Cao 
KA. DIABLO: an integrative approach for identifying key molecular driv-
ers from multi-omics assays. Bioinformatics. 2019. https:// doi. org/ 10. 
1093/ bioin forma tics/ bty10 54.

 25. Canonical Correlation Analysis. In: Applied Multivariate Statistical 
Analysis. Springer, Berlin, Heidelberg 2017; https:// doi. org/ 10. 1007/ 
978-3- 540- 72244-1_ 14

 26. Lock EF, Hoadley KA, Marron JS, Nobel AB. Joint And Individual Varia-
tion Explained (JIVE) for integrated analysis of multiple data types. Ann 
Appl Stat. 2013. https:// doi. org/ 10. 1214/ 12- AOAS5 97.

 27. Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, Buettner 
F, Huber W, Stegle O. Multi-Omics factor analysis-a framework for 
unsupervised integration of multi-omics data sets. Mol Syst Biol. 2018. 
https:// doi. org/ 10. 15252/ msb. 20178 124.

 28. Sompairac N, Nazarov PV, Czerwinska U, Cantini L, Biton A, Molkenov 
A, Zhumadilov Z, Barillot E, Radvanyi F, Gorban A, Kairov U, Zinovyev 
A. Independent component analysis for unraveling the complexity 
of cancer omics datasets. Int J Mol Sci. 2019. https:// doi. org/ 10. 3390/ 
ijms2 01844 14.

 29. Mana MD, Hussey AM, Tzouanas CN, Imada S, Barrera Millan Y, Bahceci 
D, Saiz DR, Webb AT, Lewis CA, Carmeliet P, Mihaylova MM, Shalek AK, 
Yilmaz ÖH. High-fat diet-activated fatty acid oxidation mediates intesti-
nal stemness and tumorigenicity. Cell Rep. 2021;35:109212. https:// doi. 
org/ 10. 1016/j. celrep. 2021. 109212.

 30. Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR, Nones K, Waddell 
N, Mariasegaram M, Simpson PT, Lakhani SR, Vlassov A, Grimmond SM, 
Cloonan N. miR-139-5p is a regulator of metastatic pathways in breast 
cancer. RNA. 2013. https:// doi. org/ 10. 1261/ rna. 042143. 113.

 31. Li Q, Liang X, Wang Y, Meng X, Xu Y, Cai S, Wang Z, Liu J, Cai G. miR-
139-5p inhibits the Epithelial-Mesenchymal transition and enhances 
the chemotherapeutic sensitivity of colorectal cancer cells by down-
regulating BCL2. Sci Rep. 2016. https:// doi. org/ 10. 1038/ srep2 7157.

 32. Zhu M, Zhang W, Ma J, Dai Y, Zhang Q, Liu Q, Yang B, Li G. MicroRNA-
139-5p regulates chronic inflammation by suppressing nuclear 
factor-κB activity to inhibit cell proliferation and invasion in colorectal 
cancer. Exp Ther Med. 2019. https:// doi. org/ 10. 3892/ etm. 2019. 8032.

 33. Ji X, Guo H, Yin S, Du H. miR-139-5p functions as a tumor suppressor in 
cervical cancer by targeting TCF4 and inhibiting Wnt/β-catenin signal-
ing. Onco Targets Ther. 2019. https:// doi. org/ 10. 2147/ OTT. S2157 96.

 34. Miyoshi J, Toden S, Yoshida K, Toiyama Y, Alberts SR, Kusunoki M, 
Sinicrope FA, Goel A. MiR-139-5p as a novel serum biomarker for recur-
rence and metastasis in colorectal cancer. Sci Rep. 2017. https:// doi. 
org/ 10. 1038/ srep4 3393.

 35. Duz MB, Karatas OF, Guzel E, Turgut NF, Yilmaz M, Creighton CJ, Ozen 
M. Identification of miR-139-5p as a saliva biomarker for tongue squa-
mous cell carcinoma: a pilot study. Cell Oncol (Dordr). 2016. https:// 
doi. org/ 10. 1007/ s13402- 015- 0259-z.

 36. Itani MM, Nassar FJ, Tfayli AH, Talhouk RS, Chamandi GK, Itani ARS, 
Makoukji J, Boustany RN, Hou L, Zgheib NK, Nasr RR. A signature of four 
circulating microRNAs as potential biomarkers for diagnosing early-
stage breast cancer. Int J Mol Sci. 2021. https:// doi. org/ 10. 3390/ ijms2 
21161 21.

 37. Wang L, Liu Y, Yu Z, Gong J, Deng Z, Ren N, Zhong Z, Cai H, Tang Z, Cheng 
H, Chen S, He Z. Mir-139-5p inhibits glioma cell proliferation and progres-
sion by targeting GABRA1. J Transl Med. 2021. https:// doi. org/ 10. 1186/ 
s12967- 021- 02880-9.

 38. Yong-Hao Y, Xian-Guo W, Ming X, Jin-Ping Z. Expression and clinical 
significance of miR-139-5p in non-small cell lung cancer. J Int Med Res. 
2019. https:// doi. org/ 10. 1177/ 03000 60518 815379.

 39. Chen Y, Wang X, Cheng J, Wang Z, Jiang T, Hou N, Liu N, Song T, Huang C. 
MicroRNA-20a-5p targets RUNX3 to regulate proliferation and migration 
of human hepatocellular cancer cells. Oncol Rep. 2016. https:// doi. org/ 10. 
3892/ or. 2016. 5144.

 40. Moi L, Braaten T, Al-Shibli K, et al. Differential expression of the miR-17-92 
cluster and miR-17 family in breast cancer according to tumor type; 
results from the Norwegian Women and Cancer (NOWAC) study. J Transl 
Med. 2019. https:// doi. org/ 10. 1186/ s12967- 019- 2086-x.

 41. Chow TF, Mankaruos M, Scorilas A, Youssef Y, Girgis A, Mossad S, Metias S, 
Rofael Y, Honey RJ, Stewart R, Pace KT, Yousef GM. The miR-17-92 cluster 
is over expressed in and has an oncogenic effect on renal cell carcinoma. 
The J Urol. 2010. https:// doi. org/ 10. 1016/j. juro. 2009. 09. 086.

 42. Kuo G, Wu CY, Yang HY. MiR-17-92 cluster and immunity. J Formos Med 
Assoc. 2019. https:// doi. org/ 10. 1016/j. jfma. 2018. 04. 013.

 43. Liu X, Chu Y, Wang D, Weng Y, Jia Z. MAPK-mediated upregulation of 
fibrinogen-like protein 2 promotes proliferation, migration, and invasion 
of colorectal cancer cells. Cell Biol Int. 2019. https:// doi. org/ 10. 1002/ cbin. 
11198.

 44. Peña C, Céspedes MV, Lindh MB, Kiflemariam S, Mezheyeuski A, Edqvist 
PH, Hägglöf C, Birgisson H, Bojmar L, Jirström K, Sandström P, Olsson 
E, Veerla S, Gallardo A, Sjöblom T, Chang AC, Reddel RR, Mangues R, 
Augsten M, Ostman A. STC1 expression by cancer-associated fibroblasts 
drives metastasis of colorectal cancer. Cancer Res. 2013. https:// doi. org/ 
10. 1158/ 0008- 5472. CAN- 12- 1875.

 45. Tamura S, Oshima T, Yoshihara K, Kanazawa A, Yamada T, Inagaki D, Sato 
T, Yamamoto N, Shiozawa M, Morinaga S, Akaike M, Kunisaki C, Tanaka 
K, Masuda M, Imada T. Clinical significance of STC1 gene expression in 
patients with colorectal cancer. Anticancer Res. 2011;31:325–9.

 46. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-
Garcia W, Treviño V, Shen H, Laird PW, Levine DA, Carter SL, Getz G, 
Stemke-Hale K, Mills GB, Verhaak RG. Inferring tumour purity and stromal 
and immune cell admixture from expression data. Nat Commun. 2013. 
https:// doi. org/ 10. 1038/ ncomm s3612.

 47. Xie B, Ding Q, Han H, Wu D. miRCancer: a microRNA-cancer association 
database constructed by text mining on literature. Bioinformatics. 2013. 
https:// doi. org/ 10. 1093/ bioin forma tics/ btt014.

 48 Yang Z, Wu L, Wang A, Tang W, Zhao Y, Zhao H, Teschendorff AE. dbDEMC 
2.0: updated database of differentially expressed miRNAs in human can-
cers. Nucleic Acids Res. 2017;45:812. https:// doi. org/ 10. 1093/ nar/ gkw10 79.

https://doi.org/10.1200/JCO.2015.63.2471
https://doi.org/10.1200/JCO.2015.63.2471
https://doi.org/10.1159/000490022
https://doi.org/10.1159/000490022
https://doi.org/10.1007/978-1-4939-7046-9_8
https://doi.org/10.1038/s41598-022-11339-w
https://doi.org/10.1186/1741-7007-12-42
https://doi.org/10.1186/1741-7007-12-42
https://doi.org/10.1016/j.omtn.2022.10.003
https://doi.org/10.1101/gad.215939.113
https://doi.org/10.1101/gad.215939.113
https://doi.org/10.1016/j.chom.2011.09.012
https://doi.org/10.1016/j.chom.2011.09.012
https://doi.org/10.1093/nar/gkt393
https://doi.org/10.1093/nar/gkt393
https://doi.org/10.1093/bioinformatics/bty424
https://doi.org/10.1371/journal.pone.0010162
https://doi.org/10.1371/journal.pone.0010162
https://doi.org/10.1093/bioinformatics/bty1054
https://doi.org/10.1093/bioinformatics/bty1054
https://doi.org/10.1007/978-3-540-72244-1_14
https://doi.org/10.1007/978-3-540-72244-1_14
https://doi.org/10.1214/12-AOAS597
https://doi.org/10.15252/msb.20178124
https://doi.org/10.3390/ijms20184414
https://doi.org/10.3390/ijms20184414
https://doi.org/10.1016/j.celrep.2021.109212
https://doi.org/10.1016/j.celrep.2021.109212
https://doi.org/10.1261/rna.042143.113
https://doi.org/10.1038/srep27157
https://doi.org/10.3892/etm.2019.8032
https://doi.org/10.2147/OTT.S215796
https://doi.org/10.1038/srep43393
https://doi.org/10.1038/srep43393
https://doi.org/10.1007/s13402-015-0259-z
https://doi.org/10.1007/s13402-015-0259-z
https://doi.org/10.3390/ijms22116121
https://doi.org/10.3390/ijms22116121
https://doi.org/10.1186/s12967-021-02880-9
https://doi.org/10.1186/s12967-021-02880-9
https://doi.org/10.1177/0300060518815379
https://doi.org/10.3892/or.2016.5144
https://doi.org/10.3892/or.2016.5144
https://doi.org/10.1186/s12967-019-2086-x
https://doi.org/10.1016/j.juro.2009.09.086
https://doi.org/10.1016/j.jfma.2018.04.013
https://doi.org/10.1002/cbin.11198
https://doi.org/10.1002/cbin.11198
https://doi.org/10.1158/0008-5472.CAN-12-1875
https://doi.org/10.1158/0008-5472.CAN-12-1875
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1093/bioinformatics/btt014
https://doi.org/10.1093/nar/gkw1079


Page 19 of 19Liu et al. BMC Genomics          (2023) 24:724  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 49 Huang Z, Shi J, Gao Y, Cui C, Zhang S, Li J, Zhou Y, Cui Q. HMDD v3.0: a 
database for experimentally supported human microRNA-disease asso-
ciations. Nucleic Acids Res. 2019;47:1013. https:// doi. org/ 10. 1093/ nar/ 
gky10 10.

 50. Mao X, Xu Y, Jiang Z. HColonDB: a database for human colon cancer 
research. J Comput Biol. 2019. https:// doi. org/ 10. 1089/ cmb. 2018. 0193.

 51. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, 
Schwikowski B, Ideker T. Cytoscape: a software environment for inte-
grated models of biomolecular interaction networks. Genome Res. 2003. 
https:// doi. org/ 10. 1101/ gr. 12393 03.

 52. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. 
KEGG for taxonomy-based analysis of pathways and genomes. Nucleic 
Acids Res. 2023. https:// doi. org/ 10. 1093/ nar/ gkac9 63.

 53 Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni 
D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG. DIANA-miRPath v3.0: deci-
phering microRNA function with experimental support. Nucleic Acids 
Res. 2015;43:460. https:// doi. org/ 10. 1093/ nar/ gkv403.

 54. Hiplot (ORG): a comprehensive and easy-to-use web service for boosting 
the publication-ready biomedical data visualization. Brief Bioinformatics. 
2022. https:// doi. org/ 10. 1093/ bib/ bbac2 61.

 55. Wang P, Wang Y, Hang B, Zou X, Mao JH. A novel gene expression-based 
prognostic scoring system to predict survival in gastric cancer. Onco-
target. 2016. https:// doi. org/ 10. 18632/ oncot arget. 10533.

 56. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, 
Diehn M, Alizadeh AA. Robust enumeration of cell subsets from tissue 
expression profiles. Nat Methods. 2015. https:// doi. org/ 10. 1038/ nmeth. 
3337.

 57. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient 
and comprehensive analysis of somatic variants in cancer. Genome Res. 
2018. https:// doi. org/ 10. 1101/ gr. 239244. 118.

 58. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using 
real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 
2001. https:// doi. org/ 10. 1006/ meth. 2001. 1262.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1093/nar/gky1010
https://doi.org/10.1093/nar/gky1010
https://doi.org/10.1089/cmb.2018.0193
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1093/nar/gkv403
https://doi.org/10.1093/bib/bbac261
https://doi.org/10.18632/oncotarget.10533
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1006/meth.2001.1262

	Comprehensive analysis of miRNA-mRNA regulatory pairs associated with colorectal cancer and the role in tumor immunity
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Results
	Identification of differentially expressed miRNAs (DEMs) and genes (DEGs) in CRC
	Analysis of function enrichment analysis and pathway analysis
	CMap analysis of dysregulated genes in CRC
	Validation of miRNAs and mRNAs expression in CRC tissues
	Evaluation of predictive value of miRNA-mRNA regulator pairs in CRC
	Association analysis of clinical pathological features and miRNAmRNA expression level in CRC
	Analysis of overall survival
	Analysis of tumor-related phenotypes associated with signatures

	Discussion
	Conclusions
	Methods
	Data acquisition and processing of miRNA and gene expression profiles
	Connectivity map analysis of potential compounds capable of targeting the differentially expressed genes
	Survival analysis
	Evaluation of interactions of miRNA-mRNA pairs and tumor-relative phenotypes and gene mutation status
	Sample collection and RNA isolation
	Quantitative reverse transcription PCR (qRT-PCR) assay
	Statistical analysis

	Anchor 26
	Acknowledgements
	References


