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Abstract
Background  Deep-intronic variants that alter RNA splicing were ineffectively evaluated in the search for the 
cause of genetic diseases. Determination of such pathogenic variants from a vast number of deep-intronic variants 
(approximately 1,500,000 variants per individual) represents a technical challenge to researchers. Thus, we developed 
a Pathogenicity predictor for Deep-Intronic Variants causing Aberrant Splicing (PDIVAS) to easily detect pathogenic 
deep-intronic variants.

Results  PDIVAS was trained on an ensemble machine-learning algorithm to classify pathogenic and benign 
variants in a curated dataset. The dataset consists of manually curated pathogenic splice-altering variants (SAVs) and 
commonly observed benign variants within deep introns. Splicing features and a splicing constraint metric were used 
to maximize the predictive sensitivity and specificity, respectively. PDIVAS showed an average precision of 0.92 and a 
maximum MCC of 0.88 in classifying these variants, which were the best of the previous predictors. When PDIVAS was 
applied to genome sequencing analysis on a threshold with 95% sensitivity for reported pathogenic SAVs, an average 
of 27 pathogenic candidates were extracted per individual. Furthermore, the causative variants in simulated patient 
genomes were more efficiently prioritized than the previous predictors.

Conclusion  Incorporating PDIVAS into variant interpretation pipelines will enable efficient detection of disease-
causing deep-intronic SAVs and contribute to improving the diagnostic yield. PDIVAS is publicly available at https://
github.com/shiro-kur/PDIVAS.

Keywords  Pathogenicity prediction, RNA splicing, Deep intron, Non-coding region, Genomics, Machine learning, 
Variant interpretation
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Background
Causative variants of rare genetic diseases remain to 
be determined in 50–75% of patients, regardless of the 
technical progress of exome sequencing and genome 
sequencing [1–4]. One of the major obstacles in the 
diagnostic process is the technical difficulty of evaluat-
ing genetic variants in deep-intronic regions. Intronic 
variants with splice alterations have been reported as the 
causative variants of dystrophinopathy, neurofibromato-
sis type I, and inherited retinal diseases [5–10] because 
these splice-altering variants (SAVs) create pathogenic 
pseudoexons or extend existing exons, by affecting rec-
ognition by splicing factors (e.g., small nuclear ribonu-
cleoprotein and RNA-binding proteins) (Fig.  1a). The 
resulting splicing alterations subsequently lead to mRNA 
destabilization by nonsense-mediated decay (NMD) 
or functional defects in encoded proteins. Previously, 
most of the pathogenic deep-intronic SAVs were discov-
ered through the “RNA-based” diagnosis using RT-PCR 
or RNA sequencing on patient-derived cells or tissues 
[11–13]. However, causative genes are often expressed 
in patients’ specific tissues, such as the brain and heart, 
which are rarely available to clinicians.

In contrast to the RNA samples, the genetic variants 
of almost all genes can be identified through genome 

sequencing analysis on blood or skin samples, which are 
readily accessible. However, distinguishing pathogenic 
deep-intronic variants from the vast number of benign 
variants is challenging owing to the presence of over 
1,800,000 intronic variants in an individual [14]. There-
fore, the variants must be filtered through a computa-
tional process with pathogenicity predictors to enable 
clinicians to manually evaluate the candidate variants.

This study presents a novel pathogenicity predictor for 
deep-intronic variant prioritization, called the Pathoge-
nicity predictor for Deep-Intronic Variant causing Aber-
rant Splicing (PDIVAS). We demonstrate that PDIVAS 
offers a clinically applicable strategy for deep-intronic 
variant prioritization in the diagnosis of rare genetic 
diseases.

Methods
Variant annotation
The effect of variants on genes was annotated by the 
Ensembl variant effect predictor (VEP) (version 105, 
GRCh37) by referring to one transcript per genome 
region selected by the “--pick_allele_gene” option. The 
transcript annotation was based on GENCODE V196 
[15, 16]. We selected deep-intronic variants accord-
ing to HGVS nomenclature that describes the relative 
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Fig. 1  Prospective features to classify pathogenic and benign variants in a curated dataset. a Schematic representation of aberrant splicing induced by 
deep-intronic splice-altering variants (SAVs). b The curated dataset consistes of pathogenic deep-intronic SAVs from the Human Gene Mutation Database 
(HGMD) and pseudo exon dataset by Keegan et al.7 and benign deep-intronic variants from the 1000 Genomes Project (1000GP). c Splice-type classifica-
tion of pathogenic SAVs in the curated dataset. Compound type refers to the SAVs that cause both a pseudoexon and an extending exon in the intron 
region. d Definition of region names based on the relative position to the splice sites of pseudoexon (PE) or extending exon (Ext). e Classification of 
pathogenic SAVs on their relative positions to the nearest splice sites of the pseudoexon or extending exons. f Violin plot, box plot, and strip plot depict-
ing maximums of SpliceAI donor/acceptor delta gain scores for variants in the curated dataset. g Violin plot, box plot, and strip plot depicting prediction 
scores by mean values of SpliceAI donor/acceptor delta gain scores, mean values of SpliceAI donor/acceptor raw gain scores, and MaxEntScan scores 
for pathogenic SAVs with ≤ 0.2 maximums of SpliceAI donor/acceptor delta gain scores (n = 44). h Violin plot and strip plot depicting ConSplice scores 
(human splicing constraint metrics) for each variant in the curated dataset with > 0.2 maximums of SpliceAI donor/acceptor delta gain scores (n = 190). 
AF, Allele frequency
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position of the variant within the gene [17]. The annota-
tion of allele frequency in the gnomAD genome sequenc-
ing database (r.2.0.1) was conducted through the VEP 
“--custom” option referring to the tabix-indexed VCF file 
downloaded from the Ensembl FTP site [18].

The features from SpliceAI were obtained from the 
output-customized SpliceAI whose original version was 
1.3.1. By default, SpliceAI only outputs four delta scores 
of acceptor gain/loss and donor gain/loss, which are cal-
culated by subtracting the splice site score on the ref-
erence sequence from the alternative sequence with a 
variant of interest [19]. Our customized SpliceAI script 
outputs the raw scores for the alternative sequence before 
subtraction, as well. Furthermore, while default SpliceAI 
converts the delta scores (acceptor/donor gain) to zero 
when the predicted site matches the nearest annotated 
splice site on the gene (with the “-m” mask option), we 
extended the mask function to all of the referred anno-
tated splice sites on the gene to reduce the number of 
false positives. The SpliceAI delta_gain_max and mean 
scores were calculated as the maximum and mean val-
ues of acceptor and donor gain delta scores, respectively. 
The SpliceAI raw_gain_mean score was calculated as the 
mean value of the raw scores of acceptors and donors. 
Finally, SpliceAI predictions were performed with the 
distance option of “-d 300”.

The ConSplice feature was obtained from the score-
precomputed bed file of the best_splicing_constraint_
model provided by the authors [20]. MaxEntScan 
prediction of the variant’s effect on splicing was per-
formed using the plugin module of VEP [21–23]. The fea-
ture-extraction algorithm from MaxEntScan is described 
in Supplementary Figure S1, which corresponds to the 
interpretation algorithm of Shamsani et al. [23].

Predictors to be compared to PDIVAS were SpliceAI, 
Pangolin [24], ConSpliceML [20], MaxEntScan, and 
CADD-Splice [25], which were selected based on the 
following criteria: (1) the program or the precomputed 
score file is freely available, (2) the program can assess 
deep-intronic variants, and (3) the program is operated 
in a Linux environment and can be applied to large-scale 
variant analysis. SQUIRLS and SPiP also matched these 
criteria, but their developers recognized their lower per-
formance on deep-intronic SAVs because of the limited 
number of training datasets [26, 27]. Therefore, we did 
not include them in this comparison. Pangolin (v1.0.1) 
was installed and run with the mask option (--mask 
True) and distance option (-d 300). To annotate Con-
SpliceML, we downloaded the score-precomputed VCF 
file provided by the authors and converted the genome 
version from GRCh38 to GRCh37 using Picard Lift-
overVcf (v.2.27.1). The annotation of ConSpliceML was 
conducted through the VEP “--custom” option, referring 
to the precomputed VCF file on the GRCh37 version. 

Annotations in CADD-Splice (v1.6) were conducted on 
plugin modules of the Variant Effect Predictor (VEP). 
BCFtools, bash scripts, cyvcf2, and Python scripts were 
used to process the VCF files used in this research [28, 
29].

Curated dataset of deep-intronic variants
In this study, we defined “deep intron” as a genomic 
region ≥ 50 bp away from a splice site of the nearest exon 
[19]. We tuned our novel predictive model focusing on 
variants located in the genes responsible for Mendelian 
diseases (hereinafter called Mendelian disease genes). 
The model’s primary objective is to detect novel causative 
variants in such known disease-causing genes rather than 
find unknown disease-causing genes. The Mendelian dis-
ease gene lists were collected from the Online Mendelian 
Inheritance in Man (OMIM) and the Clinical Genomic 
Database (CGD) [30, 31]. In the OMIM gene list, there 
were numerous genes whose causative relationships with 
the registered phenotype were unclear, as well as those 
that only contributed to the susceptibility to multifacto-
rial diseases (e.g., diabetes and asthma). To only focus on 
the genes whose contribution to the phenotype is clear 
in a way of Mendelian inheritance, we extracted genes 
with annotations of the mode of inheritance (autosomal 
dominant/recessive, X-linked, Y-linked), and the pheno-
type mapping key of the molecular basis of the diseases is 
known. Then, the OMIM and CGD gene lists were com-
bined and non-coding genes were filtered out following 
the GENCODE V19 annotation, resulting in a final list of 
Mendelian disease genes (https://github.com/shiro-kur/
PDIVAS).

For the benign dataset, the variant lists from the 1000 
Genomes Project (Phase 3, GRCh37) were downloaded 
from the UCSC FTP site. Variants on chromosomes 1, 3, 
and 5 whose sequences were not used to train SpliceAI 
were extracted to reduce data size. Additionally, copy 
number variants and variants in the multi-nucleotide 
variant format were removed because they could not 
be evaluated with many of the predictors used in this 
research. We annotated the remaining variants with VEP 
and extracted only deep intronic variants with ≥ 5% allele 
frequency in the 1000 Genomes Project and gnomAD 
population. Subsequently, Pathogenic deep-intronic 
SAVs were collected from Human Gene Mutation Data-
base Professional online (HGMD) 2020 and the Keegan 
et al. dataset [7, 32]. From HGMD, we extracted deep-
intronic single nucleotide variants (SNVs) labeled with 
“disease-causing” and “splicing”. We annotated the vari-
ants with VEP and variants with < 1% allele frequency in 
the gnomAD population were extracted. The extracted 
variants were checked to determine if splice altera-
tions were experimentally validated by reading all of the 
original reports. The variants whose splice alterations 
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were validated using RT-PCR or RNA sequencing for 
patient RNA or minigene/midigene-expressed RNA 
were included in the final variant dataset. Other vari-
ants whose aberrant splicing was only predicted or not 
specified were filtered out. Keegan et al. [7] also cata-
loged deep-intronic SAVs with experimental validation in 
a process independent of HGMD and our reinspection. 
From the Keegan et al. dataset, SNVs and short dele-
tions (~ 54nt) were obtained and annotated with VEP 
to extract only deep-intronic variants, those with < 1% 
allele frequency in the gnomAD population, and located 
on the Mendelian disease genes. Non-overlapped SAVs 
were added to the reinforced HGMD dataset to complete 
the pathogenic dataset. Through the curation process, 
the relative variant positions to the nearest splice sites in 
the pseudoexons or extending exons were also checked 
and classified as “splicing motif region” or “outside” as 
described in Fig. 1d. The splicing motif region (region of 
the splice donor and acceptor site motif ) conforms to the 
region defined in MaxEntScan [21].

Model training and testing
For PDIVAS construction, a random forest model pro-
vided by scikit-learn (version 1.0.2) was used and trained 
on the curated dataset. We randomly split the curated 
dataset into 70% for model training and the remaining 
30% for testing the trained model. Furthermore, within 
the training dataset, five-fold cross-validation was per-
formed. In this process, the training dataset was equally 
split into five sub-datasets. Four of the five sub-datasets 
were used for parameter tuning of random forest, and the 
remaining sub-dataset was used to evaluate the trained 
model. This process was iteratively repeated for all five 
combinations of the training and test sub-datasets. The 
best combination of hyperparameters was determined 
using the five-fold cross-validation when the average 
precision metrics were maximized. The average preci-
sion was computed with scikit-learn (version 1.0.2) as the 
weighted mean of the precision attained at each thresh-
old, divided by the difference in recall from the previous 
threshold. Average precision is more accurate than the 
area under the curve because it does not require empiri-
cal curve construction [33]. The tuned hyperparameters 
in this model were: (1) the number of decision trees in 
the forest and the maximum depth of each tree; (2) the 
ratio of samples extracted from the whole training data-
set to train each tree; and (3) the number of features to 
be used in each tree. Using these optimal hyperparame-
ters, the five-fold cross-validation was conducted again to 
compare the classification performance of the intermedi-
ate models of PDIVAS with SpliceAI and Pangolin and 
evaluate the stability of the PDIVAS performance. Finally, 
the random forest model was trained on the entire train-
ing dataset using the optimized hyperparameters. The 

final PDIVAS model was evaluated on the test dataset 
with average precisions and maximums of the Matthews 
correlation coefficient (MCC). For maximum MCC, we 
calculated individual MCC on every threshold in incre-
ments of 0.001 score, and the maximum of the values 
was extracted from each predictor. We employed these 
metrics for the performance comparison because they 
were stable even when the classes in a dataset were highly 
imbalanced. The predictive performance of PDIVAS 
was compared to the maximum of SpliceAI acceptor/
gain scores, Pangolin gain score, ConSpliceML, Max-
EntScan, and CADD-Splice Phred scores. ConSpliceML 
and CADD-Splice could not score some of the variants 
because their score-precomputed files did not cover all 
variant types, such as genomic insertion and deletion. 
When we calculated the statistical measures, we only 
referred to the variants with scores.

Variant prioritization for the 1000 genomes project
We referred to the same variant lists of the 1000 
Genomes Project under the sub-heading “Curated data-
set of deep-intronic variants”, above. Variants on chrY 
were filtered out because the ConSplice score for the 
PDIVAS score was not available there. Additionally, copy 
number variants and variants in the multi-nucleotide 
variant format were removed because they could not be 
evaluated with numerous predictors used in this study. 
From the remaining variants, deep-intronic variants of 
20,731 protein-coding genes defined on GENCODE V19 
were extracted [16]. Subsequently, variants on Mendelian 
disease genes and variants with < 1% allele frequency in 
both the 1000 Genomes Project and the gnomAD popu-
lations were extracted as candidates for pathogenic vari-
ants. Finally, the rare variants were scored by PDIVAS, 
SpliceAI, and Pangolin and filtered by thresholds based 
on the sensitivity for pathogenic SAVs.

Speed and memory benchmarking
The benchmarking comparing PDIVAS, SpliceAI, and 
Pangolin pipelines was performed on Intel Xeon Gold 
6154 CPUs @ 3.0 GHz (no GPUs). We prepared five VCF 
files, each containing 10,000 randomly selected deep-
intronic variants from the 1000 Genomes Project. Each 
computation of VEP, SpliceAI, Pangolin, output-custom-
ized SpliceAI, and Pangolin was performed on the 10 
threads, and its wall time (i.e., the total time to complete 
the variant annotation) and maximum RAM usage were 
recorded. The mean wall time and mean RAM usage for 
five VCF files were used as representative values.

Results
We developed PDIVAS, a novel machine-learning frame-
work to evaluate the pathogenicity of deep-intronic vari-
ants. PDIVAS was constructed and optimized through 
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(1) setting up a labeled dataset of known pathogenic 
and benign deep-intronic variants, (2) selecting a set of 
features to classify pathogenic and benign variants, and 
(3) training the random forest model with selected fea-
tures. Finally, we evaluated the performance of PDIVAS 
versus previous predictors through the classification of 
pathogenic and benign deep-intronic variants, genome 
sequencing analysis in control individuals, and simula-
tion analysis of patient genome sequences.

Curating a dataset consisting of pathogenic and benign 
deep-intronic variants
To train the PDIVAS model on truly pathogenic deep-
intronic variants, we surveyed the original reports of 
the variants and collected only those pathogenic vari-
ants with experimentally validated splice alterations. 
As data sources of pathogenic deep-intronic SAVs, we 
referred to HGMD and a pathogenic pseudoexon data-
set constructed by Keegan et al. [7, 32]. From HGMD, 
we extracted 432 variants located within deep introns 
out of 26,610 SNVs annotated as both “disease-causing” 
and “splicing mutation” (Fig. 1b). In this study, we defined 
deep introns as intronic regions ≥ 50 bases from the near-
est annotated splice sites (Fig.  1a). Reinspection of all 
the originally reported papers revealed that some lacked 
experimental validation of their occurrence of aberrant 
splicing by either splicing minigene/midigene assays or 
patient-derived RNA sample analysis. To construct a 
high-quality training dataset, we used only pathogenic 
SAVs with such experimental evidence. Furthermore, we 
focused on Mendelian disease genes (n = 4,429) (Supple-
mentary Methods). This filtering also clarifies the causal-
ity of the variants and the patient phenotypes. We then 
extracted variants with < 1% allele frequency in the gno-
mAD population. These procedures yielded 290 variants 
curated as pathogenic SAVs from HGMD (Fig. 1b).

The SAVs curated by Keegan et al. (n = 359) were already 
checked with experimental validation. We also extracted 
those on Mendelian disease genes with < 1% allele fre-
quency in the gnomAD population. The obtained vari-
ants were added exclusively to the variant list obtained 
from HGMD. Our combined approach yielded a final 
list of 374 pathogenic deep-intronic SAVs located in 180 
genes. Among them, 335 SAVs (89.6%) were reported to 
cause pseudoexons and 34 SAVs (9.1%) caused extending 
exons, while the remaining 5 SAVs (1.3%) were reported 
to cause both pseudoexons and extending exons (com-
pound type) (Fig. 1c). The majority of the variants caused 
aberrant splicing by creating novel splice donors (59.4%) 
or splice acceptors (19.5%) (Fig. 1d and e). The other vari-
ants were outside the splicing motif regions and might 
influence splicing enhancers or silencers, leading to aber-
rant splicing.

Benign deep-intronic variants were also collected from 
genome sequencing data of the 1000 Genomes Project 
comprised of 2,504 control individuals. We extracted 
17,622,722 variants from chromosomes 1, 3, and 5 to 
reduce the data size (Fig.  1b). After extracting variants 
on Mendelian disease genes, variants with ≥ 5% allele fre-
quency in the 1000 Genomes Project and the gnomAD 
population were collected to assure the benign nature 
of assorted variants, and the resulting list consisted of 
153,794 benign deep-intronic variants. The entire dataset 
consisting of these pathogenic and benign variants will 
be called “the curated dataset” hereafter.

Seeking effective features through characterization of the 
curated dataset
We first reviewed the characteristics of the curated data-
set using SpliceAI, a state-of-the-art splicing predictor 
constructed on a deep neural network. We scored the 
variants in the curated dataset with SpliceAI and evalu-
ated the results with a 0.2 threshold, a high-sensitivity 
threshold provided by the developers (Fig. 1f ) [19]. As a 
result, 338 pathogenic deep-intronic SAVs (90% of 374 
SAVs) were above the threshold. This indicates that there 
was still a need for improvement in sensitivity for clini-
cal use by decreasing the number of false negatives. In 
contrast, 190 benign variants exceeded the threshold. 
Decreasing the number of these false positives would 
enable more efficient prioritization of candidate causative 
variants.

We looked for additional features to support these mis-
predictions by SpliceAI. For false negatives, we assumed 
that the result could be effectively complemented by 
dividing the causes by splice type (SAVs either in splic-
ing motif regions or on the outside (Fig.  1d)). Fourteen 
SAVs (4.7%) were false negatives in the splicing motif 
regions (n = 295, in total) (Fig.  1g). The false negatives 
were believed to be supported by MaxEntScan because 
it specializes in evaluating the splicing motif regions, 
and its superiority to other splice site motif predictors 
was previously demonstrated [27]. As expected, Max-
EntScan predicted these pathogenic SAVs with higher 
scores than SpliceAI (0.76 vs. 0.07 median values). On 
the other hand, of the 45 SAVs outside the splicing motif 
region, 18 SAVs (40%) were false positives. The tendency 
toward lower sensitivity for SAVs outside of splice sites 
than in the splicing motif region is consistent with a pre-
vious report (Supplementary Figure S2a) [34]. Although 
the previous report recommended the use of ESRseq 
scores [35] to support the evaluation of such SAVs affect-
ing splicing enhancers and silencers, the combination 
of ESRseq scores and SpliceAI resulted in lower predic-
tive specificity while the sensitivity was improved. In 
this study, we used the SpliceAI raw score as an alterna-
tive. The SpliceAI raw score is the splice site score for 
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the alternative sequence containing the SAV before the 
score for the reference sequence is subtracted. The score 
is called the delta score when the reference sequence is 
subtracted, which is the default output of SpliceAI. We 
observed that splice site scores on reference sequences 
were predicted with higher scores for SAVs outside the 
splicing motif regions than for those within, which might 
be due to the presence of pre-existing splicing motifs in 
these regions (Supplementary Figure S2c). Consistently, 
for the SAVs outside of splicing motif regions with ≤ 0.2 
SpliceAI delta scores, the SpliceAI raw scores were higher 
than the delta scores (0.18 vs. 0.06 median values). This 
tendency was not as strong for the SAVs in the splicing 
motif regions (0.08 vs. 0.07 median values) (Fig. 1g). This 
implied that the SpliceAI raw score would improve the 
predictive sensitivity for SAVs outside the splice sites.

Subsequently, we considered the false-positive results 
using SpliceAI. We hypothesized that certain predicted 
variants could cause aberrant splicing, although they had 
non-deleterious effects on physiological function. How-
ever, SpliceAI does not evaluate the deleterious effect 
of the splicing event because SpliceAI is not trained 
in pathogenic splicing events. Therefore, a more spe-
cific prediction was achieved by combining a deleteri-
ous prediction with a human splicing constraint metric 
from ConSplice, which models mutational constraints on 
splice-altering variants within the human population. The 
effectiveness of this approach in predicting deleterious 
splicing was demonstrated in the ConSpliceML predic-
tor [20]. Likewise, we employed ConSplice for more spe-
cialized usage for deep-intronic SAVs. Of the 190 benign 
variants with ≥ 0.2 SpliceAI delta score, ConSplice evalu-
ated 153 (81%) variants as being less constrained and 
having less deleterious effects (< 0.2 ConSplice) (Fig. 1h). 
These findings suggest that the combinatorial use of 
the SpliceAI delta score, the SpliceAI raw score, Max-
EntScan, and ConSplice would be a better pathogenicity 
predictor than the sole use of the SpliceAI delta score.

PDIVAS performs best in predicting pathogenic deep-
intronic SAVs
To verify the advantages of using SpliceAI delta scores, 
SpliceAI raw scores, MaxEntScan, and ConSplice 
together, we combined these features into one pathoge-
nicity predictor called PDIVAS. PDIVAS is modeled on 
a random forest classifier where multiple decision trees 
are built in parallel and each decision tree defines an 
input deep-intronic variant as pathogenic or benign in 
a binary manner (one or zero, respectively), referring to 
these features (Fig. 2a). The PDIVAS calculated the final 
prediction score as the fraction of trees that classified 
the variants as pathogenic. Therefore, a higher PDIVAS 
score indicates a more likely pathogenic splice altera-
tion predicted in the deep-intronic variant. The score 

range is between one and zero. To train the random for-
est model, we randomly split the curated dataset into a 
training dataset and a test dataset. The training dataset 
represented 70% (261 pathogenic and 107,655 benign 
variants) of the entire dataset and was used to tune the 
parameters of the random forest model. The indepen-
dent test dataset contained the remaining 30% with 113 
pathogenic and 46,139 benign variants and was used as a 
hold-out test dataset to evaluate the final random forest 
model. The predictive accuracy of the final trained model 
(PDIVAS) was compared with that of SpliceAI, Pangolin, 
ConSpliceML, MaxEntScan, and CADD-Splice. Pango-
lin is a model based on SpliceAI architecture. Its training 
dataset was augmented by incorporating splice site data 
detected from four mammalian species into the human 
dataset. ConSpliceML is a random forest model in which 
ConSplice and the state-of-the-art splicing predictors of 
SpliceAI and SQUIRLS were used as features to classify 
pathogenic SAV and benign variants. CADD-Splice is an 
L2-regularized logistic regression model that incorpo-
rates various features of conservation scores, transcrip-
tion factor binding, DNase I hypersensitivity regions, 
and splicing features driven by the neural network-based 
splicing predictor of SpliceAI and MMSplice [36].

To compare the predictive accuracy, pathogenic and 
benign variants were scored with those predictors 
(Fig.  2b). Subsequently, the precision, recall, and MCC 
of these predictors at all thresholds were calculated and 
described as curves (Fig.  2c). A performance compari-
son of the predictors was performed on the average pre-
cision and maximum MCC (Fig.  2d). PDIVAS achieved 
the highest performance scores (average precision of 0.92 
and maximum MCC of 0.88) of the six predictors. Fur-
ther, we verified the stable competitiveness of PDIVAS 
on different training datasets, using five-fold cross-vali-
dation on the training dataset. Regardless of the compo-
sition of the dataset, PDIVAS was consistently superior 
to SpliceAI and Pangolin in terms of average precision 
(0.90 vs. 0.84, 0.77 median values) and maximum MCC 
(0.85 vs. 0.81, 0.76 median values) (Supplementary Fig-
ure S3). These results indicate that PDIVAS outperforms 
the other state-of-the-art predictors, in predicting patho-
genic deep-intronic SAVs.

Threshold settings for clinical use
PDIVAS thresholds were set based on the sensitivity for 
pathogenic SAVs in the PDIVAS test dataset (Table  1). 
Considering regular clinical cases where sensitivity is 
required rather than specificity, the highest sensitiv-
ity (95%) threshold of 0.082　is recommendable. How-
ever, Table  1 can also be used as a guide to customize 
the usage of PDIVAS, depending on research objectives 
and circumstances. For the later performance compari-
son between predictors, each threshold was also set on 
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SpliceAI and Pangolin based on all pathogenic SAVs in 
the curated dataset.

Features in PDIVAS synergistically work to improve 
predictive accuracy
In this section, we investigate how the five features in 
PDIVAS were used to improve the predictive accu-
racy. Firstly, we evaluated the contribution of these fea-
tures to the extent to which they increased the purity 
of pathogenic and benign variants in each node of the 
decision trees (Fig. 3a). This evaluation showed that the 
most important contributed feature of the five was Spl-
iceAI_delta_gain_mean, the mean of the splice accep-
tor and donor scores. This result is reasonable because 
the most frequent splice type caused by deep-intronic 
SAV is a pseudoexon, where both the splice acceptor 
and donor are newly recognized by spliceosome machin-
ery and both gain scores should be considered (Fig.  1c) 
(Supplementary Figure S4). Meanwhile, extending exons 
are caused by the creation of only one of the splice sites, 
and consistently, one of the SpliceAI gain scores is nearly 
zero (Supplementary Figure S4). Therefore, the SpliceAI_
delta_gain_mean might underestimate extending exons. 
Extending exons were believed to be more appropriately 

Table 1  Clinically relevant threshold settings on the predictive 
sensitivity
Sensitivity (%) PDIVAS

threshold
SpliceAI
threshold

Pangolin
threshold

60 ≥ 0.899 ≥ 0.56 ≥ 0.48
65 ≥ 0.832 ≥ 0.50 ≥ 0.42
70 ≥ 0.763 ≥ 0.44 ≥ 0.39
75 ≥ 0.575 ≥ 0.38 ≥ 0.34
80 ≥ 0.501 ≥ 0.33 ≥ 0.28
85 ≥ 0.340 ≥ 0.25 ≥ 0.23
90 ≥ 0.151 ≥ 0.20 ≥ 0.16
95 ≥ 0.082 ≥ 0.11 ≥ 0.09
PDIVAS threshold is set on the test dataset while others’ thresholds are set 
on the entire dataset. SpliceAI score is represented as the maximum SpliceAI 
donor/acceptor delta gain scores. Pangolin score is represented as the Pangolin 
splice gain score

Fig. 2  PDIVAS outperforms the existing predictors in classifying pathogenic and benign variants. a A graphic of random forest model used in PDIVAS. The 
model comprises 500 decision trees to classify pathogenic and benign variants (red and blue plots, respectively), combining multiple features from splic-
ing predictors (output-customized SpliceAI and MaxEntScan) and a human splicing constraint metric of ConSplice. b Violin plot, box plot, and strip plot 
indicating the scores of PDIVAS and five previous　predictors for the test dataset (pathogenic, n = 113; benign, n = 46,139). SpliceAI score is represented 
as the maximum SpliceAI donor/acceptor delta gain scores. Pangolin score is represented as the Pangolin splice gain score. c PR and MCC curve analysis 
for the PDIVAS and five published predictors. Precision, recall, and MCC are calculated at every threshold of their predictors and are depicted as these 
curves. The MCC values of Pangolin, MaxEntScan, and CADD-Splice are computed on prediction scores scaled from zero to one for the entire curated 
dataset (min-max normalization). d Comparative evaluation of predictive accuracy on average precision and maximum MCC. PR curve, precision-recall 
curve; MCC, Matthews correlation coefficients
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evaluated by the second-most contributed feature, Spl-
iceAI_delta_gain_max only referring to the higher score. 
The other features SpliceAI_raw_gain_mean, ConSplice, 
and MaxEntScan also contributed to classifying variants 
in each node of the decision trees at 13%, 8%, and 4%, 
respectively.

Further, we demonstrated the contributions of these 
features using the feature-cumulative training method 
(Fig.  3b). This involved training a random forest model 
with progressively increasing numbers of features, begin-
ning with SpliceAI_delta_gain_mean alone, and evalu-
ating the predictive accuracy of each trained model on 
the same training/test dataset pair. This analysis showed 
that each feature of SpliceAI_raw_gain_mean, ConSplice, 
and MaxEntScan improves either the accuracy metrics 
of average precision or maximum MCC and has a syner-
getic effect on PDIVAS.

Finally, the feature contributions were studied within 
the prediction results of benign deep-intronic variants 
in the test data (n = 46,139). When SpliceAI predicted 
them on the threshold with 95% sensitivity (Table  1), 
129 benign variants were predicted as positives. Using 
PDIVAS on the threshold with 95% sensitivity, 73 vari-
ants (57%) of the 129 SpliceAI-predicted were correctly 
evaluated as negatives (Fig. 3c). Overviewing the feature 
distributions of the 73 variants suggested that PDIVAS 

removed 67 of them because their genomic regions were 
in low constraint (< 0.2 ConSplice) and the predicted 
SAVs could be tolerated. The remaining six variants had 
higher ConSplice scores, but the scores of MaxEntScan 
were zero and the splice alterations of themselves were 
not expected to occur. These results demonstrate that 
PDIVAS succeeded in improving the predictive speci-
ficity while retaining its high sensitivity for pathogenic 
deep-intronic SAVs by utilizing these five combined 
features.

PDIVAS minimizes candidate variants in genome 
sequencing samples at clinically relevant thresholds
In the clinical genome sequencing analysis, the dis-
ease-causing variants must be prioritized from the vast 
number of deep-intronic variants detected in genome 
sequencing samples. In this study, we analyzed genome 
sequencing samples of control individuals as a substitute 
for undiagnosed patients because patients with Mende-
lian diseases theoretically differ from other individuals 
by only one to two pathogenic variants. Control indi-
viduals have variants without splice alteration, benign 
SAVs, and pathogenic SAVs observed in carriers. Ideally, 
this analysis should extract only those pathogenic vari-
ants. Our analysis focused on the 2,504 control individu-
als from the 1000 Genomes Project [14]. As the genome 

Fig. 3  Revealing feature contributions on PDIVAS. a The feature contribution rates in the PDIVAS model are computed as the mean of the accumulation 
of the impurity decrease within each decision tree. SpliceAI_del_gain_mean indicates the mean values of SpliceAI donor/acceptor delta gain scores. 
SpliceAI_del_gain_max indicates the maximum of them. SpliceAI_raw_gain_max indicates the maximum of SpliceAI donor/acceptor raw gain scores. 
b The predictive accuracy is evaluated when the random forest model is trained on increased features one by one, starting with only one feature of Spl-
iceAI_del_gain_mean. For each feature subgroup, the same datasets are used to train and evaluate each model. This shows the combinational effect of 
respective features in improving the average precision (Ave-Prec) or a maximum MCC (maxMCC). c Comparison of feature scores of benign variants that 
are predicted as pathogenic by SpliceAI (maximums of SpliceAI donor/acceptor delta gain scores), but correctly predicted as benign by PDIVAS. Thresh-
olds are set to 95% sensitivity for reported pathogenic SAVs (Table 1)

 



Page 10 of 14Kurosawa et al. BMC Genomics          (2023) 24:601 

samples were collected from various populations, we 
would obtain more accurate statistics than the analysis 
on the limited number of patient genome samples, which 
are rarely publicly accessible. First, by extracting variants 
within deep introns in protein-coding genes from each 
genome sequencing sample, 1,570,571 deep-intronic 
variants per individual were obtained on a mean value 
(Fig.  4a and Supplementary Figure S5a). Assuming the 
actual genetic diagnosis process, we further extracted 
variants of 4,429 genes for Mendelian diseases and those 
with < 1% allele frequency in both 1000 Genomes Proj-
ect and gnomAD populations [18]. This process retained 
14,872 variants per individual with possible pathogenic-
ity at a mean value (Supplementary Figure S5b and S5c). 
Finally, the effects of their variants were predicted using 
SpliceAI, Pangolin, and PDIVAS. In this part, we chose 
only the two predictors to compare with because of 
their higher performance in the analysis of PR and MCC 
curves and their wider availability for the prediction of 
genomic insertions and deletions, as well as SNVs. As a 
result, PDIVAS predicted approximately 3.0-26.8 variant 
candidates (mean values) per individual on the thresh-
olds with 70–95% sensitivity while SpliceAI predicted 
approximately 6.3–67.9 variant candidates, and Pango-
lin approximately 11.9-136.6 variant candidates (Fig.  4b 
and Supplementary Figure S5d). Even on the most sensi-
tive threshold of 95%, PDIVAS predicted approximately 
26.8 candidates, which is approximately 0.4 times and 0.2 
times less than SpliceAI and Pangolin, respectively. These 
results demonstrate that PDIVAS narrows down the 
number of candidate pathogenic variants to the small-
est number and would enable the most efficient clinical 
genetic diagnosis.

PDIVAS performs best in prioritizing causative variants in 
genome sequencing samples
We here demonstrated the clinical utility of PDIVAS 
through the simulation analysis of genetically undiag-
nosed patients through traditional variant interpreta-
tion focusing only on the protein-coding region and 
exon-intron boundaries. We virtually created patient 
genome sequencing samples by adding one pathogenic 
deep-intronic SAV (n = 113) in the test dataset to one of 
the control genome sequencing samples (n = 2,504) in 
the 1000 Genomes Project (Fig. 5a). Using this approach, 
282,952 simulated patient genome sequencing samples 
with various genome backgrounds were obtained. This 
method was originally developed by Danis et al. [26]. 
Following the procedures in Fig.  4a, rare deep-intronic 
variants were extracted and their pathogenicity was pre-
dicted using PDIVAS, SpliceAI, and Pangolin for compar-
ison. The predicted variants were ranked based on their 
scores, with the assumption that a higher-performance 
pathogenicity predictor could evaluate pathogenic SAVs 
with higher scores. Conversely, benign variants with 
non-deleterious splicing alterations or without splic-
ing alterations were predicted to have lower scores. As 
a result, PDIVAS predicted causative SAVs to be signifi-
cantly closer to the first rank than SpliceAI and Pangolin 
(Supplementary Figure S6). Furthermore, when clinicians 
manually evaluated up to the 5-40th ranks from the pre-
diction results, more numbers of causative SAVs would 
be detected through PDIVAS, and the undiagnosed rates 
of the patients were retained to be 0.3-6.5% lower than 
SpliceAI and 4.9-16.3% lower than Pangolin (Fig.  5b). 
Even when only the top five were evaluated, 81.7% of the 
cases would be diagnosed. These results demonstrate that 
by introducing the diagnostic approach with PDIVAS, 
clinicians will be able to rapidly find the causative vari-
ants because PDIVAS allows them to evaluate a smaller 

Fig. 4  PDIVAS minimizes candidates of causative deep-intronic variants from genome sequencing samples. a Workflow of variant filtering for candidates 
of pathogenic deep-intronic SAVs in 2,504 genome sequencing samples in the 1000 Genomes Project. Each number is shown as the mean value of 2,504 
samples. b The median numbers of deep-intronic rare variants predicted at each threshold with sensitivity for pathogenic deep-intronic SAVs in the test 
dataset (Table 1). To compare the numbers between PDIVAS, SpliceAI, and Pangolin, fold changes are calculated. For SpliceAI prediction, the maximums 
of SpliceAI donor/acceptor delta gain scores are used. For Pangolin prediction, gain scores are used
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number of candidates and identify the causative variants 
with minimal effort.

Accessibility and computing speed of PDIVAS
The command-line interface of PDIVAS is written in 
Python 3. The application can work to annotate variants 
in Variant Call Format (VCF) files annotated by VEP and 
output-customed SpliceAI, already. The output-custom-
ized SpliceAI is used to compute SpliceAI raw scores 
in addition to delta scores (Figs. 1g and 2a). Within the 

PDIVAS algorithm, deep-intronic variants with all five 
features were found and the PDIVAS scores were calcu-
lated only for them. We compared the run times of PDI-
VAS, SpliceAI, and PDIVAS pipelines under 10 threads of 
CPUs. The average total run time was 2.0, 2.3, and 4.0 h, 
respectively (Fig.  6). Although the PDIVAS pipeline has 
one additional procedure compared to SpliceAI and Pan-
golin pipelines, the computation time on PDIVAS itself 
was much shorter than SpliceAI and Pangolin. Therefore, 
we verify that the additional procedure does not affect 

Fig. 6  Variant annotation speed and RAM benchmarks on variants from genome sequencing. Five VCF files were created by randomly extracting 10,000 
intronic variants from the 1000 Genomes Project. These files were analyzed on the three pipelines, and the calculation time and RAM usage were re-
corded on each procedure. The average time and peak RAM were used as representative values. The VEP basic annotation includes the annotation of 
allele frequencies of the variants and the genes on which the variant is located. Raw scores were output in addition to the default delta scores via output-
customized SpliceAI

 

Fig. 5  PDIVAS prioritizes causative variants within simulated patient genome sequences. a Diagram indicating the method for simulating patient ge-
nome sequences and ranking their predicted variants. b Undiagnosed rates are calculated as the percentage of simulated patients whose causative 
variants are not prioritized within the designated ranks, compared to the total number of simulated patients
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the analysis efficiency. However, we needed more RAMs 
for the output-customized SpliceAI than Pangolin (30 GB 
vs. 6.0 GB).

In addition, pre-calculated scores are also available in 
VCF files for deep-intronic rare SNVs and short indels 
within Mendelian disease genes. Variant annotation 
based on the pre-calculated files can be performed on 
basic variant annotation tools such as VEP, AnnoVar, 
snpEff, BCFtools, and Vcfanno [29, 37–39]. The source 
code and pre-calculated scores of PDIVAS were available 
at https://github.com/shiro-kur/PDIVAS.

Discussion
In this study, we have presented PDIVAS, an efficient 
algorithm to prioritize deep-intronic variants causing 
aberrant splicing in genome sequencing data. PDIVAS 
reaches an average precision of 0.92 and a maximum 
MCC of 0.88, which are the highest among the 6 existing 
predictors. When applying PDIVAS to patient genome 
sequence analysis, the highest sensitivity threshold of 
0.082 (Table  1) is recommended for a higher diagnostic 
rate. Even with the high sensitivity, the number of patho-
genic candidate variants is reduced to about 27 per indi-
vidual, which is small enough for clinicians to manually 
evaluate their relevance to patient symptoms. Moreover, 
it ranks most of the causative variants within the top 5 
in simulated patient genomes. These results indicate that 
incorporating PDIVAS into routine analysis pipelines 
would improve the efficiency of variant interpretation 
and contribute to increasing the detection rate of caus-
ative variants.

There are three major technical characteristics of PDI-
VAS. First, the PDIVAS training dataset includes only 
truly pathogenic SAVs that were checked by us and the 
curators of HGMD. With only the HGMD curation, the 
dataset also included variants that are expected to cause 
splicing, but the events were not experimentally validated 
although they were given the labels of “Splice” variants. 
Some actually might not cause aberrant splicing and 
are not the cause of the diseases. Therefore, we again 
checked all original reports of pathogenic deep-intronic 
SAV candidates and extracted experimentally vali-
dated ones. Further, we augmented the dataset with that 
curated by Keegan et al. independently of HGMD, where 
the experimental validation of splice alterations was also 
strictly checked.

Second, PDIVAS is trained not to classify SAVs and 
non-SAVs, but to distinguish pathogenic SAVs and 
benign variants. As some common variants and homo-
zygous variants in general populations are also observed 
to induce exonization within deep introns, some SAVs do 
not cause deleterious effects on physiological functions 
[40]. This indicates that the task of classifying SAVs and 
non-SAVs is not enough for pathogenicity prediction. 

Therefore, we incorporated the deleterious effect predic-
tion by ConSplice, as well as splicing features. As shown 
in Fig.  3c, during PDIVAS prediction, ConSplice helps 
remove benign SAVs from the SplieAI-predicted SAVs. 
This prediction of deleterious effect is a technical advan-
tage over SpliceAI and Pangolin, which are not trained on 
pathogenic splicing events.

Third, PDIVAS is modeled for the specific use of patho-
genicity prediction on deep-intronic variants. We divided 
deep-intronic SAVs into those within the splicing motif 
regions and those outside of them and observed their 
SpliceAI-score distributions. Through detailed observa-
tion, we reached the conceptualization of SpliceAI raw 
scores and MaxEntScan for better sensitivity. To imple-
ment their combination, we modeled the random forest 
optimized to evaluate the pathogenicity of deep-intronic 
variants. These features were not incorporated into the 
previous predictor of ConSpliceML.

Determining causative variants is beneficial for patients 
because it could change their clinical management [41, 
42]. The pathogenic pseudoexons created by deep-
intronic SAVs can be pharmacologically targeted, as we 
previously demonstrated in two pathological models: 
the IVS4 + 866 C > T causative variant of NEMO of anhi-
drotic ectodermal dysplasia with immunodeficiency, 
and the c.3849 + 10kbC > T of CFTR of cystic fibrosis 
[43, 44]. Pathogenic pseudoexons often harbor subopti-
mal splicing sites and are prone to be regulated through 
alternative splicing factors, and serine/threonine-rich 
splicing factors (SRSFs) are identified as exon recognition 
facilitators in the above cases. Thus, the small-molecule 
inhibitor of CDC-like kinase (CLK) that activates SRSFs 
through phosphorylation of the RS domain [45], leads to 
the inhibition of pathogenic pseudoexon recognition and 
recovery from disease-associated phenotypes in cellular 
models [43, 44]. The pathogenicity interpretation of the 
deep-intronic variants with PDIVAS will shed light on 
previously overlooked pathogenic deep-intronic SAVs 
in rare genetic diseases, hopefully improving diagnostic 
yield and the possibility of clinical management.

Conclusions
Here, we developed a Pathogenicity predictor for Deep-
Intronic Variants causing Aberrant Splicing (PDIVAS). 
The PDIVAS was trained to differentiate between patho-
genic and benign deep-intronic variants. The predictive 
accuracy of PDIVAS was optimized not only by predict-
ing splicing alterations with multiple splicing predic-
tors but also by evaluating the deleterious effect of the 
predicted splice event with a human splicing constraint 
metric. By implementing PDIVAS into variant interpre-
tation pipelines, a small number of pathogenic variant 
candidates were extracted. Particularly, the threshold of 
0.082 is recommendable for the users to maximize the 

https://github.com/shiro-kur/PDIVAS
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diagnostic rates since the threshold has 95% sensitiv-
ity for previously reported pathogenic variants. Efficient 
variant interpretation by PDIVAS would contribute to 
resolving numerous genetically undiagnosed cases whose 
deep-intronic causative variants were previously over-
looked. The source code to run PDIVAS and the precom-
puted PDIVAS scores for all rare deep-intronic SNVs, 
short insertion, and deletion within Mendelian disease 
genes are now available at https://github.com/shiro-kur/
PDIVAS.
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