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Abstract 

Metabolic‑dysfunction‑associated fatty liver disease (MAFLD) is a comorbidity that generally increases in people 
living with HIV (PLWH). This condition is usually accompanied by persistent inflammation and premature immune 
system aging. In this prospective cohort study, we describe a straightforward methodology for quantifying biomark‑
ers of aging, such as DNA methylation and telomere length, in PLWH and in the context of another relevant condi‑
tion, such as MAFLD. Fifty‑seven samples in total, thirty‑eight from PLWH and nineteen from non‑PLWH participants 
with or without MAFLD, were obtained and subjected to DNA extraction from peripheral blood mononuclear cells 
(PBMCs). Global DNA methylation and telomere length quantification were performed using an adapted enzyme‑
linked immunosorbent assay (ELISA) and qPCR, respectively. The quantification results were analysed and cor‑
rected by clinically relevant variables in this context, such as age, sex, and metabolic syndrome. Our results show 
an increased association of these biomarkers in PLWH regardless of their MAFLD status. Thus, we propose includ‑
ing the quantification of these age‑related factors in studies of comorbidities. This will allow a better understanding 
of the effect of comorbidities of HIV infection and MAFLD and prevent their effects in these populations in the future.
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Introduction
People living with HIV (PLWH) have a high incidence of 
issues resulting from metabolic dysfunction-associated 
fatty liver disease (MAFLD), which can be even more 
concerning than in other populations [1]

In addition, PLWH faces adverse effects of antiretrovi-
ral therapy (ART) and chronic inflammation caused by 
persistent infection and chronic treatment [2, 3]. Another 
component associated with HIV infection is acceleration 
of the biological clock. Biological clocks have been used 
to understand the effects of various environmental fac-
tors on human health. Acceleration of biological age is 
higher in PLWH than in non-PLWH [4–7]. This is impor-
tant because it could bring age-related comorbidities of 
PLWH forward by up to a decade, thereby decreasing the 
life expectancy of this population. Aging is an important 
factor in PLWH, because it increases inflammation and 
immune activation, and it can be influenced by several 
components [8–10]. Moreover, age-related illnesses in 
PLWH, including metabolic diseases, are closely related 
to the associated heightened levels of systemic inflamma-
tion and immune activation, known as “inflamm-aging” 
[11]. A correlation has been shown between metabolic 
syndromes and the use of antiretrovirals, particularly 
protease inhibitors (PI) or nucleoside analogue reverse 
transcriptase inhibitors (NRTI) [12]. For example, Teno-
fovir has been directly associated with age acceleration 
by shortening telomere length [13–15]. Specifically, the 
markers that have been shown to be most strongly asso-
ciated with steatosis and premature aging are mediated 
by altered tissue homeostasis maintenance in PLWH. 
This causes systemic inflammatory responses, increas-
ing the levels of several systemic markers of inflamma-
tion, including TNF-α and interleukin such as IL-6 and 
C-reactive protein [10]. Immune dysregulation, immune 
cell senescence, and chronic inflammation are found 
even in ART-treated PLWH and have been also described 
as important mechanisms for aging [11, 16].

Fatty liver disease is a broad term that encompasses 
two main conditions: Non-Alcoholic Fatty Liver Disease 
(NAFLD) and Alcoholic Fatty Liver Disease (AFLD). 
Recently, NAFLD has been replaced by MAFLD to high-
light the metabolic aspects of the condition [17]. This 
term aims to encompass a wider range of patients who 
have fatty liver disease with metabolic risk factors, even 
if they do not strictly fit the previous criteria used for 
NAFLD diagnosis. However, metabolic syndrome is not a 
specific liver condition, but rather a constellation of met-
abolic abnormalities that can contribute to various health 
issues, including liver diseases like NAFLD/MAFLD. 
Metabolic-dysfunction-associated fatty liver disease by 
itself has become a public health concern, since it is one 

of the main causes of liver transplants in Western coun-
tries [1]. Secondary long-term metabolic complications 
derived from MAFLD may seriously impact the health 
and quality of life of patients. Although some non-inva-
sive imaging techniques have been established for the 
diagnosis of MAFLD, early detection remains challeng-
ing [18, 19]. Thus, MAFLD is now considered a health 
concern, especially in occidental countries, owing to its 
relationship with metabolic syndrome, diabetes, and 
high BMI [20]. Furthermore, MAFLD is one of the main 
comorbidities and mortality factors worldwide in PLWH 
[21, 22], although studies on MAFLD pathogenesis in 
PLWH are scarce. There is increasing evidence that the 
relationship between aging and metabolic dysregula-
tion contributes to fatty liver disease/MAFLD [23–25]. 
The MAFLD condition may influence the aging process 
through various mechanisms, such as enhancing chronic 
inflammation [26, 27], establishing metabolic dysfunc-
tions [20, 28, 29], promoting cellular damage, such as the 
impairment of mitochondrial functions which leads to 
increased production of reactive oxygen species (ROS) 
[30–32] or by accelerating telomere shortening [33, 34].

One method of analysing the effect of MAFLD on 
health is the quantification of DNA methylation. An 
inverse correlation between global DNA methylation 
and disease progression in individuals with MAFLD 
has been demonstrated in both mouse and human stud-
ies [35–37], even describing the role of stress-induced 
senescence during steatosis development [38]. Other 
factors, such as mitochondrial DNA damage [32], have 
been related to MAFLD in animals [24]. In humans, it 
has been shown that MAFLD patients show epigenetic 
alterations and age acceleration which can be quantified 
by analysing cytosine methylation [39, 40]. In addition, 
studies have investigated how alterations in epigenetics 
significantly contribute to MAFLD development and 
have even validated the measurement of DNA meth-
ylation as a prognostic marker of aging [41] and liver 
fibrosis in non-alcoholic fatty liver disease [36, 42, 43].

Lifestyle, environment, and other factors can influ-
ence HIV and MAFLD pathogenesis. Epigenetic modi-
fications in response to environmental exposures have 
been previously described and their relationship with 
MAFLD has been recently reviewed [44, 45]. Related to 
HIV infection, differential DNA methylation has been 
previously described, and epigenetic clocks have been 
established to understand this difference in PLWH [6, 
26, 46, 47]. Furthermore, as determined previously by 
our group, there are differences in the plasma-free fatty 
acid profiles and in some genetic variants of PLWH 
[48]. Therefore, quantifying these senescence markers 
should be a priority because of the likelihood of unfore-
seen events arising in this population.



Page 3 of 11Moreno et al. BMC Genomics          (2023) 24:567  

Different methods have been used to measure telomere 
length; however, quantitative PCR (qPCR) has proven 
to be a reliable method that allows the use of small 
amounts of starting material and large amounts of sam-
ples in less time and simpler procedures [49–52]. Regard-
ing DNA methylation, different methodologies can be 
used to quantify it. However, most of these methodolo-
gies, although they are more informative and can assist 
in understanding other phenomena, such as biologi-
cal clocks, are also more complicated to use on a regu-
lar basis, especially in locations with limited time and 
resources.

As both DNA methylation and telomere length are two 
relevant markers of biological age acceleration [37, 53] 
and the side effects of HIV infection and MAFLD persis-
tence, we consider that they should be taken into consid-
eration in studies related with these populations. Thus, 
this study aimed to show the importance of HIV infection 
in the biological aging process in PLWH with MAFLD 
by using straightforward methodologies to quantify bio-
markers of aging and reinforce their broad study.

Results
Characteristics of the study population
In this study, we analysed samples from 49 participants 
diagnosed with MAFLD, of whom 30 (61%) were PLWH 
 (MAFLD+ &  HIV+) and 19 (39%) were HIV-uninfected 
 (MAFLD+), in addition to 8 control samples from PLWH 
that were not diagnosed with MAFLD  (HIV+).

Participant demographic information is provided in 
Table 1. In summary,PLWH were younger, with a higher 
percentage of females, lower BMI, and a lower percent-
age of diabetes mellitus (DM) and metabolic syndrome. 
The severity of MAFLD between the group of patients 
with MAFLD and the group of PLWH was significantly 
different. There was, however, no difference between 
PLWH regardless of whether they had MAFLD or not 
(Table  1). Regarding diet, except for lower dairy con-
sumption and higher alcohol consumption, there were 
comparable results in PLWH. At inclusion, all PLWH 
participants were receiving antiretroviral therapy (94% 
under an integrase-strand-inhibitor-based regimen) for 
an average of 6 years while maintaining a suppressed viral 
load (see Table 1).

Cytosine global methylation as a marker of senescence 
in PLWH with MAFLD
Cytosine methylation is one of the main markers used to 
quantify DNA methylation which is the main epigenetic 
parameter related to age, substances, and diseases. In 
this study, we quantified the total amount of 5-methyl-
cytosine in DNA samples (levels of CpG methylation 
per sample) using a straightforward approach based on a 

colorimetric assay. Analysis of the results from 57 sam-
ples revealed significant differences, showing the lowest 
methylation levels in non-PLWH with MAFLD (Fig. 1).

Telomere length as a marker of senescence in PLWH 
with MAFLD
Telomere length has been widely used as a marker of age 
acceleration. However, different methodologies can be 
used for this quantification. In this study, we used a pre-
viously described qPCR protocol based on the detection 
of specific sequences in the telomere region. The results 
showed the greatest differences when comparing the 
PLWH and MAFLD groups (Fig. 2), although the differ-
ences were not statistically significant.

Further statistical analyses
Different results have been reported in studies on the 
relationship between methylation and telomere length. 
In fact, a method to evaluate epigenetic modifications 
related with telomere length was described [41]. Thus, 
in our study we aimed to explore whether these two bio-
markers of aging were correlated. We fitted the data from 
both analyses and adjusted them by linear regression. 
Pearson correlation analysis for methylation data (CpG-
met) and telomere length (RTL) showed a moderate cor-
relation (p = 0.0155, r = 0.32) (Fig. 3).

Discussion
In this prospective study, we analysed the effect of HIV 
and MAFLD in biomarkers of aging, such as DNA meth-
ylation and telomere length, by using straightforward 
methods. Aging has been shown to be clinically relevant 
for PLWH because it is related to inflammation and 
immune activation; therefore, the term ‘inflamm-aging’ 
is used to describe this effect [10, 11]. Telomere length 
has been widely used as a marker of aging, although its 
clinical use as the only relevant marker of aging has been 
questioned. Thus, other factors, such as frailty and epi-
genetic markers, have been proposed as complementary 
markers [54, 55]. Epigenetic regulation, such as DNA 
methylation, has also been linked to the inflamma-
tory status of PLWH [46, 47, 56]. Furthermore, the role 
of epigenetics in the pathogenesis of MAFLD has been 
described to explain the effects of lifestyle and environ-
mental factors [45].

Increased methylation in PLWH has been observed 
within three years after initial HIV infection, although 
there is some decrease associated with the use of 
antiretroviral therapy [15, 57]. Furthermore, alterations 
in DNA methylation have been associated with MAFLD 
susceptibility [58], although the fact that it may be 
down- or upregulated depends on the gene being stud-
ied [56]. These differences have been addressed by other 
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Table 1 Clinical characteristics of the studied populations

MAFLD (n = 19) PLWH (n = 8) MAFLD & PLWH (n = 30) p-value1

Age, 60.15 (56.57—70.71) 0.220

median (IQR) 55.55 (50.40—57.17) 55.78 (48.96—60.44)

Sex, n (%) 0.027
 Male 9 (47.37) 1 (12.5) 4 (12.33)

 Female 10 (52.63) 7 (87.50) 26 (86.67)

Race, n (%) 0.264

 American 1 (5.26) 1 (14.29) 9 (30)

 Asian 0 (0.00) 0 (0.00) 1 (3.33)

 Caucasian 14 (73.68) 4 (57.14) 13 (43.33)

  NDb 4 (21.05) 2 (28.57) 7 (23.33)

Country, n (%) 14 (50) 0.686

 Spain 13 (68.42) 5 (71.43) 12 (42.84)

 America 3 (31.57) 1 (14.29)

  (Central and South) 2 (7.14)

  NDb 4 (21.05) 1 (14.29)

 Body Mass Index (BMI) 32.8 (31–35.5) 22.6 (21.1–26.3) 27.3 (24.9–28) 0.0001
 Transient Elastography kPa 7.2 (6.1–9.5) 4.2 (3.9–4.4) 4.1 (3.9–4.3) 0.0001
 Transient Elastography CAP 312 (273–359) 210 (134–230) 275 (234–288) 0.015
HCV 0.818

 No 1 (100) 7 (87.50) 25 (83.33)

 RVS 0 (0.00) 1 (12.50) 2 (6.67)

 Cleared 0 (0.00) 0 (0.00) 3 (10.00)

HBV 0.371

 No 1 (100) 2 (25.00) 7 (23.33)

 Cleared 0 (0.00) 2 (25.00) 14 (46.67)

 Vaccinated 0 (0.00) 4 (50.00) 9 (30.00)

Alcohol consumptiona 0.717

 No 17 (89.47) 6 (75.00) 22 (73.33)

 Yes 1 (5.26) 1 (12.50) 4 (13.33)

  NDb 1 (5.26) 1 (12.50) 4 (13.33)

Tobacco use 0.393

 Currently 2 (10.53) 2 (25.00) 5 (16.67)

 Past 3 (15.79) 2 (25.00) 12 (40.00)

 Never 12 (63.16) 4 (50.00) 10 (33.33)

  NDa 2 (10.53) 0 (0.00) 3 (10.00)

Statins 1.00

 Yes 9 (47.37) 4 (50.00) 13 (43.33)

Metformin 0.001
 Yes 9 (47.37) 0 (0.00) 2 (6.90)

Insulin 0.474

 Yes 1 (5.26) 0 (0.00) 0 (0.00)

GLP1c 0.474

 Yes 1 (5.26) 0 (0.00) 0 (0.00)

DPP4d 0.082

 Yes 3 (15.79) 0 (0.00) 0 (0.00)

Fibrates 0.805

 Yes 2 (10.53) 0 (0.00) 2 (6.67)

Ezetimibe 0.684

 Yes 2 (11.11) 1 (12.50) 2 (6.67)
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studies that quantified methylation in CpGs at specific 
loci [59]. However, these technologies are complex 
and expensive; therefore, they may not easily be imple-
mented in clinical practice. In this study, we addressed 
this question by quantifying the level of global DNA 
methylation using an affordable and straightforward 
approach. The results showed that CpG methylation 
levels remained high in the presence of HIV infection, 
independently of their MAFLD status. Although dif-
ferent associations have been described, previous stud-
ies have also pointed to an association between DNA 

methylation and HIV susceptibility [46, 60, 61]. How-
ever, the quantification of global DNA methylation by 
ELISA, has yielded inconsistent results in PLWH. Some 
studies have shown an increase [61–63] while others 
have reported a decrease [46, 64] in DNA methylation 
in PLWH, although it is important to note that these 
studies used different kits for quantification, making it 
difficult to compare the results. It has been shown that 
DNA methylation differs between different immune cell 
types [65]. In the particular case of HIV, DNA meth-
ylation has been related to the CD4/CD8 ratio, viral 
load and response to treatment [61, 66]. However, 
more information is needed to take conclusions about 

Table 1 (continued)

MAFLD (n = 19) PLWH (n = 8) MAFLD & PLWH (n = 30) p-value1

Hypertension 0.009
 Yes 11 (57.89) 0 (0.00) 9 (30.00)

DMe 0.000
 Yes 11 (57.89) 0 (0.00) 3 (10.00)

Metabolic Syndrome
 Yes 15 (78.95) 0 (0.00) 6 (20.00) 0.000
1 Fisher’s exact test
a Yes = lower than 30gr/day for men and 20gr/day for women
b ND = Not defined
c GLP1 = hormone glucagon-like peptide-1
d DPP4 = dipeptidyl peptidase 4 inhibitors
e DM = diabetes mellitus

Fig. 1 Quantification of cytosine methylation using ELISA assay. 
Levels of methylation at CpG sites (CpGmet) were measured 
and calculated as detailed in the Methods section. The calculated 
results from the duplicates assayed are shown here at each 
point, and the samples were divided into three groups according 
to the patient: 19 patients with MAFLD (blue), 8 PLWH (red), and 30 
PLWH and MAFLD (purple). The limit of detection was established 
above the last point of the standard curve (0). Significant differences 
obtained by linear regression analysis after adjusting by age, sex, 
and metabolic syndrome (Least Square Mean difference) comparing 
group to group were significant for the following comparisons: 
MAFLD vs PLWH (p = 0.005, B0 = 37.81) and MAFLD vs MAFLD + PLWH 
(p = 0.03, B0 = 22.06) (Figure S1)

Fig. 2 Relative telomere length quantification by qPCR. Telomere 
length was measured by qPCR and calculated as described 
in the Methods section. Calculated relative telomere lengths are 
depicted by dividing the samples into three groups according 
to the patients: 19 patients with MAFLD (blue), 8 PLWH (red), and 29 
PLWH and MAFLD (purple). Differences obtained by linear regression 
analysis adjusted by age, sex, and metabolic syndrome (Least Square 
Mean difference) were not significant for any of the group to group 
comparisons analysed for this quantification (Figure S1)
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this topic and further studies should be performed to 
understand the effect of aging in PLWH.

Regarding telomeres, only some changes associated 
with the enzyme Telomerase reverse transcriptase, which 
is involved in the maintenance of telomeres, have been 
directly linked to MAFLD-associated conditions [67, 
68]. However, in PLWH, shorter telomeres have been 
previously described, although this has been shown to 
be controlled by antiretroviral therapy, probably due to 
the decrease in immune activation [12–14, 69]. Here, we 
decided to study the telomere length relationship with 
PLWH and MAFLD using relative quantification (qPCR) 
because it is a feasible technique and can be useful in dif-
ferent contexts. However, following this approach, in our 
setting, only a trend of increased telomere length with-
out statistical significance was found in PLWH regard-
ing MAFLD status. This could be due to the fact that, 
although qPCR is one of the main methods used to quan-
tify telomere length because it allows small amounts of 
DNA to be used, is less labour-intensive, and can be used 
in high-throughput settings, it also has its limitations. 
Lacking reference standards, variation between batches, 
and recognition of mean length measures instead of indi-
vidual telomeres or ends must be considered in order to 
interpret the lack of significance when using this tech-
nique [50, 52].

Importantly, in this study, some confounding variables 
related to HIV infection and MAFLD development that 
could be important for the analysis of DNA methyla-
tion and telomere length, were also analysed. In the two 
PLWH groups, there was a significantly higher number 
of women, with a lower BMI, hepatic stiffness (KPa), 

liver steatosis measured by CAP, diabetes mellitus, and 
prevalence of metabolic syndrome. Furthermore, the two 
groups of PLWH participants were five years younger 
on average, although this difference was not significant. 
Therefore, in addition to adjusting the model for sex 
and age, we included metabolic syndrome as an adjust-
ment variable, considering it as a proxy for the others, to 
avoid overfitting and collinearity. In addition, multivari-
ate models were fitted, with similar estimates, adjusting 
for the presence of DM or arterial hypertension. After 
adjustment, we can assume that the groups were compa-
rable, as the results were similar to the unadjusted model, 
except for telomeric length, which did not reach statisti-
cal significance, probably due to the small sample size.

DNA methylation and telomere length as biomarkers 
of aging have shown different levels of correlation when 
studied previously, especially when adjusted for age [54, 
70]. In our study, these factors showed a moderate cor-
relation which could be due to differences in methodolo-
gies applied in comparison with previous studies. It has 
been previously shown that chronic inflammation and 
immune activation are typically present in PLWH, even 
if they are under ART, and provoke premature aging, 
significantly affecting their quality of life [10, 11]. Con-
sequently, our analysis of PLWH showed an increasing 
trend in DNA methylation and telomere length. A cor-
relation between these two factors using these two spe-
cific methods has not been shown previously, and it may 
be relevant to demonstrate that these techniques can be 
accessible for daily use.

The limitations of our study include the lack of a con-
trol group of healthy patients. However, since this study 
focused on the methodology applied to understand the 
role of MAFLD in PLWH, we used samples from patients 
with MAFLD as a reference group as some other groups 
have previously done to study hepatic steatosis [71]. 
Regarding the quantification techniques, limitations are 
inherent for each method. For telomere length, there is 
no consensus about the best protocol to perform these 
quantifications; therefore, we followed the literature and 
simplified the method as much as possible because we 
only aimed to determine relative differences. Regard-
ing methylation, there are of course more sophisticated 
methods of quantification, but these are more com-
plicated and expensive, and this study aimed to find an 
affordable approach to study these factors and determine 
their relevance in the clinical setting.

Conclusion
Although this was an exploratory study to test straight-
forward techniques to quantify DNA methylation and 
telomere length in a limited number of samples from a 
very specific population, it provides information about 

Fig. 3 Correlation analysis between methylation data 
and telomere length data. Linear regression and Pearson correlation 
was calculated for the 57 samples together since the separated 
groups had a reduced sample size that could alter the meaning 
of the statistics. However, the three different groups of the samples 
have been depicted in different colours (MAFLD, blue; PLWH, red 
and MAFLD + PLWH, purple) for clarification. The purpose of this 
analysis is to understand the relationship between the quantification 
of these two markers in general, but specifically in the context 
of the methods used in this study
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the utility of these facile approaches for testing clini-
cal variables. Furthermore, our findings underline the 
importance of HIV infection as an accelerating factor 
for biological aging even if complete virological control 
has been achieved and independently of other factors or 
comorbidities, such as MAFLD status.

Materials and methods
Study design and sample collection
This was a prospective cohort study at Hospital Univer-
sitario Ramón y Cajal in Madrid, Spain from January 
2018 to December 2018. non-PLWH participants diag-
nosed with MAFLD were recruited at the Metabolic 
Liver Disease Clinic. PLWH participants receiving sup-
pressive antiretroviral therapy were recruited at the HIV 
Clinic. We included those who presented with elevated 
liver enzymes for at least two determinations, separated 
by six months. Any transaminase (GGT, ALT, AST) level 
above the upper limit of normal in our laboratory was 
considered. PLWH were receiving antiretroviral therapy 
for at least 1  year with undetectable viremia in the last 
6  months. All participants underwent abdominal ultra-
sound and a screening analysis for liver disease. Based 
on our previously published data, diagnosis of MAFLD 
was established by Transient Elastography (CAP), ultra-
sound confirmation of steatosis, and exclusion of other 
aetiologies of chronic liver disease. Metabolic syndrome 
was defined according to the National Cholesterol Edu-
cation Program (NCEP)’s third report [72] and the cri-
teria defined by Eslam et  al. [73] based on evidence of 
hepatic steatosis, in addition to one of the following three 
criteria, namely overweight/obesity, presence of type 2 
diabetes mellitus, or evidence of metabolic dysregula-
tion. In addition, diagnosis of MAFLD was screened by 
non-invasive serological markers (triglyceride and glu-
cose index [TyG], fatty liver index [FLI]) in those par-
ticipants who met the inclusion criteria [74]. Exclusion 
criteria included active viral hepatitis; alcohol abuse 
(defined by > 30 g daily in men and > 20 g daily in women; 
lower consumption was allowed); cocaine, heroin, or 
designer drug abuse; other known liver diseases (auto-
immune, genetic, drug-related); isolated alkaline phos-
phatase alteration; recent drug toxicity; the impossibility 
of cannulating a peripheral bloodline if a liver biopsy was 
required; pregnancy or desired pregnancy; decompen-
sated liver disease or hepatocarcinoma; and any other 
comorbidity that, at the investigator’s discretion, could 
prevent correct compliance with the study protocol. 
Clinical information was collected through the clinical 
interview at the baseline visit of the study, together with 
a review of the patient’s medical history recorded in the 
electronic medical record. The study was approved by the 

Institutional Review Boards of the Carlos III Health Insti-
tute, Madrid, Spain (Project PI 17/01717), and by the Eth-
ics Committee at the University Hospital Ramón y Cajal 
(ceic.hrc@salud.madrid.org, Approval Number 097/17). 
All patients gave written informed consent before the 
initiation of the study procedures. All methods were 
performed following the relevant guidelines and regula-
tions. Peripheral blood mononuclear cells (PBMCs) from 
patient blood samples collected in EDTA tubes were iso-
lated using Ficoll-Hypaque density gradient (Comercial 
Rafer S.L., Zaragoza, Spain) and following multiple previ-
ously described standard methods.

Methylation analysis
For the determination of the global DNA methylation 
in the isolated PBMCs from patients, total DNA was 
extracted by using the commercially available QIAAMP 
DNA MINI KIT (Qiagen, Hilden, Germany) following 
the manufacturer´s instructions. Then, evaluation of the 
global DNA methylation of liver-derived DNA was per-
formed by measuring the concentration of 5-methylcy-
tosine (5-mC) using a commercially available kit (5-mC 
DNA ELISA Kit, Zymo Research, Irvine, CA, USA) fol-
lowing the manufacturer’s instructions. Each sample was 
assayed in duplicate, seeking an equal representation of 
the study groups. After reading absorbance at 405  nm 
(OD), a standard curve was generated using a logarith-
mic curve, and %5-mC values were extrapolated from 
the curve (in %5-mC). Data obtained from the 0% value 
of the standard curve were used as negative control and 
subtracted from all the positive values. Then, to calculate 
the level of CpG methylation, the observed ODs extrap-
olated from the logarithmic standard curve were multi-
plied by the fold difference CpG density between control 
DNA derived from E. coli (1.00) and the standard human 
genome hg19 (8.167). Data were provided by the manu-
facturer of the kit. Final data were represented in a dot-
plot comparing the three groups.

Telomere length analysis
For the determination of the average telomere length in 
total DNA extracted from PBMCs of patients (as indicated 
previously), we performed a qPCR-based method previ-
ously described [21]. After DNA extraction, the purity 
of DNA was evaluated by detection of the absorbance 
260 nm (A260)/absorbance 280 nm (A280) ratio in a Nano-
Vue™ (GE), and concentration was quantified in a Qubit® 
Fluorometer with a Qubit® dsDNA BR Assay Kit. Then, 
the qPCR mix was prepared with the following amounts 
per well: 5ul of SYBR® Green Master Mix from Roche 
(#0470751600), 10  ng of DNA, and primers at 1uM final 
concentration. DNA samples were assessed in triplicate 
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in 96-well plates for telomere (T) and housekeeping gene 
36B4 (S) primers. The primer sequences (5′ → 3′) were:

tel1b CGG TTT GTT TGG GTT TGG GTT TGG GTT 
TGG GTT TGG GTT;
tel2b GGC TTG CCT TAC CCT TAC CCT TAC CCT 
TAC CCT TAC CCT;
36B4u CAG CAA GTG GGA AGG TGT AATCC;
36B4d CCC ATT CTA TCA TCA ACG GGT ACA A;
18S For GTA ACC CGT TGA ACC CCA TT;
18S Rev CCA TCC AAT CGG TAG TAG CG;

Standard DNA, a positive control (commercially avail-
able DNA-Human Genomic DNA, Roche), and a non-
template control (NTC) were assessed in parallel.

Relative qPCR was carried out on a LightCycler 480 
Roche System. The thermal cycling began with the initial 
polymerase activation step (10 min at 95 °C) and was fol-
lowed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. A 
melting curve analysis was performed to verify the speci-
ficity and identity of the products.

For calculations, ∆Ct was calculated for each sample as 
(Average Ct of 18S)-(Average Ct of telomere) and (Aver-
age Ct of 18S)-(Average Ct of 36B4). Since telomeres are 
present in multiple copies in a cell, as against single-copy 
genes, ∆Ct value is positive. Then, the relative telomere 
length (RTL) as ∆∆Ct was calculated by subtracting the 
∆Ct for Control DNA (Control DNA Average 36B4 Ct-
Control DNA Average Telomere Ct). A higher ∆∆Ct value 
indicates a longer telomere length. Telomere length has 
been calculated previously through the measure of the 
expression of a specific region in the telomere sequence 
(T) compared to a regular region of a single copy gene (S), 
based on methods described in previous studies [49–51] 
to obtain the Relative Telomere Length (RTL).

Statistical analysis
Baseline characteristics of patients with MAFLD, HIV 
infection, or both were compared with the Wilcoxon rank-
sum test for continuous variables and Fisher’s exact test for 
categorical variables. All contrasts were two-tailed and a 
p < 0.05 was considered statistically significant. Differences 
between the groups were compared with linear regression 
and adjusted by variables relevant for age acceleration (sex, 
age, metabolic syndrome) (details in Figure S1A and B). A 
sensitivity analysis was also conducted to eliminate samples 
from participants with cured HCV, and obtaining similar 
estimates (details in Figure S1C). Pearson correlation analy-
sis was performed to evaluate the correlation between the 
two studied variables (methylation and telomere length). 
Analyses were performed with Stata v. 17.0 (StataCorp 
LP, College Station, TX, USA). Figures were created using 
GraphPad Prism v9.2 (GraphPad, La Jolla, CA, USA).
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