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Abstract 

Background Producing animal protein while reducing the animal’s impact on the environment, e.g., 
through improved feed efficiency and lowered methane emissions, has gained interest in recent years. Genetic 
selection is one possible path to reduce the environmental impact of livestock production, but these traits are dif-
ficult and expensive to measure on many animals. The rumen microbiome may serve as a proxy for these traits due 
to its role in feed digestion. Restriction enzyme-reduced representation sequencing (RE-RRS) is a high-throughput 
and cost-effective approach to rumen metagenome profiling, but the systematic (e.g., sequencing) and biological fac-
tors influencing the resulting reference based (RB) and reference free (RF) profiles need to be explored before wide-
spread industry adoption is possible.

Results Metagenome profiles were generated by RE-RRS of 4,479 rumen samples collected from 1,708 sheep, 
and assigned to eight groups based on diet, age, time off feed, and country (New Zealand or Australia) at the time 
of sample collection. Systematic effects were found to have minimal influence on metagenome profiles. Diet 
was a major driver of differences between samples, followed by time off feed, then age of the sheep. The RF 
approach resulted in more reads being assigned per sample and afforded greater resolution when distinguishing 
between groups than the RB approach. Normalizing relative abundances within the sampling Cohort abolished 
structures related to age, diet, and time off feed, allowing a clear signal based on methane emissions to be elucidated. 
Genus-level abundances of rumen microbes showed low-to-moderate heritability and repeatability and were consist-
ent between diets.

Conclusions Variation in rumen metagenomic profiles was influenced by diet, age, time off feed and genetics. Not 
accounting for environmental factors may limit the ability to associate the profile with traits of interest. However, 
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these differences can be accounted for by adjusting for Cohort effects, revealing robust biological signals. The 
abundances of some genera were consistently heritable and repeatable across different environments, suggest-
ing that metagenomic profiles could be used to predict an individual’s future performance, or performance of its 
offspring, in a range of environments. These results highlight the potential of using rumen metagenomic profiles 
for selection purposes in a practical, agricultural setting.

Keywords Genotyping-by-sequencing, Restriction enzyme reduced representation sequencing, Rumen microbiome, 
Metagenome, Genetics, Reference based, Reference free

Background
There is increasing interest in livestock production traits 
relating to the impact of an individual animal on the envi-
ronment, such as the amount of feed consumed, or the 
amount of methane emitted. This is largely due to the 
recognition that more sustainable methods of producing 
animal protein are needed to be able to meet both short- 
and long-term global demands.

Traits focused on the efficiency of the animal (e.g., 
residual feed intake) and greenhouse gas emissions (e.g., 
methane) are related to each other and are under host 
genetic control [1]. The host’s rumen microbiome plays 
a vital role in converting consumed feed into short chain 
fatty acids, which provide energy to the host but also 
produce methane as a by-product. Thus, there is also a 
link between the host microbiome and these traits [2–8]. 
Furthermore, recent studies have demonstrated that the 
microbial profile of an individual is under host genetic 
control [9, 10]. This indicates the potential use of the 
microbiome for achieving sustained changes in environ-
mentally important traits through genetic selection, as 
well as its use as a management tool to identify animals 
likely to have a favorable or unfavorable carbon footprint. 
However, the microbiome composition is also controlled 
by the rumen environment and nutrition due to the ani-
mal’s diet [11], and separating these environmental fac-
tors from the permanent genetic signal will improve 
genetic selection accuracy and progress.

A high-throughput and low-cost method is needed 
to achieve industry-wide implementation of metage-
nome profiles into livestock production. Hess et  al. 
[12] recently developed a restriction enzyme-reduced 
representation sequencing (RE-RRS) approach that 
is a cost-effective and efficient method for generating 
metagenome profiles on thousands of individuals. They 
presented two methods for generating profiles from RE-
RRS sequences: a reference based (RB) approach that 
uses a reference database to assign reads to taxa, and a 
tag-based reference free (RF) approach that captured 
a greater proportion of the reads. However, the advan-
tages of these two approaches to metagenome profiling 
need to be further explored on a larger dataset from a 
broader range of environmental conditions and genetic 

backgrounds. Furthermore, there are still many ques-
tions on how to use the data from this approach as a 
tool in the livestock industry. Gaining knowledge on the 
impact of systematic (e.g., sequencing) effects on the 
interpretation of the results, and the impact that life his-
tory (e.g., diet or age) plays on microbial composition 
will aid in the development of appropriate methods to 
standardize data for downstream analyses. Additionally, 
assessments of the interactions between host genetics 
and microbial composition will allow a better under-
standing of the role host genetics plays in influencing 
rumen microbial composition and how this relates to 
traits of interest.

To gain a better understanding of the factors that affect 
rumen metagenome profiling, we explore the similari-
ties and differences in rumen metagenome profiles from 
samples taken in eight different conditions, with groups 
differing by diet, age, time off feed prior to sampling, 
and country. First, we assessed the practicality of using 
RE-RRS for high-throughput metagenome sequenc-
ing, including identification of systematic and biological 
impacts on metagenome profiles. We then evaluated the 
differences between metagenome profiles in the eight dif-
ferent groups through their taxonomic abundances and 
network diagrams. Finally, we obtained heritability and 
repeatability estimates for a range of genera to evalu-
ate host genetic control of the rumen microbiome. This 
study highlights critical considerations when attempting 
to predict traits using metagenome profiles.

Results
Sequencing, quality control and systematic effects
RE-RRS was used to sequence 3,971 New Zealand and 
508 Australian sheep rumen samples. These samples 
were split into eight Groups according to recorded 
parameters associated with each sample, i.e., age and 
diet of the sheep at the time of rumen sample collec-
tion, length of time the sheep was off feed before the 
rumen sample was taken, and country the animal lived 
in (Table  1 and Additional File 1). Most individuals 
had samples collected as part of multiple Groups, with 
3.3 ± 1.4 samples per individual for New Zealand sheep 
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and 1 ± 0 samples per individual for Australian sheep. 
The largest Groups were GAS and GLS, representing 
adults and lambs, respectively, that were on a grass 
(ryegrass-based pasture) diet and whose samples were 
collected after a short time off feed (2–4 h). Each Group 
was further separated into Cohorts, with individuals 
from the same flock and age who had their rumen sam-
ples collected over the same 1–3 day period allocated 
to the same Cohort. More information regarding the 
samples can be found in Additional File 1.

Table  2 summarizes metrics from sequencing, qual-
ity control and metagenome profiling based on the 
RB and RF pipelines described by Hess et  al. [12], 
and Additional File 2 contains these metrics split by 
Group. The RB and RF pipelines were developed to be 
very high-throughput and generate metagenome pro-
files very efficiently. The RB pipeline involved aligning 

reads to a reference database consisting of the Hun-
gate1000 Collection [13] plus four Quinella genomes 
[14], and assigning reads at the genus level. The RF 
pipeline involved generating a set of tags: unique 65 
bp reads, starting from the cut site, that are present 
in at least 25% of samples [12]. Tags were generated 
using the full set of samples (Tag Set = “All”) for Table 2 
and generated within each Group in Additional File 2. 
Read lengths ranged from 40 to 92 bp for all samples 
after quality control and removal of the adapter and 
barcode sequences. The proportion of reads assigned 
(assignment rate) for the RB approach was significantly 
lower than the assignment rate for the RF approach 
(p-value < 2.2 ×  10–16, paired t-test); however, 195 of the 
4479 samples (4%) had a RB assignment rate that was 
marginally higher than the RF assignment rate when 
considering tags generated on the full set of samples. 
Most of these samples (171/195) were from the AUS 
Group, which are expected to be different to the other 
Groups due to country, diet, and breed of the sheep. 
The Australian samples made up ~ 11% of the data-
set, so any microbes that are unique to the Australian 
dataset would not be captured in the set of tags, given 
that tags need to be present in 25% of samples. When 
considering only tags generated within the AUS Group, 
there were only 7 that had a greater proportion of reads 
assigned using the RB than RF approaches.

All sequencing metrics were similar across the different 
Groups (Additional File 2). Assignment rates for the RB 
pipeline ranged from 18.4% (LLS) to 23.7% (AUS). The 
number of tags ranged from 135k (MAS) to 264k (GAS), 
and the RF assignment rates ranged from 33.6% (LLS, 

Table 1 Number of rumen samples and sheep by group

a Grass: ryegrass-based pasture. Pellets (L): lucerne pellets. Pellets (M): maintenance pellets. Australian: Chaffed lucerne and cereal hay
b Animal considered an Adult at ~ 15 months of age
c Duration between access to feed and rumen sampling: Short = 2–4 h; collected in the South Island of New Zealand or in Australia. Long = 15–16 h; collected in the 
North Island of New Zealand
d MEM: Metabolizable energy requirements for maintenance
e Some individuals had rumen samples collected as part of multiple Groups, although all Australian sheep only had one rumen sample

Group Dieta Ageb Time off  Feedc Feeding Number of Samples Number 
of Sheep

GLS Grass Lamb Short ad libitum 1074 1074

GAS Grass Adult Short ad libitum 1080 1080

GLL Grass Lamb Long ad libitum 186 93

GAL Grass Adult Long ad libitum 94 94

LLS Pellets (L) Lamb Short ad libitum 985 985

LLL Pellets (L) Lamb Long 2 ×  MEMd 376 188

MAS Pellets (M) Adult Short ad libitum 176 176

AUS Australian Adult Short 1.5–1.6 ×  MEMd 508 508

Total 4479 1708e

Table 2 Sequencing statistics across all samples

a After demultiplexing and trimming; QC: Phred quality score of at least 20 and 
read length of at least 40 bp
b Percent of reads that were assigned to the reference database, consisting of 
the Hungate1000 Collection plus four Quinella genomes
c Percent of reads that were assigned to a tag, i.e., unique 65 bp reads, starting 
from the cut site, that are present in at least 25% of all samples

Metric Parameter Mean ± SD

Post-QC  sequencinga Reads per sample (thousands) 713 ± 215

Average read length (bp) 80.8 ± 1.5

Median read length 91.6 ± 0.5

Percent of reads ≥ 65 bp 79.3 ± 3.3%

Reference-based Assignment  rateb 20.8 ± 3.5%

Reference-free Number of  tagsc (thousands) 186

Assignment  ratec 29.2 ± 3.8%
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206k tags) to 39.6% (LLL, 228k tags). In total there were 
571,479 tags identified in at least one of the Groups.

Systematic effects
Biological and systematic effects were evaluated for their 
contribution to variation in the metagenome profiles 
using the New Zealand samples (Table 3 and Additional 
File 3). Systematic effects relate to factors associated 
with the sample processing and sequencing approach. 
The effects of Library (i.e., the set of ~ 370 samples that 
were sequenced simultaneously) explained a signifi-
cant percent of sample-to-sample variation in the num-
ber of reads, and the proportion of reads assigned using 
the RB and RF approaches. The Library effect was 
much larger for the proportion of reads assigned using 
the RF approach than for the other two profiling met-
rics (Table  3). The library effect explained 2.4 ± 5.2% of 
the variation in  log10 relative abundances of each of the 
microbes from the RB profiles (Additional File 3). The 
genus Quinella was a major outlier in terms of the pro-
portion of the variation that library explained (25.4%) 
and, with this genus removed, the library effect explained 
2.0 ± 4.3% of the variation in  log10 relative abundances.

Batch and shelf were related to the process of freeze 
drying the samples, and the combined BatchShelf effect 
was found to explain a significant percentage of the vari-
ation of all sequencing metrics, with the largest variation 
being explained in the total number of reads followed 
by proportion of reads assigned using the RF approach 
(Table  3). BatchShelf effects explained 6.1 ± 1.6% of the 
variation in  log10 relative abundances of the 61 genera 
in the reference database, with a significant effect for 25 
genera (Additional File 3). The largest BatchShelf effect 
was observed for Methanobrevibacter.

Well effects refer to the position of each sample on 
the plate during DNA extraction and library prepara-
tion and explained the most variation for the number of 
reads. Well explained approximately 10.3% of the varia-
tion in the proportion of reads for the RB and RF pipe-
lines, although this was not significant (Table 3). Part of 
the reason Well effects explained a large proportion of 
the variation of these sequencing metrics is because there 
were 96 levels of this effect. Out of all the genera in the 
reference database, Well effects were only significant for 
Quinella, Staphylococcus and Succinivibrio, explaining 
19.4%, 12.5% and 11.9% of the variation in the number of 
reads assigned, respectively (Additional File 3).

Biological effects
Group (the combination of age, feed, time off feed and 
country) and Cohort (the set of animals from the same 
flock that were sampled during the same 1–3 day period) 
effects explained a significant proportion of the varia-
tion in the number of reads, proportion of reads assigned 
using the RB and RF approaches (Table 3), as well as the 
 log10 relative abundances of all taxa in the reference data-
base (Additional File 3). Of the three profiling metrics, 
Group effects explained the most variation in the pro-
portion of reads assigned using the RB approach. Cohort 
effects explained over 20% of the variation for each of the 
profiling metrics. Group effects explained the most vari-
ation in Selenomonas (60.6%), Anaerovibrio (43.8%) and 
Sarcina (41.4%), while Cohort effects explained the most 
variation in Ruminobacter (49.1%), Cellulomonas (37.9%) 
and Succinivibrio (33.2%).

Biological effects of birth rear rank (BRR), age of dam 
(AOD) and birth date deviation (BDEV) did not have sig-
nificant effects on the number of reads or the proportion 

Table 3 Percent variance explained by systematic and host-specific biological factors in New Zealand Sheep Rumen Samples

a Group = the combination of diet, age, time off feed, and country
b Cohort = the set of samples that were collected during the same period
c Library = the set of samples that were sequenced simultaneously
d BatchShelf = the sample freeze-drying and grinding batch, and freeze-drying shelf
e Well = the position on the DNA extraction plate
f BRR = birth rear rank, i.e., the combination of the number of lambs born to the dam at the time the lamb was born, and the number of lambs that were reared
g AOD = age of dam at time the individual was born
h BDEV = birth date deviation within contemporary group

P-values from an F-test
*  < 0.05
**  < 0.001
***  < 0.00001

Profiling Metric Groupa Cohortb Libraryc BatchShelfd Welle BRRf AODg BDEVh

Number of Reads 3.74*** 3.79*** 4.08*** 13.94*** 16.44*** 0.07 0.01 0.02

RB_Prop 15.18*** 22.67*** 6.66*** 7.25** 10.36 0.14 0.05 0.30

RF_Prop 8.77*** 28.27*** 34.00*** 7.66** 10.23 0.42 0.01 0.09
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of assigned reads using either the RB or RF approaches 
(Table 3). BRR, AOD or BDEV explained a small amount 
of the variation in  log10 relative abundance for some of 
the taxa, but the largest effect was that of BRR on the 
 log10 relative abundance of Sarcina, and this explained 
only 1.15% of the variation (Additional File 3).

Reference‑free tags
Comparison by Group
The main set of tags that was used for the analyses in this 
paper is the set of “All” tags – those generated using all 
4,479 samples. This tag set enables comparison between 
all samples for the given analyses. We were also inter-
ested in how similar the tags from different Groups 
would be. Therefore, we generated tag sets within each 
of the groups (i.e., tags present in 25% of samples within 
each of the Groups), as well as a tag set for the New Zea-
land samples. Fig. 1 compares the similarity of the tag sets 
generated from the samples in each the different Groups 
(i.e., Group-specific tag sets). A hierarchical clustering 
analysis demonstrated that the Australian samples cluster 
separately from the New Zealand (NZ) samples, which 
is to be expected due to the different environments and 
diets between the two countries (Fig. 1A). The NZ sam-
ples were further separated by diet, followed by the time 
off feed. The lowest clades, representing the most similar 
tag sets, separated Groups by the age of the sheep sam-
pled (i.e., lamb or adult), within diet and time off feed. 
A comparison of the tag sets between NZ and Australia 
(Fig.  1B) showed that most tags were different between 
NZ and Australian samples, however there were still over 
70,000 tags in common between the two countries. Over 
117,000 tags were shared between tag sets from sheep 
that were grazing pasture (Fig. 1C). Consistent with the 
hierarchical analysis in Fig. 1A, more tags were found in 
common between GAS and GLS Groups than any other 
pair (Fig. 1C). A comparison of tag sets between Groups 
that were fed a pellet diet (Fig. 1D) showed that tags from 
sheep fed the same type of pellets (lucerne pellets) at the 
same age (lambs) were more similar than the Group of 
adults fed a different type of pellet (maintenance). Over-
all, these results show that diet, age, and.

Taxonomies of reference‑free tags
Tags were assigned to taxa based on comparison 
against the Ovis aries 3.1 genome assembly (OAR 3.1), 
the RB reference database (consisting of genomes from 
the Hungate1000 Collection [13] plus four Quinella 
genomes [14]) and GenBank [15] to discover what 
additional organisms were being captured by RF 
metagenome profiles beyond the RB microbial pro-
files. Table  4 shows the proportion of tags that were 
able to be assigned at the various taxonomic levels for 

the different sets of tags explored in this study. Most 
tag sets had approximately 40% of tags assigned at any 
taxonomic level, and the set of tags that were present 
in All Groups (i.e., tags present in all eight Groups) had 
the highest assignment rate, with taxonomy assigned 
for 47.7% of tags. Between 30 and 35% of tags were typ-
ically assigned at the genus level, with the greatest rate 
for those in All Groups at 41.8%.

Fig.  2 shows the taxonomic assignment of tags based 
on comparison against the GenBank and Hungate1000 
Collection genomes, as well as alignment against the 
sheep genome (OAR 3.1). Less half the tags were able 
to be assigned at any taxonomic level and most of those 
were assigned to the domain Bacteria, followed by Eukar-
yota and then Archaea. Within Bacteria, most tags were 
assigned to the phyla Bacteroidetes and Firmicutes. The 
majority of Eukaryota tags were from the phylum Chor-
data, of which 34.5% were assigned to a mammalian 
genome. Archaeal tags were dominated by methanogens, 
with 75% of tags assigned to Methanobacteria, followed 
by Methanomicrobia at just under 10%.

time off feed when sampled are major drivers of the 
rumen metagenome.

Relative abundances of bacteria and archaea
Microbial profiles were generated for the RF metagenome 
profiles by considering only bacterial and archaeal taxa 
from the tags that were assigned at the genus level in the 
previous section. Fig. 3 shows the relative abundances of 
the RB and RF microbial profiles at the family level, with 
those with an abundance of < 1% in all Groups combined 
into the “Other” category for visualization purposes. 
Overall, the microbial profiles were similar, however, 
there were some differences. There were four families that 
were present in the RB plot (Fig. 3A) that were absent in 
the RF plot (Fig. 3B): Peptostreptococcaceae, Spirochaeta-
ceae, Streptococcaceae and Veillonellaceae. Peptostrepto-
coccaceae, Spirochaetaceae and Veillonellaceae had low 
abundance and only just met the 1% threshold for the RB 
plot, but were below the 1% threshold for the RF approach 
and are captured in the “Other” category of Fig. 3B. Strep-
tococcaceae was most abundant in the AUS Group of sam-
ples for the RB pipeline and therefore it is possible that it 
was omitted in the RF pipeline due to Streptococcaceae 
tags not reaching the 25% prevalence threshold when con-
sidering the full set of samples. Rikenellaceae and Strepto-
mycetaceae were present in the RF plot (Fig. 3B) but not 
the RB plot (Fig. 3A). This was because these families are 
not captured within the reference database used for the 
RB analysis. The “Other” category made up a much larger 
portion of the microbial profile for each Group in the RF 
plot (Fig. 3B) than the RB plot (Fig. 3A), as there were a 
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large number of additional families that are present at low 
levels (< 1% abundance) in the RF microbial profiles.

Prevotellaceae was the most abundant family in all 
Groups, representing 52% to 66% of RB microbial profiles 
and 43% to 64% of the RF bacterial or archaeal microbial 
profiles (Fig.  3). Lachnospiraceae was the second most 

abundant family, representing 10% to 15% of RB micro-
bial profiles and 6% to 9% of RF bacterial or archaeal 
profiles. Consistent with the comparison of the tag sets 
between Groups (Fig. 1), profiles for lambs and adults on 
the same diet were very similar to each other (Fig. 3), with 
the largest differences being driven by time off feed and 

Fig. 1 Comparison of reference-free tags by Group. All tags were generated based on tag prevalence of 25% within each Group. A: Dendrogram 
of the proportion of tags that differ between Groups. B: Comparison of tags between New Zealand (NZ) and Australian (AUS) sheep rumen samples. 
C: Comparison of tags between samples collected when the sheep was grazing pasture (GAS: adults grazing pasture and sampled a short -time 
off feed, GAL: adults grazing pasture and sampled a long -time off feed, GLL: lambs grazing pasture and sampled a long time off feed, and GLS: 
lambs grazing pasture and sampled a short time off feed). D: Comparison of tags between samples collected when the sheep was fed pellets (LLL: 
lambs fed lucerne pellets and sampled a long time off feed, LLS: lambs fed lucerne pellets and sampled a short time off feed, and MAS: adults fed 
maintenance pellets and sampled a short time off feed)
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diet. This indicates that the differences in profiles between 
Groups encompass both the prevalence and abundance 
of taxa. Pellet diets (LLS, LLL and MAS) tended to have 

the highest proportions of archaea, with the profiles from 
grass fed sheep taken a long time off feed (GAL and GLL) 
having the lowest abundance of archaea.

Table 4 Percent of tags that are assigned at different taxonomic levels for the different tag sets

All Tags is the set of tags that are present in the tag sets for at least one of the eight Groups
a Tags present in 25% of samples in the GLS, GAS, GLL, GAL, LLS, LLL, MAS and AUS Groups; all samples (All) or New Zealand samples (NZ). All Groups is the set of tags 
that are present in the tag sets of all the eight Groups

Tag  Seta Number of Tags Kingdom Phylum Class Order Family Genus Species

GLS 246,833 40.9% 37.7% 37.0% 36.7% 35.1% 34.1% 22.9%

GAS 264,319 41.4% 38.2% 37.5% 37.3% 35.8% 34.8% 22.5%

GLL 231,903 42.5% 39.3% 38.6% 38.4% 37.0% 36.1% 22.9%

GAL 215,178 43.3% 40.4% 39.7% 39.5% 38.0% 37.2% 22.7%

LLS 206,473 38.6% 35.7% 34.9% 34.7% 33.1% 32.3% 20.7%

LLL 227,719 37.7% 35.1% 34.4% 34.1% 32.6% 31.8% 20.9%

MAS 135,153 40.2% 37.0% 36.3% 36.0% 34.6% 33.8% 21.7%

AUS 150,687 41.5% 38.1% 37.4% 37.2% 35.9% 35.1% 20.7%

All 186,302 42.0% 38.7% 38.0% 37.8% 36.3% 35.5% 22.4%

NZ 203,396 41.4% 38.3% 37.5% 37.3% 35.8% 35.0% 22.4%

All Groups 21,119 47.7% 44.7% 44.0% 43.9% 42.4% 41.8% 21.7%

All Tags 571,479 38.8% 36.0% 35.2% 34.9% 33.5% 32.6% 21.7%

Fig. 2 Taxonomies of reference-free tags. Tags were assigned taxonomy based on comparison to GenBank, the Hungate1000 Collection 
and the sheep genome (Eukaryota ➔ Chordata_Mammalia). This figure shows the taxonomy of tags at the domain level, within Bacteria 
and Eukaryota at the phylum level, and within Archaea at the class level. Taxa were included in the Bacteria, Archaea and Eukaryota charts if they 
were identified for at least 0.5% of tags assigned to that kingdom. Graphs show the proportion of tags assigned to each taxonomic level and do not 
reflect the relative abundance of each tag
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Relationships between samples from different Groups
Reference‑based relationships
Network diagrams were generated using  log10 normal-
ized (Fig. 4A) and Cohort-adjusted (Fig. 4B) RB micro-
bial profiles to visualize the impact of diet, age, and time 
off feed on these two normalization methods. A set of 
individuals were from sheep selection lines, selected for 
high or low methane emissions [16–18], which allowed 
us to evaluate whether samples clustered based on selec-
tion line (Fig.  4C and D). A clear effect of Group was 
present for  log10 normalized RB microbial profiles, and 
this effect was largely driven by the different diets the 
individuals were fed when the samples were collected 
(Fig. 4A), with no clear signal present based on methane 
selection line (Fig. 4C). This was unexpected, given that 
sheep divergent for methane emissions have different 
rumen microbial profiles [2]. However, normalization 
of each taxon within Cohort successfully removed the 
effects of diet, age, and time off feed (Fig. 4B), resulting 

in clearer separation of samples based on methane selec-
tion line (Fig. 4D).

Reference‑free relationships
Network diagrams were also generated from RF 
metagenome profiles. Fig.  5 shows network diagrams 
from tags generated on all samples (Tag Set “All” from 
Table 4), which accounted for 29.2 ± 3.8% of reads, rang-
ing from 25.8% (AUS) to 31.6% (GLS; Additional File 2). 
The  log10 normalized network diagrams (Fig. 5A and D) 
showed a similar pattern to those generated from the 
RB microbial profiles, but the RF diagrams showed that 
samples from the same diet were more tightly clustered 
and samples from different diets were more distinct 
from each other. Cohort adjustment of the RF profiles 
(Fig.  5B and D) resulted in reduced signal due to the 
Group effect, although some clustering in the samples 
due to diet remained even after the Cohort adjustment 
was performed. Despite the Group effect still being 

Fig. 3 Relative abundances of bacterial and archaeal taxa from reference-based (A) and reference-free (B) metagenome profiles. A: Family level 
taxa relative abundances for reference-based (RB) microbial profiles obtained by alignment with the Hungate1000 Collection. B: Family level taxa 
relative abundances for reference-free (RF) microbial profiles obtained by alignment of RF tags to GenBank and the Hungate1000 Collection, 
considering only bacterial and archaeal taxonomies from the set of tags generated on all samples. Taxa with an average abundance less than 1% 
in all of the Groups were combined into “Other”
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present, samples tended to cluster by methane selec-
tion line after Cohort adjustment (Fig. 5D).

Network diagrams were produced from metagenome 
profiles using the genus-level assignments of the set of 
“All” RF tags (Fig.  6) to investigate if this would reduce 
the clustering by Group in the Cohort-adjusted microbial 

profiles and allow the methane selection line signal to 
come through. These profiles represented 12.1 ± 2.3% of 
reads, ranging from 10.5% (LLS) to 13.5% (GLL; Addi-
tional File 2). The  log10 normalized profiles clustered 
based on Group (Fig.  6A), consistent with RB and RF 
methods using all tags (Figs.  4A and 5A). However, the 

Fig. 4 Reference-based (RB) relationships between samples by Group or selection line. A:  log10 normalized RB profiles coloured by Group. B: Cohort 
normalized RB profiles coloured by Group. For A and B, the colours were based on diet: sheep fed a grass diet (green), sheep fed a lucerne pellet diet 
(blue), sheep fed a maintenance pellet diet (purple), and Australian sheep fed a chaffed lucerne and cereal hay diet (orange). C:  log10 normalized RB 
profiles coloured by methane selection line. D: Cohort-normalized RB profiles coloured by methane selection line. For C and D, colours were based 
on whether the sheep were from the low methane line (green), the high methane line (orange), and from the other flocks (grey). Edges represent 
the correlation between the samples from the  log10 normalized or cohort-adjusted microbial relationship matrix
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separation between samples on different diets was not 
as extreme as for the network diagrams generated using 
“All” tags. Clustering tags based on taxonomic assign-
ment at the genus level successfully removed any signal 
due to diet, age or time of feed that was present in the set 
of “All” tags (Fig. 5B), and methane selection line samples 
clustered primarily by line (Fig. 6D), as was found in the 
RB network diagrams (Fig. 4).

Network diagrams were produced from RF metage-
nome profiles generated using the “All Groups” tag set 
(i.e., tags were identified in all of the eight Groups) 
(Fig.  7) to evaluate whether this was another method 
that could reduce the clustering by diet that was 
observed in the Cohort-adjusted RF profiles (Fig. 5B). 
These metagenome profiles represented 8.1 ± 1.8% 

of reads, ranging from 7.1% (GAS) to 10.6% (MAS) 
(Additional File 2). These metagenome profiles (Fig. 7) 
resulted in very similar patterns to those for the RB 
profiles (Fig. 4) and the RF profiles from tags assigned 
taxonomy (Fig.  6) with  log10 normalized RF profiles 
clustering by Group and Cohort, and adjusted RF pro-
files primarily clustering by methane selection line.

PERMANOVA Analysis
A PERMANOVA analysis was run to test the signifi-
cance of Group and Selection Line effects on RB and 
RF relative abundance metagenome profiles. The 
p-values from all analyses were 0.001 (Table 5), which 
means that the observed data was the most extreme 

Fig. 5 Reference-free (RF) relationships using tags generated on the full set of samples. A:  log10 normalized RF profiles coloured by Group. B: Cohort 
normalized RF profiles coloured by Group. For A and B, the colours were based on diet: sheep fed a grass diet (green), sheep fed a lucerne pellet diet 
(blue), sheep fed a maintenance pellet diet (purple), and Australian sheep fed a chaffed lucerne and cereal hay diet (orange). C:  log10 normalized RF 
profiles coloured by methane selection line. D: Cohort normalized RF profiles coloured by methane selection line. For C and D, colours were based 
on whether the sheep were from the low methane line (green), the high methane line (orange), or from the other flocks (grey). Edges represent 
the correlation between the samples from the  log10 normalized or cohort-adjusted metagenome relationship matrix
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classification of all permutations, and the RB and RF 
metagenome profiles differ significantly by both Group 
and methane selection line.

Heritability and repeatability estimates
Reference‑based estimates
Heritabilities and repeatabilities for each of the genera 
in the reference database were estimated based on the 
set of samples from sheep fed grass (GAS, GLS, GLL, 
GAL), the set of samples from sheep fed lucerne pel-
lets (LLL and LLS) and all New Zealand samples (Fig. 8 
and Additional File 4: Supplemental Table 7). The larg-
est heritability estimates for each set of samples were: 
Succiniclasticum (Grass, 0.20 ± 0.04), Oscillibacter 
(Lucerne Pellet, 0.21 ± 0.05) and Desulfovibrio (NZ, 

0.14 ± 0.02), and the largest repeatability estimates 
for each set of samples were: Succiniclasticum (Grass, 
0.27 ± 0.03; NZ, 0.17 ± 0.02) and Quinella (Lucerne Pel-
let, 0.34 ± 0.05). There were 10 genera that were within 
the top 6 most heritable genera for at least one set of 
samples: Bifidobacterium, Cellulomonas, Corynebacte-
rium, Desulfovibrio, Kandleria, Olsenella, Oscillibacter, 
Quinella, Succiniclasticum and Succinivibrio.

The correlation of heritability estimates between each of 
set of samples (Grass and Lucerne Pellet, Grass and NZ, 
Lucerne Pellet and NZ) was higher than the correlation 
between repeatability estimates for the same set of samples 
(Fig.  8 and Additional File 4: Supplemental Table  7). The 
correlation in estimates between Grass and Lucerne Pellet 
sets was 0.44 for heritability and 0.42 for repeatability, while 

Fig. 6 Reference-free (RF) relationships using tags assigned at genus level. A:  log10 normalized RF profiles coloured by Group. B: Cohort normalized 
RF profiles coloured by Group. For A and B, the colours were based on diet: sheep fed a grass diet (green), sheep fed a lucerne pellet diet (blue), 
sheep fed a maintenance pellet diet (purple), and Australian sheep fed a chaffed lucerne and cereal hay diet (orange). C:  log10 normalized RF 
profiles coloured by methane selection line. D: Cohort normalized RF profiles coloured by methane selection line. For C and D, colours were based 
on whether the sheep were from the low methane line (green), the high methane line (orange), or from the other flocks (grey). Edges represent 
the correlation between the samples from the  log10 normalized or cohort-adjusted metagenome relationship matrix
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the correlation in estimates for the Grass and NZ sets was 
much higher at 0.85 for heritability and 0.79 for repeatabil-
ity. The correlation in estimates between Lucerne Pellet and 
NZ sets was slightly lower than those between the Grass 
and NZ sets, at 0.71 for heritability and 0.65 repeatability.

Reference‑free estimates
Heritabilities and repeatabilities were also computed for 
the RF approach using the “All” tag set with taxonomy 
assignment at the genus level. This was done for the 
same sets of samples as the RB heritability and repeat-
ability analyses. Heritability and repeatability estimates 
tended to be highest for the Lucerne Pellet set and low-
est for the NZ set (Fig. 9, Additional File 4: Supplemental 
Table 8). There were 13 genera that were within the top 
6 most heritable genera for at least one set of samples: 
Apis (Eukaryota), Buceros (Eukaryota), Dictyostelium 
(Eukaryota), Epidinium (Eukaryota), Ichthyophthirius 
(Eukaryota), Maricaulis (Bacteria), Panicum (Eukaryota), 
Pelodictyon (Bacteria), Perkinsus (Eukaryota), Quinella 
(Bacteria), Rhizophagus (Eukaryota), Strongyloides 
(Eukaryota) and Succiniclasticum (Bacteria). Quinella 
and Succiniclasticum were the only two of these genera 

Fig. 7 Reference-free (RF) relationships using tags assigned in all Groups. A:  log10 normalized RF profiles coloured by Group. B: Cohort normalized 
RF profiles coloured by Group. For A and B, the colours were based on diet: sheep fed a grass diet (green), sheep fed a lucerne pellet diet (blue), 
sheep fed a maintenance pellet diet (purple), and Australian sheep fed a chaffed lucerne and cereal hay diet (orange). C:  log10 normalized RF 
profiles coloured by methane selection line. D: Cohort normalized RF profiles coloured by methane selection line. For C and D, colours were based 
on whether the sheep were from the low methane line (green), the high methane line (orange), or from the other flocks (grey). Edges represent 
the correlation between the samples from the  log10 normalized or cohort-adjusted metagenome relationship matrix

Table 5 Pseudo-F-Statistic and P-value from PERMANOVA 
analysis of group and selection line effects on metagenome 
profiles

Dataset Parameter Reference‑Based Reference‑Free

Pseudo‑F P‑value Pseudo‑F P‑value

All Group 293.02 0.001 165.30 0.001

Methane 
Lines

Group 125.26 0.001 65.06 0.001

Methane 
Line

20.74 0.001 10.53 0.001
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Fig. 8 Microbial heritability (A) and repeatability (B) estimates from sheep fed a Grass vs Lucerne Pellet diet. Estimates were based 
on Cohort-adjusted microbial profiles using the reference-based approach. Microbes are coloured based on whether the microbe is gram-negative 
(black), gram-positive (green) or archaea (blue)

Fig. 9 Distribution of heritability (A) and repeatability (B) estimates of reference-free tags clustered by genus. Estimates were calculated on the set 
of samples from sheep fed a grass diet (green), sheep fed a lucerne pellet diet (blue), and all New Zealand samples (orange). Heritability estimates 
were based on Cohort-adjusted metagenome profiles from the set of tags generated on all samples and assigned taxonomy at the genus level 
after aligning to the sheep genome, the Hungate1000 Collection and GenBank. The numbers given in the legends are the mean and standard 
deviation of the estimates across the 1751 genera
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that were present in the reference database used for the 
RB approach.

As with the RB profiles, the correlation of heritability 
estimates between the sets of samples was higher than 
the repeatability estimates from the same set of sam-
ples. The correlation of estimates between the Grass or 
Lucerne Pellet sets was 0.34 for heritability and 0.33 for 
repeatability. The correlation of estimates between the 
Grass and NZ sets was the same as the RB profiles for 
heritability at 0.85 and slightly lower than the RB pro-
files for repeatability at 0.72. The correlation in heritabil-
ity and repeatability estimates between Lucerne Pellet 
and NZ sets was again slightly lower than the estimates 
between Grass and NZ sets, at 0.63 and 0.48, respectively.

Discussion
High‑throughput metagenome sequencing
New tools are needed to achieve the goal of producing 
sustainable livestock with improved feed efficiency and 
a reduced carbon footprint, including the integration of 
novel phenotypes, genomic methods, and other manage-
ment tools. It is foreseeable that metagenomics is one 
such tool that will become invaluable to the livestock 
industry. Rumen microbes play a direct role in the deg-
radation and digestion of ruminants’ feed and therefore 
have an impact on environmentally and economically 
important traits, including feed efficiency and green-
house gas emissions, which are traits that are driven by 
the degradation of feed by these microbes. Furthermore, 
metagenome profiles can be used as a tool for genetic 
improvement, as well as a management tool, given that 
metagenome profiles are influenced by both host genetics 
and environmental factors. To achieve the goal of using 
metagenomics as an analytical tool for livestock produc-
tion, methodologies need to be developed that are high-
throughput and low-cost to enable industry-wide uptake.

In a recent study, Hess et al. [12] developed a method 
that uses the same RE-RRS scheme used in genotyp-
ing-by-sequencing to obtain metagenome profiles on 
individuals. They showed that this method is at least as 
sensitive as 16S rRNA gene sequencing, a method for 
which comparable datasets are available. Due to the abil-
ity to sequence at low depth without compromising the 
ability to capture metagenomic information, they showed 
that RE-RRS was suitably high-throughput for potential 
adoption by the livestock industry. In our current study, 
we applied this technique to thousands of sheep rumen 
samples, which allowed further assessment of this tech-
nique and afforded the opportunity to look at the major 
factors influencing rumen metagenome profiles in sheep. 
We have shown that RE-RRS is a robust method that 
works across rumen samples collected from sheep on a 

variety of diets, a range of ages, different times off feed, 
and diverse environments.

Factors influencing rumen metagenome profiles
A core rumen bacterial microbiome has been observed 
across ruminant species, but the relative abundances of 
each of these microbes varies across species and diets 
[11]. We have shown through a variety of analyses that 
the environmental parameters Group (incorporating diet, 
age, and time off feed prior to sampling) and Cohort (the 
set of animals sampled at the same time) play a major role 
in the rumen metagenome profiles that are generated 
through RE-RRS, which is consistent with other studies 
using other microbial profiling approaches [19]. In addi-
tion to biological factors, systematic factors related to the 
sequencing process may impact metagenome profiles. 
We explored a variety of biological and systematic effects 
that may influence rumen metagenome profiles.

Investigation into the number of reads per sample 
showed variation was largely driven by the systematic 
effects of Library, the combined effect of freeze dryer and 
grinding Batch and freeze dryer Shelf, and Well position. 
Library effects can encompass a variety of things, such 
as library preparation and flow cell differences. Batch 
and Shelf effects encompass a variety of other effects in 
this analysis, as they were intentionally confounded with 
other “nuisance” factors, such as DNA extraction date, 
the person doing the DNA extraction and grinding of 
the rumen samples, as well as potential differences due 
to the shelf and batch of freeze drying. Well effects were 
the effect of a particular well position across all the plates 
in our study, and would encompass systematic effects 
in either the machines that do the pipetting (e.g., if one 
pipettes slightly more of sample A1 into the library), or 
due to differences in the ability of the barcodes to effi-
ciently ligate to the sequences. In contrast, the propor-
tion of reads assigned using the RB or RF approach was 
more strongly driven by biological factors such as Group 
and Cohort effects. An exception to this was the large 
impact Library had on the proportion of reads assigned 
using the RF approach (34%; Table 3). O’Leary et al. [20] 
explain that library effects can be attributed to several 
factors, including differences in reagents, laboratory 
ambient temperature, DNA quality and DNA concen-
tration. These factors cannot be fully avoided, but ran-
domization of samples from different treatments across 
libraries, as done in our study, can mitigate these effects. 
O’Leary et al.’s [20] description of Library effects was in 
reference to genotyping-by-sequencing but also applies 
to RE-RRS for metagenome profiling. The RF approach 
for metagenome profiling introduces an additional source 
of variation between libraries: some sequences may be 
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common in some libraries and rarer in others, which may 
impact the tags that are identified, and therefore the pro-
portion of reads captured in the RF profile. Tag selection 
will be influenced by the variation in samples included in 
a dataset, and unbalanced representation of host geno-
types, diets or environments can be expected to skew 
tag selection. There was a moderately high correlation 
between the RB and RF proportion of reads assigned for 
a Library (Pearson = 0.663; Spearman = 0.739), however 
Library had a much smaller impact on the proportion of 
reads assigned using the RB approach compared to the 
RF approach (6.66% vs 34.00%; Table 3), suggesting that 
the large Library effect for the RF assignment rate may 
be due to the increased resolution of using this approach 
compared to the RB approach.

A distinct set of tags was generated for each Group, 
with some Groups showing more similar tag sets than 
others (Fig. 1). Groups that differed by only the age of 
the sheep (e.g., GAS vs GLS) had the most similar sets 
of tags, followed by those that were collected a short or 
long time off feed (e.g., GAS vs GAL), with the biggest 
differences in tag sets being between Groups from dif-
ferent diets (e.g., GAS vs MAS). The tag set generated 
on the Australian dataset (AUS) had the most distinct 
tag set, which is not surprising given the diverse envi-
ronmental conditions in Australia compared to New 
Zealand.

In this study, time off feed was also confounded with 
location for the New Zealand samples, because those that 
were collected after only a short time off feed were from 
the lower part of the South Island of New Zealand (near 
Dunedin and Invercargill), while those that were col-
lected after a longer time off feed were collected in the 
lower part of the North Island (in Palmerston North). 
This may have some impact on conclusions from the 
Grass diet, with pasture compositions and quality likely 
differing between the two locations. Although we do 
expect some differences in metagenome profiles from 
samples collected a short or a long time off feed [19], this 
may be an explanation for the extent of the differences we 
observe between these Groups (Figs.  1A, 3, 4A, 5A, 6A 
and 7A).

Our study has shown that the major influences on 
microbial abundances are similar for the range of 
microbes represented in the Hungate1000 Collection, 
however, there are some other, typically more minor 
influences, that are not so consistent. For example, in 
our study, the Cohort effect captures the major environ-
mental parameters (diet, age, time off feed, and Cohort). 
Therefore, for prediction purposes, a Cohort adjustment 
will adjust those taxa for the major effects on abundance, 
while avoiding over-adjustment, which would likely 

result in a loss of important signal. However, when using 
RE-RRS metagenome profiles to evaluate individual taxa, 
it may be important to include systematic and biological 
effects such as Library, Batch, Shelf, Well, BRR, AOD and 
BDEV in the model.

Relationships between samples from different Groups
We employed a network-based approach to explore the 
key drivers of similarities between microbial profiles 
using four different methods of microbial profiling: RB 
(Fig. 4), RF with tags generated on the full set of samples 
(Fig. 5), RF with tags assigned taxonomy at the genus level 
(Fig. 6), and RF considering the set of tags that were pre-
sent in all of the eight Groups (Fig. 7). In all cases, sam-
ples primarily clustered by differences in diet (Figs.  4A, 
5A, 6A and 7A), however, within a diet, there was fur-
ther clustering based on Group and there was no obvi-
ous clustering based on methane selection line (Figs. 4C, 
5C, 6C and 7C). The RF approach was shown to be more 
sensitive at capturing relationships between samples, 
for example, the RF approach (Fig. 5) had stronger rela-
tionships between samples within each Group (tighter 
clusters) and weaker relationships between samples in 
different Groups (clusters are further apart from each 
other) than the RB approach (Fig. 4).

After Cohort adjustment, network diagrams from the 
RB profiles (Fig.  4) did not show clustering based on 
Group, although network diagrams from the RF profiles 
(Fig.  5) still showed some structure based on Group. 
Because the RF profiles were generated from a set of 
tags that were present across all samples, some tags 
would be unique to a particular Group (Fig.  1). There-
fore, the clustering that remained after Cohort adjust-
ment was likely due to some of the tags being fixed (e.g., 
abundance of zero) in some Groups and varying in oth-
ers, thereby being relatively unaffected by the Cohort 
adjustment approach we have used in this study. Based 
on our approach of normalizing within Cohort, if there 
were some Cohorts or Groups where several tags were 
not captured, these tags would be reducing the relation-
ship coefficient (correlation) between samples from dif-
ferent Groups compared to a profiling approach that 
did not include these tags. This is supported by network 
diagrams from profiles with tags assigned at genus level 
(Fig. 6) and profiles with tags present in the tag set of all 
Groups (Fig. 7), where the unadjusted network diagrams 
showed the different Groups appearing closer together 
than when using the full RF profiles (Fig. 5).

Sheep with extremely high or low methane emissions 
have been shown to have different rumen microbi-
omes [2], therefore it was unexpected that samples did 
not appear to cluster by methane selection line in the 
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unadjusted network diagrams (Figs. 4C, 5C, 6C and 7C). 
However, in Kittelmann et  al. [2], the sheep were fed a 
single diet and were from a single Cohort, therefore there 
were fewer environmental influences on the microbial 
profiles than in the present study. In the present dataset 
there was the presence of a signal of the large environ-
mental effects of Group and Cohort and, after adjusting 
profiles for these effects, samples showed clear clustering 
based on methane selection line (Figs.  4D, 5D, 6D and 
7D). The PERMANOVA analysis of relative abundances 
of RB and RF metagenome profiles showed that although 
the methane selection line signal was not observed in the 
network diagrams, there was still clear clustering based 
on methane selection line, even though the Group effects 
are much stronger. This shows that environmental factors 
may mask important biological signals [11] but biologi-
cal signals are still present within the profiles, and can be 
revealed by using Cohort-adjusted metagenome profiles 
from RE-RRS. Additionally, the clear separation of the 
selection lines observed after Cohort-adjustment sug-
gests that these profiles are likely to be reasonable predic-
tors of methane emissions.

Taxon abundances
Our RB approach used the Hungate1000 Collection [13] 
to assign sequences to taxa at the genus level. The Hun-
gate1000 Collection contains genome assemblies of many 
cultured microbes from a variety of ruminant species, 
and these genome assemblies represent every cultivated 
rumen-associated archaeal and bacterial family. However, 
there are numerous microbes that are currently unable to 
be cultured and therefore RB microbial profiles based on 
the Hungate1000 Collection will be missing important 
microbes.

Although the RF approach, by definition, would not 
typically involve the taxonomic assignment of tags, 
we felt it was valuable for the purposes of this study 
to explore the extended taxonomic range that the RF 
approach was able to capture compared to the RB 
approach. Table 4 showed that the proportion of tags that 
were able to be assigned to a particular taxonomic level 
was consistent across the different tag sets in our study, 
and the largest change in the proportion of tags assigned 
was approximately 10% between the species and genus 
levels, with the difference between genus and domain 
assignment rates being less than 10%. This is likely due to 
the optimization of the RF approach to assign taxonomy 
at the genus level, as described by Hess et al. [12]. How-
ever, it also indicates that some tags will be representa-
tive of multiple genera within a family, while others may 
be representative of intra-species variation. The highest 
assignment rates were from the tag set where tags had to 

be present in all of the eight Groups in our study. Assign-
ment rates were similar between Groups and even the 
proportion of tags with taxonomy assigned was consist-
ent between the NZ and AUS tag sets at all taxonomic 
levels. This is likely because taxa that are present across 
a range of diets and environments are more likely to have 
genome assemblies, and therefore appear in our data-
bases, than those that have a more specific niche.

Taxonomic assignment of tags (Fig. 2) showed reason-
ably similar results to those reported by Hess et al. [12], 
although a smaller proportion of reads was unassigned 
(58% compared to 71%). The major taxa identified within 
each domain were also consistent with those reported by 
Hess et al. [12], although these generally had a slightly dif-
ferent proportion of tags assigned to each of them. These 
observations were most likely caused by the reads in our 
current study needing to be present in 25% of samples 
from a range of diverse environments and diets, com-
pared to the single environment and diet the sheep from 
Hess et al. [12] were exposed to. Therefore, it is important 
to carefully consider the set of samples used to generate 
the tag set when using the RF approach to avoid removing 
informative sequences prior to downstream analysis.

Taxon abundances were reasonably consistent between 
the RB and RF approaches (Fig.  3), however there was 
some rearrangement in abundance rankings of some 
families. Prevotellaceae was the most abundant rumen 
microbe in all Groups, consistent with other stud-
ies in ruminants [2, 11]. The RF approach resulted in a 
larger proportion of the metagenome profile assigned 
to the “Other” category, which contained families with 
sequences present at less than 1% of bacterial or archaeal 
sequences, showing that it was capturing a broader range 
of rare taxa. Additional genome assemblies in the Gen-
Bank database can cause a reordering of the abundance 
of families in two ways: firstly, sequences that were origi-
nally unassigned based on the Hungate1000 Collection 
may be assigned under the RF approach, causing new 
families to emerge in the RF plot (Fig.  3B) compared 
to the RB plot (Fig.  3A); secondly, sequences that were 
assigned to one taxon using the Hungate1000 Collection 
may have a better match with a genome from a different 
family in the GenBank database, which may result in the 
reordering of affected taxa. Other taxa may be captured 
by RB profiles but not RF profiles: Streptococcaceae is an 
example of a family that was captured at high abundance 
(> 1%) in the RB approach but not in the RF approach. 
This was because Streptococcaceae had low abundance 
in all but the Australian samples, and so many sequences 
originating from this family likely did not reach the 25% 
prevalence threshold to be considered tags when the tag 
set was generated across all samples.
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Heritability and repeatability estimates
Repeatability of taxon abundance is a measurement of 
how consistent the abundance of a particular taxon is 
between different samples taken on the same individ-
ual. Heritability of taxon abundance is a measure of the 
extent to which the abundance of a particular taxon is 
more similar in samples from related sheep than unre-
lated sheep. Heritability is a component of repeatability, 
and so repeatability estimates are equal to or higher than 
heritability estimates. Host genetics have been shown to 
play an important role in gut microbial abundances in a 
range of species, e.g., humans [21], mice [22], and cat-
tle [9, 10]. Taxa that are heritable or repeatable provide a 
valuable source of information for selection of individu-
als, for either genetic selection, or animal management 
purposes, respectively.

Heritability and repeatability of taxon abundances were 
estimated based on the three datasets: sheep fed grass, 
sheep fed lucerne pellets and all New Zealand samples 
(Figs.  8 and 9, and Additional File 4). Heritability and 
repeatability estimates were not calculated for the Aus-
tralian samples because the dataset was small and there 
was only one rumen sample for each individual, encum-
bering the ability to obtain reliable estimates. Corre-
lations between sheep fed grass and all New Zealand 
samples were highest because the samples from sheep 
fed grass made up the majority of the full New Zealand 
dataset. Heritability and repeatability estimates from the 
lucerne pellet diet tended to be higher than those from 
the grass dataset. Two reasons for these higher herit-
ability estimates may be: (1) the lucerne pellet diet is a 
more consistent diet than the fresh ryegrass-based pas-
ture, which changes in composition from day-to-day, 
with changing seasons and from different regions of New 
Zealand; and (2) the samples collected from sheep on the 
lucerne pellet diet were all collected from lambs, whereas 
samples collected from sheep on the grass diet were col-
lected from both lambs and adults. Increased variation 
in diet and age may increase the environmental varia-
tion of taxon abundances, resulting in lower heritability 
estimates. The correlation of heritability and repeatabil-
ity estimates between the three datasets were moderate 
to high, suggesting that the host control of the rumen 
metagenome is reasonably consistent across these differ-
ent environments.

Quinella and Succiniclasticum were two genera that 
had high heritability and repeatability estimates from 
both the RB and the RF profiles (Figs. 8 and 9 and Addi-
tional File 4). A number of genera that were identified as 
highly heritable or repeatable in the RF profiles are likely 
to be mis-assigned. Steinegger and Salzberg [23] identi-
fied over two million contaminated genome assemblies 
in GenBank, and De Simone et  al. [24] discussed how 

easily bacterial (and other) sequences can contaminate 
genomes and suggested ways to reduce the likelihood 
of this occurring. Buceros is a genus of hornbill and had 
one of the higher heritability estimates and was in the top 
40% of most common genera, indicating that a microbe 
that is closely related to a rumen microbe is likely to have 
been unintentionally inserted into a Buceros genome 
assembly. Another unexpected genus that was identi-
fied as heritable and repeatable from the RF profiles was 
Apis, representing honeybees, and an explanation for this 
is not clear. It is feasible that a honeybee may have been 
present in the rumen of sheep if the sheep ingested one 
while foraging; however, in this situation the chance that 
the abundance of Apis sequence in the rumen is heritable 
is reasonably low. Apis abundance could be heritable if it 
was related to foraging behavior (e.g., some sheep may 
preferentially graze clover which may be more likely to 
have honeybees in it), however the heritability estimate 
of 0.21 ± 0.04 in the Grass dataset is reasonably high. It 
is also possible that the honeybee genome contains con-
taminated sequence from the environment, given that 
Apis was significantly heritable in both the Grass and 
Lucerne Pellet datasets.

Reference database design
The ability to assign taxonomy to reads or tags is limited 
by the reference database that is being used and gaps in 
current databases mean that informative taxa are likely 
not being captured within our current metagenome 
profiles. Improvement in the reference databases used 
to assign taxonomy to reads or to cluster tags would be 
valuable. This would require a concerted effort, since 
high confidence taxonomic assignment of sequences 
can be time consuming and expensive, especially on a 
large scale. The Hungate1000 Collection is a database of 
high-quality genome assemblies from cultured microbes, 
where the taxonomy is reliably known; however, it is from 
a limited number of taxa. In comparison, the GenBank 
database contains a much larger taxonomic range, but 
the taxonomy and quality is known with less confidence 
[23]. There are cases where contamination in genome 
assemblies can lead to incorrect taxonomic assignments 
[23, 24], and in the case of our approach, this can lead to 
either incorrectly assigned or unassigned tags, depending 
on whether there were similar sequences with the correct 
taxonomic assignment in the database. Although the tax-
onomic range of the GenBank database is larger than the 
Hungate1000 Collection, it is by no means complete and 
uncultured microbes are still underrepresented [25]. An 
example of this is the appearance of taxonomic groups 
such as Halobacteria (Fig.  2), which is indicative that a 
group of methanogens is missing from the GenBank 
database, as Halobacteria are not found in the rumen 
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(they are found in high-salt waters, e.g., the Dead Sea) 
but are close relatives of some known methanogens.

The additional families that were identified in the RF 
metagenome profiles but not in the RB metagenome 
profiles (Fig.  3) provide a source of additional genome 
assemblies that may be valuable to include in the refer-
ence database for the RB approach. In particular, genome 
assemblies from the Rikenellaceae family, the RC9 gut 
group, have been poorly classified but are thought to be 
able to degrade cellulose and play an important role in 
rumen fermentation [11, 13], and therefore may play an 
important role in traits such as methane emissions and 
feed efficiency. The abundance of the Rikenellaceae RC9 
gut group has previously been shown to be negatively 
associated with average daily gain in sheep fed a con-
centrate diet [26] and abundance tends to be higher on 
low-starch or forage-based diets in a variety of ruminant 
species [27–30]. The RC9 gut group is present within 
the full Hungate1000 Collection, however due to our 
approach of assigning taxonomy at the genus level, the 
RC9 genomes are not currently part of the set of assem-
blies considered in the RB approach as their taxonomy is 
not known to the genus level.

Metagenome-assembled genomes (MAGs) are puta-
tive genome assemblies that are obtained from whole-
metagenome sequencing of one or more metagenome 
samples. Catalogs of MAGs have been generated in a 
wide range of environments, including various sites on 
the human body [31], cattle rumens [32] and thermal hot 
pools [33]; and have been shown to vastly improve the 
number of mapped reads compared to traditional data-
bases of genome assemblies, such as the Hungate1000 
Database [13] for rumen samples. One major reason for 
this improvement is that MAG catalogs typically capture 
uncultured microbes, which are largely unrepresented in 
most genome assembly databases [25]. Although the cap-
ture of novel genome assemblies improves the number 
of reads mapped, many MAGs don’t have a taxonomic 
assignment, therefore it may be difficult to bin reads if 
they map to multiple MAGs. Another complication with 
MAGs is that a given MAG may be a chimera of mul-
tiple true genomes, and clustering tags or reads based 
on mapping to chimeric genome assemblies may result 
in the loss of signal if that tag is associated with a trait 
of interest. Stewart et  al. [32] were able to use a MAG 
catalog generated from cattle rumen samples to improve 
the proportion of reads mapped from sheep rumen sam-
ples from ~ 15% to ~ 55%. The sheep samples used in 
Stewart et al. [32] were from Shi et al. [34] and included 
individuals selected for high and low methane emissions. 
Shi et  al. [34] found no significant differences in gene 
abundance between high and low methane individuals, 
while Stewart et al. [32] were able to identify significant 

differences in abundance of particular taxa and MAGs 
between the high and low methane animals. This high-
lights the potential of MAG catalogs for improving the 
amount of information that can be used from RE-RRS of 
rumen metagenome samples by increasing the number 
of reads or tags that can be assigned. This may improve 
the ability to associate rumen metagenomic profiles with 
traits of interest.

Profiling approaches for the future
We explored two different approaches for metagen-
ome profiling: a reference-based (RB) and a reference-
free (RF) approach. Metagenome profiles from the RB 
approach are currently restricted to capturing organ-
isms that are present in the Hungate1000 Collection [13] 
plus four Quinella genomes, and are therefore limited 
to culturable microbes. Metagenome profiles from the 
RF approach are not restricted in this way, and we have 
shown that this approach captures a much broader tax-
onomic range (Figs.  2 and 3). However, Cohort adjust-
ment of the RF profiles did not remove biological effects 
of Group to the same extent as was seen in the RB pro-
files (Figs. 4 and 5). This is likely due to several tags being 
absent for some Cohorts (i.e., zero counts for a tag for all 
individuals in a Cohort), resulting in little to no impact 
of Cohort adjustment for those tags. There are numer-
ous filtering and clustering methods that could be used 
to overcome this issue. We explored two approaches: (1) 
clustering tags based on taxonomic assignment at the 
genus level and (2) filtering tags such that only tags that 
were identified in all of the eight Groups were included, 
i.e., those that were prevalent across a wide range of envi-
ronments. The profiles based on clustering (Fig.  6) and 
filtering (Fig. 7), RF tags only account for 12.1 ± 2.3% and 
8.1 ± 1.8% of reads, respectively, compared to 29.2 ± 3.8% 
for the full RF profiles and 20.8 ± 3.5% for the RB profiles. 
However, the clustered (Fig.  6D) and filtered (Fig.  7D) 
metagenome profiles actually show clearer clustering by 
methane selection line than the full RF (Fig.  5D) or the 
RB profiles (Fig.  4D), indicating that these profiles may 
be more robust. These results show that RF metagenome 
profiles can be filtered or clustered to reduce dimension-
ality without a loss of meaningful biological signal.

A heritable genetic component to rumen metage-
nome composition provides an avenue for sustained 
differences in rumen metagenome composition across 
generations and, consequently, traits influenced by the 
rumen metagenome (e.g., feed efficiency and green-
house gas emissions). Repeatability represents the 
robustness of the abundance of taxa across time and 
provides an opportunity to use metagenome profiles to 
select individuals who will have reduced methane emis-
sions across their lifetime. We have shown that several 
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genera from both RB and RF approaches are heritable 
and repeatable (Figs. 8 and 9), indicating that selection 
on the rumen metagenome will be sustained across an 
individual’s lifetime, as well as across generations. Fil-
tering metagenome profiles to retain only those taxa 
or tags that are heritable is one approach that would 
reduce the metagenome profile to the subset that is able 
to produce sustained differences in metagenome pro-
files across generations and may reduce the noise in the 
RF metagenome profiles.

A Metagenome Wide Association Study (MWAS) 
could be performed to identify associations between the 
abundance of each genus or tag and a trait of interest 
(e.g., methane emissions). This approach could provide 
an additional source of information for filtering tags or 
genera to generate a metagenome profile that is designed 
specifically for predicting a trait of interest. Care would 
need to be taken when using this approach to ensure the 
dataset is large enough to perform this type of analyses 
(e.g., thousands of individuals with metagenome pro-
files and phenotypes for the trait of interest) and select-
ing only the taxa that are significantly associated with the 
trait of interest could result in the omission of other taxa 
that are associated with the trait.

The different approaches for generating microbial 
or metagenome profiles in this study show the flex-
ibility of RE-RRS for a variety of different studies. The 
RB approach was based on a database of high-quality 
microbial genome assemblies where taxonomies were 
reliably known, however, while taxonomic assign-
ments from this approach were known with high con-
fidence, they only covered a limited taxonomic range. 
Future studies could use a more comprehensive data-
base, including GenBank and MAG databases to cap-
ture a much broader taxonomic range. However, using 
a large database such as this would drastically increase 
computation time when obtaining metagenome pro-
files on a large number of samples, as was done in 
our study. The RF approach was shown to capture a 
greater proportion of sequences than our RB approach 
without the additional step of taxonomic assignment. 
Taking such a black box approach is suitable for use 
in an MRM for trait prediction, but (on its own) may 
limit the biological insight that could be gained if tax-
onomy was known. We assigned taxonomy to RF tags 
using the sheep genome, Hungate1000 Collection and 
GenBank to investigate the taxonomic range. While 
this approach could allow biological insights beyond 
the standard RF approach, we found that there were 
fewer reads assigned when clustering tags based on 
taxonomic assignment at the genus level than even 
the RB approach, showing that clustering RF tags may 
miss some meaningful biological signal. The method 

to get the highest assignment rates is likely to be 
the RB approach using a database that contains the 
sheep genome, Hungate1000 Collection, GenBank, and 
rumen-specific MAG databases; however, the com-
putational requirements for this approach would be 
extreme, and not consistent with a high-throughput 
metagenome profiling approach. The most suitable 
approach for bioinformatic processing of RE-RRS reads 
into metagenome profiles is therefore clearly dependent 
on the purpose of the analysis to be undertaken.

Towards integrating metagenome profiles in trait 
predictions
The integration of rumen metagenome profiles into 
predictions of economically and environmentally 
important traits has been investigated in several species 
and traits [5, 6, 10, 35, 36], however research published 
to date has used relatively low numbers of samples due 
to the lack of availability of a low-cost, high-through-
put metagenome profiling approach, such as RE-RRS. 
Many of these studies have generated a microbial 
relationship matrix (i.e., MRM), calculated in a vari-
ety of ways, to represent the relationships between 
samples, followed by a microbial BLUP (i.e., MBLUP) 
approach [5, 6]. As discussed by Ross and Hayes [37], 
these studies have shown promise for using microbial 
profiles to predict individual performance. While not 
addressed directly in our study, clustering of individu-
als by methane selection line suggests an ability to pre-
dict environmentally important traits in sheep using 
this information. If metagenome profiles can be used 
as proxies for traits such as feed efficiency or methane 
emissions, then the need to collect these expensive and 
time-consuming phenotypes on large numbers of ani-
mals is greatly diminished.

The ability of a method to predict performance is 
dependent on the information content contained within 
the predictor. The RF approach captured a greater propor-
tion of reads per sample than the RB approach, consist-
ent with findings from Hess et al. [12], even when RF tags 
were generated on the full dataset (All Samples; Table  2 
and Additional File 2). Unlike 16S rRNA gene sequencing 
or using a bacteria-oriented reference database (i.e., the 
Hungate1000 Collection), information on other organisms 
within the rumen (e.g., parasites) are additionally captured 
using the RF approach (Fig. 2). The RF approach was shown 
to be a more powerful approach to generating metagenome 
profiles than the RB approach, with samples from sheep 
fed the same diet clustering more closely together than 
samples from sheep fed different diets in the network dia-
grams (Figs. 4A and 5A). This indicates that metagenome 
profiles from our RF approach may be more successful at 
predicting traits of interest than RB metagenome profiles. 
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Hess et al. [38] explored the use of different metagenome 
profiles from this study for prediction of a variety of eco-
nomically and environmentally important traits. The large 
dataset presented in our paper provides a valuable resource 
for developing and benchmarking different approaches to 
integrating metagenomic profiles into trait predictions, and 
this is the current focus of ongoing research.

Conclusions
RE-RRS is a high-throughput approach that can be used to 
cost-effectively obtain thousands of rumen metagenome 
profiles. We have shown that the variation in rumen metage-
nome profiles generated in sheep using RE-RRS is controlled 
by both the host (i.e., genetics, age) and its environment (i.e., 
diet, Cohort). After normalization of relative abundances 
within Cohort, a methane yield selection line signal was 
detected. Using an RB or RF approach to generate rumen 
microbial profiles resulted in similar relationships between 
samples, however, the RF profiles showed clearer separation 
between Groups, overcoming the limitations of an incom-
plete reference database. Although a RF approach provides 
more information, reduction of noise through filtering or 
clustering allowed a stronger signal to be realized. The influ-
ence of genetics on rumen metagenome profiles suggests the 
potential to select on the rumen microbiome to make sus-
tained progress in other related traits, such as methane emis-
sions. These results are promising for the ability to accurately 
predict methane emissions across diet, age, and generation, 
but also highlight the importance of adjusting Cohort effects 
out of metagenome profiles prior to prediction.

Methods
The animal experiments conducted in New Zealand 
adhered to the guidelines of the 1999 New Zealand 
Animal Welfare Act and AgResearch Code of Ethical 
Conduct. New Zealand trials of the current study were 
approved by the AgResearch Invermay (Mosgiel, NZ) 
and AgResearch Grasslands (Palmerston North, NZ) 
Animal Ethics committees under approval numbers 
12414, 13,081, 13,419, 13,563, 13,742, 13,892, 14,055, 
14,066, and 14,221. Australian animal experiments were 
approved by the University of New England Animal Eth-
ics Committee, under AEC 15–021.

Rumen sample collection
Rumen samples were collected in New Zealand and 
Australia on a total of 1,708 sheep. Most New Zealand 
sheep had multiple samples collected on them, while 
only one sample was collected from the Australian 
sheep. Rumen samples on New Zealand sheep were 
collected under multiple different conditions, including 
diet, age, time off feed before the sample was collected, 

and whether they were fed ad libitum or at a restricted 
feeding level. New Zealand samples were classified into 
seven different Groups along with an additional Group 
for the Australian sheep, as outlined in Table 1. Further 
details about the collection and processing of the sheep 
samples are described below.

New Zealand animals and rumen sample collection
Sheep rumen contents (~ 30 mL) were sampled via 
stomach intubation followed by freezing at − 20 °C. 
Samples were collected from 1,200 dual-purpose com-
posite ewes, with 3.3 ± 1.4 samples collected per sheep, 
totaling 3,971 New Zealand samples (Table  1). These 
samples were collected as part of a variety of feed intake 
[39] and methane [18, 40, 41] measurement trials at the 
Grasslands (Palmerston North), Invermay (Mosgiel) and 
Woodlands research farms of AgResearch in New Zea-
land. Across the trials, the animals were sampled when 
they were on three different diets: lucerne (alfalfa) pel-
lets, maintenance (low metabolizable energy) pellets, 
or New Zealand ryegrass-based pasture; at two differ-
ent life stages: lambs (< 15 months) and adults (> 15 
months); and two different times off feed: a short time 
off feed (2–4 h) or a long time off feed (15–16 h). Ani-
mals were born between 2014 and 2016 and were from 
three New Zealand sheep flocks: one AgResearch flock 
(Flock 2638), one selection line flock containing sheep 
selected for high or low methane yield (Flock 3633) [16, 
17], and one Central Progeny Test flock (Flock 4640). 
There were 118 sires represented across the 1,200 sheep 
and each sire had 10 ± 5 offspring. Further details for 
each sample can be found in Additional File 1.

Australian animals and rumen sample collection
Australian rumen samples were collected from sheep that 
were part of a methane experiment as described by Rob-
inson et  al. [42]. Animals were fed a diet of equal parts 
chaffed alfalfa and cereal hay (Manuka Feeds, Quirindi, 
NSW) at 1.5 or 1.6 maintenance requirements, calcu-
lated from the weight of the animals prior to transport. 
Ewes were measured twice in portable accumulation 
chambers (PAC) and twice in respiration chambers (RC) 
across seven trials run in Armidale, New South Wales, 
Australia, between April 2015 and March 2016. Rumen 
samples were collected by stomach intubation approxi-
mately 10 min after the second PAC measurement was 
completed, when the sheep had been off feed for approxi-
mately 2 h. Sheep used in that study consisted of Infor-
mation Nucleus Flock follower ewes, born between 
August 2007 and October 2013. These ewes are primar-
ily Merinos and are representative of, and have genetic 
links with, the genotypes currently used in the Australian 
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sheep industry [43, 44]. The 488 sheep that had rumen 
samples came from 176 sires [45]. Additional details for 
each sample can be found in Additional File 1.

Sample processing
New Zealand samples: Freeze drying
The New Zealand samples were freeze dried at 
AgResearch Ltd.’s Invermay campus. Samples were ran-
domly allocated into Batches of ~ 93 samples based on 
sampling Cohort, as they became available for freeze 
drying (i.e., Cohorts were spread across Batches). Two 
Batches of samples were freeze dried simultaneously. 
Samples had their lids removed and were placed on stain-
less steel trays in a − 20 °C freezer for approximately four 
hours. Samples from each Batch were randomly allocated 
across the five shelves of a CHRIST Gamma 1–16 LSC 
plus freeze dryer (CHRIST, Osterode am Harz, Ger-
many). In the first 10 min, the freeze dryer reduced the 
pressure from 1000 mbar to 0.5 mbar, this pressure was 
held for the next six hours, before dropping to 0.3 mbar 
over the next 96 h and held at that pressure until they 
were removed from the freeze dryer seven days after they 
were put in. After freeze drying, the lids were immedi-
ately replaced, and the samples returned to the − 20 °C 
freezer.

Australian samples: Freeze drying
The 508 Australian samples were freeze dried at the Uni-
versity of New England using 5 different freeze-drying 
approaches. These approaches are outlined in Addi-
tional File 5, along with a comparison of the different 
approaches and justification for inclusion of all sam-
ples in this manuscript. Two freeze driers were used for 
the Australian samples: a CHRIST Alpha 1–4 LD plus 
freeze drier (CHRIST, Osterode am Harz, Germany) and 
a Dynavac FD-PILOT 7–12 freeze drier (Dynapumps, 
Seven Hills, NSW, Australia).

Australian samples: Transport
To transport freeze dried samples to New Zealand, 
small groups of samples were taken from the freezer 
and placed on ice. Individual samples were opened, 
then the contents were broken up and stirred using a 
fresh pipette tip for each sample. The whole dried sam-
ple was tipped into a 5 mL tube and the lid screwed 
on. The label from the initial sample was peeled off 
and placed on the new 5 mL tube. Samples were then 
returned to the − 20°C freezer. Samples were shipped 
on dry ice from Armidale, NSW, Australia to Mosgiel, 
New Zealand and arrived frozen with no indication 
they had defrosted during shipping.

All samples: grinding
Freeze dried samples were ground into a powder to 
homogenize the sample so that the subsample that DNA 
was extracted from was representative of the full sam-
ple. Samples were ground using a Magic Bullet kitchen 
blender (NutriBullet New Zealand, Auckland, New Zea-
land) with a custom-made cup. Samples from Australia 
and those from the grass diet were ground for 10 s con-
tinuously, whereas samples from the pellet diet required 
30–40 s of grinding, in 5–10 s pulses, to appropriately 
homogenize. A small number of samples needed an 
additional 5 s of grinding to homogenize. New Zealand 
samples that were from the same Batch and freeze dried 
on the same Shelf were ground in the same session. Aus-
tralian samples that were freeze dried using the same 
approach were in the same Batch for grinding; however, 
the largest set was too large to grind in one session, so 
the samples were processed in smaller Batches, ensuring 
that samples from the same trial were in the same Batch 
for grinding.

DNA extraction and sequencing
DNA was extracted from rumen samples using a com-
bined bead-beating, phenol and column purification 
protocol using the QIAquick 96 PCR purification kit 
(Qiagen, Hilden, Germany), as described in Text S1 of 
Kittelmann et  al. [2], to provide high quality nucleic 
acids for RE-RRS. RE-RRS was carried out as described 
by Hess et  al. [12]. Briefly, after digestion of DNA by 
the restriction enzyme PstI, barcodes were ligated 
to link sequences to samples, as described by Elshire 
et  al. [46] with modifications as outlined in Dodds 
et  al. [47]. Four 96-well plates (one plate per freeze-
dried batch) were grouped into each library and PCR 
amplified with 18 cycles. Assignment of samples to 
wells within a plate was random. Amplified sequences 
between 193 and 318 bp were selected using a Pippin 
Prep (SAGE Science, Beverly, Massachusetts, USA) 
and each library was run on a single lane of a flow cell 
on an Illumina HiSeq2500 machine (San Diego, Cali-
fornia, USA), generating 101 bp single end reads using 
version 4 chemistry. Sequencing ~ 376 samples per 
lane was shown to be a very conservative sequencing 
depth by Hess et  al. [12], who found that there could 
be 10 times this number before there was any loss in 
metagenome diversity.

Metagenome profiling
Demultiplexing and trimming were carried out using 
GBSX [48] and Cutadapt [49]. GBSX was run using 
default parameters except no mismatches were allowed 
in the barcode or cut site. Cutadapt was run with a Phred 
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quality score threshold of 20 and a minimum length of 
40 base pairs. All samples with fewer than 100,000 reads 
after quality control were considered failed samples. 
Failed samples were re-sequenced in another Library and 
if they failed again the sample was removed from future 
analyses. After this quality control, sequences were run 
through both the reference-based (RB) and the reference-
free (RF) pipelines, briefly described below, with further 
details in Hess et al. [12]. Both pipelines produce a table 
of counts with one row per sample and one column per 
genus (RB) or tag (RF).

Reference‑based pipeline
The RB pipeline used nucleotide BLAST (task = blastn, 
word size = 16, e-value = 0.01) in BLAST v2.2.28 + [50] 
to compare sequences against a reference database. Tax-
onomy of sequences was assigned using an R implemen-
tation of the algorithm from MEGAN [51] with default 
parameters. The microbiome profile for each sample 
was the number of sequences assigned at the genus level 
for each of the 61 genera represented in the reference 
database.

The reference database contained four Quinella 
genome assemblies [14] as well as a filtered version of 
the Hungate1000 Collection of rumen microbial genome 
assemblies [13]. Filtering of the Hungate1000 Collection 
involved the removal of genome assemblies where tax-
onomy was not known to the genus level (e.g., taxonomy 
only known to family or order level), to maximize the 
number of reads that could be assigned at the genus level 
using the MEGAN algorithm.

Reference‑free pipeline
The RF pipeline generated a set of “tags”, which are non-
redundant 65 base pair long sequences that commence 
at the initial cut site and are observed in at least 25% of 
samples. The metagenome profile contains the number 
of times each tag is observed in each sample. Tags were 
generated for the set of all samples, as well as separately 
for each of the Groups in Table 1 using an in-house Unix 
script. Any sequences that were shorter than 65 bp were 
ignored, as they did not match the full 65 bp tag.

Filtering and clustering of reference‑free tags
Given the large number of tags that were generated from 
the RF pipeline, we investigated one method for filter-
ing tags and another method for clustering tags. The 
approach to filter tags retained only the tags that were 
identified in all eight Groups. The second approach was 
to cluster the set of tags that was generated on all sam-
ples (i.e., the “All” set) based on taxonomy. The first step 
in assigning taxonomy to tags was to compare the tags 
against the sheep genome (OAR 3.1) using bwa mem [52] 

with default parameters, and considering those tags with 
a flag of 0 or 16 (i.e., uniquely mapping in the forward 
or reverse direction) to be tags that come from sheep. 
The second step to assigning taxonomy to tags was to 
use nucleotide BLAST (task = blastn, e-value = 0.01) in 
BLAST v2.2.28 + [50] to compare tags that didn’t align to 
the sheep genome against our reference database (used 
for the RB approach) and GenBank [15]. Taxonomy was 
assigned to tags using the MEGAN algorithm written 
in R, as described in the RB section, however, only hits 
that had a bitscore equal to the top bitscore for that tag 
were considered. Tag taxonomies were considered at 
various taxonomic levels (e.g., domain, genus), and read 
counts of tags assigned to the same taxonomic group at 
the relevant level were summed together, with those not 
assigned at the given taxonomic level ignored.

Adjustment of metagenome profiles
Metagenome profiles from the RB and RF pipelines were 
transformed into relative abundance matrices by divid-
ing each count in the count matrix by the row sum (i.e., 
the number of reads assigned for that sample). Trans-
formation to  log10 proportions was performed by add-
ing one to all counts in the count matrix and dividing by 
the new row sum (i.e., the number of reads assigned for 
that sample plus the number of taxa) then taking the log 
with base 10. A “log10 normalized” metagenome profile 
was generated by normalizing each column in the  log10 
proportion matrix, such that each column had a mean 
of zero and standard deviation of one. In addition to 
this, a “Cohort-adjusted” metagenome profile was gen-
erated whereby each column of the unadjusted metage-
nome profile was  log10 normalized within Cohort such 
that within each column (i.e., genus or tag), each Cohort 
had a mean of zero and standard deviation of one. Nor-
malization in this way gives each microbe the same 
weighting in the profile regardless of their abundance, 
which avoids drowning out signals from lowly abun-
dant but potentially biologically important microbes. 
It also reduces any biases between genera/tags, such 
as genomes that have a larger or smaller proportion of 
their genome captured by RE-RRS because each genus/
tag abundance is reported relative to the average abun-
dance of that genus/tag.

Biological and systematic effects
Models were run in ASReml 4.1 [53] to evaluate sys-
tematic and biological effects on the number of reads, 
proportion of reads that were assigned using the RB 
and RF approaches, and the relative abundance of each 
genus from the RB  log10 normalized metagenome pro-
files. The systematic and biological effects on the rela-
tive abundances of each tag in the RF metagenome 
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profiles were not evaluated because there were typically 
over 200,000 tags for each of these datasets. Models 
were run using the New Zealand samples only, where 
model equations were of the form:

where y is the dependent variable: total number of 
reads, proportion of reads assigned, or taxon relative 
abundance; µ is the overall mean; Group is the fixed 
class effect of Group (Table  1); Cohort is the fixed 
class effect which included sampling cohort and flock 
(all individuals from a Cohort are in the same Group); 
Library is the fixed class effect of the library the sam-
ple was assigned to for sequencing; BatchShelf is the 
combined fixed class effect of the Batch and Shelf 
the sample was on for freeze drying; Well is the fixed 
class effect of the position on the plate (well) for DNA 
extraction and sequencing; BRR is the fixed class effect 
of birth and rearing rank, which is the combination of 
the number of lambs born to the individual’s mother at 
the time of their birth and the number of those lambs 
raised to weaning; AOD is the fixed class effect of age 
of dam at the time the individual was born (1, 2, 3 +); 
BDEV is the fixed covariate of the deviation of the indi-
vidual’s birth date from its contemporary group aver-
age; PE is the random animal permanent environmental 
effect with variance structure P σ 2

PE where P is a matrix 
linking samples from the same individual; and e is the 
residual with variance structure I σ 2

e .

Comparison of tags
Tags were generated from the full set of samples, as well 
as for each Group. To determine which Groups have 
more similar tag sets, a dendrogram was generated in 
R using the hclust function with method = “average”, 
based on a distance matrix that was computed as the 
proportion of tags that differ between Groups. Venn 
diagrams were generated using the VennDiagram 
package in R to compare the tags that were unique 
to a Group and those that were in common between 
Groups. These parameters are displayed in terms of the 
number of tags as well as the percentage of tags. Three 
Venn diagrams were generated: one for the sets consist-
ing of sheep fed a grass diet (GAS, GAL, GLL and GLS), 
one consisting of sheep fed a pellet diet (LLL, LLS and 
MAS) and one consisting of sheep from New Zealand 
(NZ) and Australia (AUS).

Relative abundance graphs
Relative abundances of bacterial taxa and archaea were 
compared between Groups using the RB profiles and the 

(1)y = µ+Group+Cohort+Library+BatchShelf+Well+BRR+AOD+BDEV+PE+e

RF profiles where the tags had been clustered based on 
taxonomic assignment. These graphs were generated in 
R using the barplot function and were visualized at the 
taxonomic level of family.

Network diagrams
Network diagrams were generated using NetView [54] in 
R using default values with the Walktrap algorithm and 
k parameter set to 150 to visualize relationships between 
samples. The network diagrams were generated using 
correlation matrices on both the  log10 normalized and 
Cohort-adjusted metagenome profiles. Each correlation 
matrix was generated using the cor function in R which 
resulted in an n × n matrix, where n is the number of 
samples. These network diagrams were generated using 
all samples. Network diagrams were coloured based on 
Group and methane selection line (with individuals from 
Flocks A and C coloured grey).

PERMANOVA Analysis
A PERMANOVA analysis was run on RB and RF profiles 
to identify whether profiles were significantly different 
between Groups, and between samples from different 
methane selection lines. Relative abundance profiles were 
analysed, with all samples used to analyze the effect of 
Group, and only samples from the methane selection 
lines used to analyze the effect of selection line. When 
testing Group effects, only Group was fitted in the model, 
but when testing selection line effects, both Group and 
selection line were fitted in the model. The analysis was 
run using the adonis2 function in the vegan package [55] 
in R with permutations = 999 and method = “bray”.

Heritability and repeatability
Animal Genotyping
The New Zealand animals were genotyped using Illu-
mina beadchip assays, ranging in density from 5,000 
to over 600,000 markers, with low density panels being 
imputed up to the greatest density panel using a large 
reference population of New Zealand sheep. The geno-
typing panels (number of animals) used included the 
AgR Custom 5k LD (n = 17,631), AgR Custom 6k LD 
(n = 8,798), ISGC 15K (n = 25,831), AgR Custom 18k 
LD v2A1 (n = 24,912) and AgR Custom 18k LD v2C1 
(n = 4,695), and the ISGC Ovine HD (n = 22,802) chips. 
SNPs were filtered such that (a) both probes uniquely 
mapped to the OAR 3.1 genome, (b) one probe mapped 
with zero mismatches, (c) no indels were found, and 
(d) both probes were in the same orientation and posi-
tion with exactly one mismatch (the target SNP). 
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Subsequently, each genotype panel was imputed from 
its respective density to the 568,142 SNPs retained on 
the ISGC Ovine HD panel using Beagle v5.1 [56] with 
default settings, except for effective population size 
which was set to 500. The phased and imputed set was 
then reduced to only include the 1,200 sheep from New 
Zealand used in this study (AgR Custom 5k LD: n = 124, 
AgR Custom 6k LD: n = 9, ISGC 15K: n = 613, AgR Cus-
tom 18k LD v2A1: n = 24, AgR Custom 18k LD v2C1: 
n = 3, ISGC Ovine HD: n = 430). A genomic relation-
ship matrix was calculated from all 568,142 SNPs using 
the first method of van Raden [57] and can be found in 
Additional File 6. No genotypes were required for the 
Australian samples as the dataset was small to calculate 
reliable heritability estimates.

Analysis
Heritability and repeatability were estimated for each 
genus in the reference database for the RB profile and for 
each genus in the RF profile where tags were clustered 
based on genus level taxonomic assignment. These esti-
mates were computed using three different sets of sam-
ples that consisted of (a) all the samples where sheep 
were fed grass (GAS + GLS + GAL + GLL), (b) all the 
samples were sheep were fed lucerne pellets (LLS + LLL) 
and (c) all the New Zealand samples. Each set had rumen 
samples from slightly more than 1,000 individuals and 
the number of samples varied between 1,361 and 3,971 
across the three Groups. Estimates were computed using 
Cohort-adjusted metagenome profiles and were run in 
ASReml 4.1 [53] using the model:

where y is the Cohort-adjusted  log10 proportion of each 
genus in the profile (i.e., each column of the Cohort-
adjusted metagenome profile); µ is the overall mean; 
Animal is the random animal genetic effect with vari-
ance structure G σ 2

g  where G is the genomic relationship 
matrix; PE is the random animal permanent environmen-
tal with variance structure P σ 2

PE and e is the residual with 
variance structure I σ 2

e .
The total variance was calculated as the sum of the 

variances due to the animal genetic effects, the ani-
mal permanent environmental effects and the residual 
effects (i.e., total variance = σ 2

T = σ
2
g + σ

2

PE
+ σ

2
e  ). The 

heritability was estimated as the variance due to the 
animal genetic effect divided by the total variance 
(i.e., σ 2

g /σ
2
T  ) and the repeatability was calculated as 

the sum of the animal effect and permanent environ-
mental effect variances divided by the total variance 
(i.e., (σ 2

g + σ
2
PE)/σ

2
T).

(1)y = µ+ Animal + PE + e,
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