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Abstract 

Background Chromosomal compartmentalization plays a critical role in maintaining proper transcriptional programs 
in cell differentiation and oncogenesis. However, currently the prevalent method for comparative analysis of compart‑
mentalization landscapes between different cell types is limited to the qualitative switched compartments.

Results To identify genomic regions with quantitatively differential compartmentalization changes from genome‑
wide chromatin conformation data like Hi‑C, we developed a computational framework named DARIC. DARIC 
includes three modules: compartmentalization quantification, normalization, and differential analysis. Comparing 
DARIC with the conventional compartment switching analysis reveals substantial regions characterized by quanti‑
tatively significant compartmentalization changes without switching. These changes are accompanied by changes 
in gene expression, chromatin accessibility, H3K27ac intensity, as well as the interactions with nuclear lamina pro‑
teins and nuclear positioning, highlighting the functional importance of such quantitative changes in gene regula‑
tion. We applied DARIC to dissect the quantitative compartmentalization changes during human cardiomyocyte 
differentiation and identified two distinct mechanisms for gene activation based on the association with com‑
partmentalization changes. Using the quantitative compartmentalization measurement module from DARIC, 
we further dissected the compartment variability landscape in the human genome by analyzing a compendium 
of 32 Hi‑C datasets from 4DN. We discovered an interesting correlation between compartmentalization variability 
and sub‑compartments.

Conclusions DARIC is a useful tool for analyzing quantitative compartmentalization changes and mining novel 
biological insights from increasing Hi‑C data. Our results demonstrate the functional significance of quantitative 
compartmentalization changes in gene regulation, and provide new insights into the relationship between compart‑
mentalization variability and sub‑compartments in the human genome.
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Introduction
Mammalian genomes are structurally organized within 
the three-dimensional space of nucleus [1–3]. Spatial 
compartments are formed to facilitate functional par-
titioning of transcriptional activities [2, 4, 5]. Devel-
opments in technologies mapping genome-wide 
chromatin conformation, such as Hi-C and its deriva-
tives [5–8], have greatly expanded our knowledge of 
these spatial compartments. There are two main types 
of compartments, transcriptionally permissive com-
partment A and repressive compartment B [6]. The two 
types of compartments are strongly correlated with 
gene density, distribution of CpG islands, histone mod-
ification marks, and replication timing [6, 9]. Struc-
turally, the two types of compartments preferentially 
occupy different spaces within the nucleus [10, 11]. 
For example, experiments [12–14] mapping nuclear 
lamina-associated chromosomal domains reveal that 
compartment B preferentially occupies the periphery 
regions in the nucleus. In addition, recent advances in 
genome positioning mapping [15–17] further reveal a 
close link between A/B compartment distribution and 
the positioning in the lamina-to-speckle axis. Mecha-
nistically, emerging studies [18, 19] show that liquid–
liquid phase separation caused by interactions among 
high concentrations of multivalent proteins and other 
biological molecules like RNA plays a crucial role in 
compartment formation.

There are extensive changes in genome compart-
mentation patterns between different cell types or cel-
lular conditions, and these changes play a crucial role 
in the activation and repression of genes [20–23]. For 
example, Dixon et  al. [20] studied compartment reor-
ganization in human embryonic stem cells and four 
derived lineages, and reported 36% of genome switch 
compartments in at least one of the lineages. Johnstone 
et al. [24] comprehensively examined the compartment 
differences between colon tumors and normal sam-
ples and found that the normal compartment struc-
tures are profoundly compromised in tumors. Further 
integrated analysis [24] with functional genomics data 
reveals that those compartment changes are accom-
panied by profound changes in DNA methylation and 
chromatin states, highlighting the functional con-
sequences of compartment disorganization. Due to 
critical roles of compartments in development and dis-
eases, it is of keen interest to identify the differential 
compartments between cell types or cells in different 
conditions.

Currently, the prevalent approach for differential com-
partment analysis is to identify switched compartments, 
i.e. the genomic regions that flip from compartment A to 
B, or the opposite, between two cell types. Specifically, 

this analysis involves two steps [5]. First, compartment 
types are identified in each cell type by performing the 
Principal Components Analysis (PCA) of the chroma-
tin interaction matrix after distance-normalization and 
transformation into a correlation matrix at a selected res-
olution. The genomic bins can be divided into two types, 
positive or negative, by their values of the first princi-
pal component (PC1 value). The sign of the PC1 values 
(i.e. positive or negative) represents the two types of 
compartments, and gene density is then used to further 
determine that the sign corresponding to higher gene 
density represents compartment A. After compartments 
are defined in each cell type, the signs of each genomic 
region are compared and the genomic regions that are 
characterized by flipped compartments are defined as the 
differential ones. This compartment switching analysis 
method is limited in many ways. First, the PCA is per-
formed for each sample separately, thus making the PC1 
values not directly comparable between samples. Second, 
PC1 values lack a clear biological meaning in compart-
mentalization. Third, this approach lacks the flexibil-
ity to be expanded to compartmental differences across 
multiple cell types. Furthermore, this analysis by nature 
is qualitative and ignores the genomic regions that are 
characterized by quantitatively differential compartment 
domains. Therefore, a quantitative approach with inter-
pretable biological meaning is needed.

Here we bridged these gaps by developing a com-
putational framework, named DARIC (Differential 
Analysis of genomic Regions’ Interactions with Com-
partments), to find genomic regions with quantita-
tively differential compartmentalization changes from 
genome-wide chromatin conformation data like Hi-C. 
DARIC is a comprehensive framework including com-
partmentalization quantification, normalization, and 
differential analysis. We designed a metric, named 
Preferential Interaction Score  (PIS), to quantify the 
compartment type preference and strength. Further-
more, we showed that DARIC is robust to technical 
variations in Hi-C, such as choices of different restric-
tion enzymes and sequencing depth. Comparison 
between DARIC with the conventional compartment 
switching analysis reveals substantial regions charac-
terized by quantitatively significant compartmentali-
zation changes without switching. More importantly, 
integrative analysis with functional genomics data 
demonstrates that such quantitatively differential 
regions are associated with concordant changes in 
gene expression, chromatin accessibility, H3K27ac 
intensity, as well as the interaction with nuclear lam-
ina proteins and radial positioning within the nucleus, 
highlighting the functional importance of the regions 
with quantitatively differential compartment strength. 
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To demonstrate the utility of DARIC, we first applied 
DARIC to public time-course Hi-C datasets delineat-
ing the differentiation of human cardiomyocytes from 
embryonic stem cells. Interestingly, we found that 
activated genes in cardiomyocytes can be divided into 
two groups that have distinct characteristics, such 
as local abundance of regulatory elements and func-
tion specificity, by whether or not associated with 
significant compartmentalization changes. We also 
applied DARIC to a compendium of Hi-C data in the 
4D Nucleosome consortium and performed an unbi-
ased evaluation of compartmentalization variability 
analysis in the human genome. We found a surpris-
ing correspondence between different types of sub-
compartments and PIS variability. In summary, DARIC 
provides a unique tool for finding quantitative com-
partmental differences between cell types that are 
otherwise impossible from the conventional switching 
analysis.

Materials and methods
Implementation of DARIC
Preferential Interaction Score calculation
It takes two types of information for PIS calculation: 
A/B compartments and the distance-normalized chro-
matin interaction files. A/B compartments can be 
obtained from any Hi-C compartment identification 
algorithms, such as the PCA analysis from Homer [25] 
or eigenvector analysis from Juicer [26]. For chroma-
tin interaction files, we used the obs/exp normalized 
interactions to eliminate the bias caused by genomic 
bias. These interaction files are obtained from the “.hic” 
files by using the “java -jar juicer_tools.jar dump oe 
KR” command from Juicer. PIS was then calculated for 
each chromosome individually. Specifically, for each 
genomic bin, the average interactions with compart-
ment A and B bins in the same chromosome were cal-
culated and the log2-transformed ratio of the average 
interactions was calculated as the PIS. To avoid biases, 
the gap regions in the reference genome assemblies, 
to which sequencing reads cannot be mapped, are 
excluded for PIS calculation.

Smoothing
After obtaining the raw PIS track, we performed 
1-dimensional gaussian smoothing using the “gaussian_
filter1d” function from the scipy package [27].

Normalization
We borrowed the idea from MA-norm [28], a method origi-
nally developed from ChIP-seq data normalization, to nor-
malize PIS tracks from two Hi-C samples. Similar to 
ChIP-seq data, we make two assumptions with the usage of 
MA-norm: (a) most genomic regions do not have signifi-
cant changes in compartmentalization. This assumption is 
valid as suggested by chromatin conformation data across 
many tissue- and cell- types. (b) the scaling relationship of 
PIS between two Hi-C samples is reflected in observed PIS 
differences in most genomic regions, which can be extrapo-
lated to all genomic regions. The (M, A) value of each 
genomic bin is defined as PIS1− PIS2, PIS1+PIS2

2
. The 

scaling relationship of PIS between two Hi-C samples is 
derived from background regions, which are defined as 
genomic regions whose residual PIS values (i.e. the M val-
ues) are ranked in 15% to 85% percentile. Similar to the 
implementation of the original MA-norm package, we used 
robust regression to the (M, A) values of the background 
regions to derive a linear relationship [28]. The linear rela-
tionship is then extrapolated to all genomic regions by mak-
ing the A axis overlap with the derived linear model, and the 
new M value from the derived linear model is considered as 
the normalized M value. The normalized PIS track is then 
obtained by adding the normalized M value to the PIS val-
ues of the reference sample.

Identification of differential domains
To identify the quantitatively differential domains in com-
partmentalization, we applied a Hidden Markov Model 
(HMM, https:// hmmle arn. readt hedocs. io/ en/ latest/) to 
segment the genome into four states based on the residual 
PIS track. We chose four as the state number to make it 
correspond to the four states in the conventional compart-
ment switching analysis.

Statistical analysis
If biological replicates are available, DARIC can test the 
statistical significance of the PIS differences between two 
cell types based on PIS differences between biological rep-
licates in each cell type. This method was previously used 
in the statistical significance estimation of TSA-seq signal 
differences [17]. Essentially, the PIS differences between 
biological replicates are used to build an empirical null 
distribution, and the statistical significance of differ-
ences between the two cell types is tested. PIS differences 
between two cell types are defined as the residuals of the 
mean PIS of the replicates, i.e.

�PIS =
PIS(Cell1,Rep1) + PIS(Cell1,Rep2)

2
−

PIS(Cell2,Rep1) + PIS(Cell2,Rep2)

2

https://hmmlearn.readthedocs.io/en/latest/
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where Cell1 and Cell2 are two cell types.
To construct the null distribution of PIS differences, we 

first used the average PIS differences between biological 
replicates in all possible orderings to build a vector ∅ . ∅ has 
a length of 4N  , where N  is the number of genomic bins.

∅ can be taken as a Gaussian distribution approxi-
mately, which always has a mean of 0 due to the symme-
try in ∅ construction.

For each genomic bin, we then estimated the one-sided 
p-value for residual PIS between two cell types in the 
null distribution ∅ . We then performed −log10pvalue 
transformation to obtain a significance score and used 
this score for display in the genome browser. To avoid 
extreme values in significance scores, p-values more sig-
nificant than 1e-20 were considered as 1e-20. Domains 
characterized with significant PIS changes, i.e. “Strong ± ” 
domains from the previous step, with an average signifi-
cance score higher than 2 were deemed as significant.

Hi‑C data processing in H1ESC and K562
Hi-C data for H1ESC and K562, each with two biologi-
cal replicates, were downloaded from 4DN [6, 8, 13] (See 
accession numbers in Table S1). Specifically, we down-
loaded the contact read pairs processed by 4DN. With 
the read pairs, we constructed contact maps in “.hic” for-
mat with obs-exp and KR normalization using Juicer [26]. 
A/B compartments were then identified at 50 kb resolu-
tion by using the “runHiCpca.pl” script from Homer [25].

Comparison of functional genomics data between H1ESC 
and K562
All used functional genomics data in the H1ESC-K562 
comparison, including RNA-seq [29], DNase-seq [29], 
H3K27ac ChIP-seq [29], Anti Son TSA-seq [17], and 
Lamin B1 DamID data [13], are summarized in Table 
S1. For RNA-seq data, the downloaded bam files were 
used to obtain the raw count table for each gene using 
the “featureCounts” command [30]. Differential expres-
sion analysis was performed using DESeq2 [31]. Genes 
with a p-value more significant than 1e-3 and log2Fold-
Change higher than 1 or lower than -1 were deemed as 
differentially expressed genes (DEGs). The enrichment of 
DEGs on the four types of domains (i.e. “Strong-”, “Weak-
”, “Weak + ”, and “Strong + ”) were shown using the obs/
exp fold enrichment. The expected number of DEGs in 
domain i is based on the gene density of that domain, i.e.

∅ =
1

2
(
(

PISCell1,Rep1 − PISCell1,Rep2
)

+
(

PISCell2,Rep1 − PISCell2,Rep2
)

,
(

PISCell1,Rep2 − PISCell1,Rep1
)

+
(

PISCell2,Rep1 − PISCell2,Rep2
)

,
(

PISCell1,Rep1 − PISCell1,Rep2
)

+
(

PISCell2,Rep2 − PISCell2,Rep1
)

,
(

PISCell1,Rep2 − PISCell1,Rep1
)

+
(

PISCell2,Rep2 − PISCell2,Rep1
)

)

Super-enhancers for H1ESC and K562 were down-
loaded from the dbSUPER database [32]. Cell-type-

specific super-enhancers were defined as those showing 
no overlap (1  bp) with those in the other cell type. The 
enrichment analysis of super-enhancers in the four types 
of compartmentalization domains was performed with 
the same method used in DEG enrichment.

For TSA-seq and lamin B1 DamID data, the processed 
and normalized files in bigwig format were downloaded 
from 4DN. The signals for each genomic bin at 50  kb 
were extracted from bigwig files and comparisons were 
made between the four types of domains.

Effects of restriction enzymes and sequencing depth
To study the effects of restriction enzymes on PIS, we 
downloaded three Hi-C datasets from 4DN, which are 
generated with three restriction enzymes for GM12878 
cells: HindIII (4DNFII4JC7KV), DpnII (4DNFID-
DMNL9R), MboI (4DNFIUOVQH68). Processed contact 
read pairs were downloaded and down-sized to the same 
sequencing depth (200 million read pairs). Subsequently, 
the same steps as described for H1ESC and K562 cells 
were taken, and the resulting PIS tracks were compared.

To study the effects of sequencing depth on PIS, we 
downloaded a deeply sequenced Hi-C dataset for H1ESC 
cells from 4DN (4DNFITU7K8VQ). There are more than 
2 billion contact read pairs in the whole dataset. We 
down-sized this large dataset into eight different depths 
by random sampling: 150 m, 300 m, 450 m, 600 m, 900 m, 
1200 m, 1500 m, and 2000 m, and prepared the PIS tracks 
for each sample as described above.

Applying DARIC to time course Hi‑C data 
during cardiomyocyte differentiation
Data used for delineating cardiomyocyte differentia-
tion, including Hi-C, RNA-seq and H3K27ac ChIP-seq, 
were downloaded from GEO with accession number 
GSE116862 [33]. There are two biological replicates for 
Hi-C data at each time point. PIS tracks were prepared 
for each Hi-C sample as described above. For normali-
zation, PIS at Day00 was used as the reference and PIS 
tracks at other time points were normalized with respect 

N (expected, domain− i) = N (DEG)×
N (all − genes − in− domain− i)

N (all − genes)
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to Day00. After normalization, the averaged PIS of two 
replicates is used as the final value at each time point 
and shown in the genome browser. Residual PIS tracks 
were obtained for neighboring time points. DARIC was 
then applied to the four residual PIS tracks simultane-
ously to identify the genomic regions with significant 
compartmentalization changes. We applied DARIC to all 
the comparisons simultaneously to ensure that one uni-
fied HMM model was trained, thus the differential com-
partments from each comparison are based on the same 
model.

To examine the differences between activated genes 
associated with compartmentalization changes and those 
that do not, we performed differential gene expression 
analysis between ESCs (Day00) and primitive cardio-
myocytes (Day15) using DESeq2 [31]. Cardiomyocyte-
specific genes were defined as those with a p-value more 
significant than 1e-3 and log2Foldchange higher than 1. 
In total, 1948 cardiomyocyte-specific genes were identi-
fied. Genes whose TSS reside in any “Strong + ” domains 
in the time course were deemed as those associated with 
compartmentalization changes. ShinyGO [34] (v0.76) 
was used for Gene Ontology (Biological Process) enrich-
ment analysis. Terms with less than 8 members were fil-
tered out and the FDR cutoff was set to 0.05.

Loops used in this study were identified by applying 
FitHiC2 (v2.0.8) [35] to the day15 Hi-C data after merg-
ing replicates, with 5  kb as the resolution. Interactions 
with a q value smaller than 0.01 were identified as loops. 
Subsequently, loops whose anchor overlapped with pro-
moter regions (TSS ± 2  kb) of cardiomyocyte-specific 
genes were considered relevant and were subject to loop 
length comparison.

Compartmentalization variability analysis
Hi-C datasets, in the format of contact read pairs, for a 
compendium of cell types were downloaded from 4DN. 
Detailed information, including cell type, restriction 
enzyme, accession numbers, and labs that generated the 
data, are summarized in Table S2. In total, Hi-C data 
of 32 cell types were downloaded and examined. Visual 
inspection of the PC1 files in the genome browser filters 
out 13 cell types due to high-level noises and dis-continu-
ity in the PC1 values. PIS tracks for the resulting 19 cell 
types were prepared as described above. To remove sys-
tematic biases caused by differences in protocols, all cell 
types’ PIS tracks were normalized with respect to H1ESC 
PIS. PIS tracks after normalization were shown in the 
genome browser  and can be downloaded from  https:// 
github. com/ ykai16/ DARIC/ tree/ main/ data.

To identify genomic regions displaying distinct levels 
of compartmentalization variability, we applied an HMM 
model to segment the genome into five states based on 

the standard deviation and mean of PIS across the 19 
cell types. Enrichment analysis for functional genomic 
elements was performed using “annotatePeaks.pl” func-
tion from HOMER [25]. For the enrichment analysis of 
tissue-specific genes, we downloaded the gene expression 
specificity (Tau index) table calculated from the GTEx 
data from Palmer et.al [36]. For each tissue, a gene with a 
Tau index higher than 0.3 was deemed as specific to that 
tissue. Then the log2(obs/exp) enrichment analysis was 
performed in the same approach above. The sub-com-
partments for all the interrogated cell types were down-
loaded from Xiong et al. [37].

Results
Introduction of the DARIC framework
To quantify the compartmentalization strength for 
genomic regions, we first devised a metric named Pref-
erential Interaction Score (PIS). PIS is defined as the 
log-transformed ratio of the average interactions with 
compartments A to B. Specifically, we first binned the 
genome at a selected size, usually at 100  kb or 50  kb, 
applied the PCA analysis, and obtained the compart-
ment type information for each genomic bin. For each 
bin, the chromatin interactions with other A- and B-type 
bins in the same chromosome were calculated, and PIS 
was calculated subsequently (Fig.  1A). A positive/nega-
tive PIS indicates that the genomic region preferen-
tially interacts with the active/repressive compartment, 
respectively. Moreover, a higher PIS represents stronger 
interaction with the active A compartment. Interestingly, 
we observed that PIS is highly correlated with the PC1 
values (Fig.  1B, Figure S1A). Notwithstanding, we used 
PIS instead of PC1 values for further quantitatively differ-
ential analysis for mainly two reasons: (a) PIS has a clear 
biological meaning, enabling a straightforward interpre-
tation of the quantitative differences; (b) Direct quantita-
tive comparison of PC1 values for two Hi-C samples is 
not a legitimate approach, because PC1 values from two 
separate PCA analyses are not directly comparable.

DARIC includes the following four steps (Fig. 1C): (1) 
Calculation of the genome-wide PIS for the samples; 
(2) Smoothing of PIS in each sample to remove techni-
cal noises (see methods for details); (3) Normalization. 
Systematic differences, such as choices of restriction 
enzymes and heterogenous composition of cells in dif-
ferent cell cycle stages, are common confounding fac-
tors for Hi-C data comparison. To eliminate systematic 
biases, we borrowed a concept from MA-norm [28], a 
method originally developed for ChIP-seq data normal-
ization, to normalize PIS tracks from two Hi-C samples. 
Similar to ChIP-seq data, we make two assumptions 
with the usage of MA-norm: (a) most genomic regions, 
by default defined as those ranked in the 15%-85% 

https://github.com/ykai16/DARIC/tree/main/data
https://github.com/ykai16/DARIC/tree/main/data
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percentage in PIS residuals of the two cell-types, do not 
have significant changes in compartmentalization. This 
assumption is valid because chromatin conformation 
data across many tissue- and cell- types have suggested 
this. (b) the scaling relationship of PIS between two 
Hi-C samples is reflected in observed PIS differences 

in most genomic regions, which can be extrapolated 
to all genomic regions. Using the comparison between 
H1ESC and K562 as an illustrating example (Figure 
S1B and C), we showed that MA-norm can substan-
tially eliminate the technical biases while still detecting 
biological differences between the two cell types; (4) 

Fig. 1 Introduction of the DARIC framework. A Schematic of the Preferential Interaction Score (PIS) definition. B Snapshots of chromosomes 2 and 6 
showing the high correlation between PIS and PC1 values. C Flowchart of the DARIC pipeline for identifying genomic regions with significantly 
differential compartment changes. D Emission probability of the four‑state Hidden Markov Model (HMM) model trained from the differential PIS 
between H1ESC and K562 cells. Values in the heatmap represent the mean value of PIS differences for each state. Strongly increased/decreased 
states are denoted as “Strong ± ”. Weakly increased/decreased states are denoted as “Weak ± ”. E Genomic coverage of the four states as shown in D. 
F Exemplar genome snapshot showing the PIS comparison of H1ESC and K562 and the output of DARIC, including statistical significance track 
(‑log10P‑value) and the segmentation of genome into four states
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Identifying differential domains and performing statis-
tical analyses. Specifically, we used a Hidden Markov 
Model (HMM) to segment the genome into four states 
based on the residuals of two PIS tracks: Strongly 
decreased (“Strong-”), Weakly decreased (“Weak-”), 
Weakly increased (“Weak + ”) and Strongly increased 
(“Strong + ”), which are determined by the mean PIS 
changes of the four states (i.e. the emission matrix 
from the HMM model, Fig.  1D). We demonstrated 
that although the choice of a higher state number 
would reveal a finer resolution of compartmentaliza-
tion changes, the regions showing strong PIS changes 
are largely overlapped across different models (Sup-
plementary Fig.  1D-F). To facilitate the downstream 
analysis, we chose four as the state number to make 
it correspond to the four states in the conventional 
compartment switching analysis, i.e. the stable A or B 
compartments (“AA” or “BB”) and the switched com-
partments (“AB” and “BA”). Furthermore, if replicate 

data are available, DARIC enables the statistical sig-
nificance analysis of PIS differences by using the vari-
ations within the replicates as an empirical background 
(see methods for details). In the comparison between 
H1ESC and K562, DARIC reveals that 40% of the 
genome (18% for decreased and 22% for increased PIS 
in K562) are identified with significant changes in com-
partmentalization (Fig.  1E). An example of the input 
and main outputs of DARIC are summarized in Fig. 1F.

Quantitative PIS differences are associated 
with concordant changes in transcription and chromatin 
state
To test whether the quantitatively differential compart-
mentalization analysis provided by DARIC increases the 
power for identifying functional relevant changes, we 
interrogated the transcriptomic and epigenetic data to 
see if concordant changes are observed in regions with 
significantly changed PIS. Using the comparison between 

Fig. 2 Integration of multi‑modal genomics data demonstrates the functional association between gene regulation and differential compartments 
revealed by DARIC. A‑C Gene expression (A), DNase‑seq chromatin accessibility (B), and H3K27ac intensity. (C) comparison between H1ESC 
and K562 cells in the four states. ***, p < 1e‑3, Mann–Whitney U test. TPM, Transcript Per Million. RPM, Reads Per Million mapped reads. D‑E 
Illustration and comparison of the lamina B1 DamID signals (D) and TSA‑seq signals. E between H1ESC and K562 cells in the PIS strongly changed 
regions. F Snapshots at the MYB and SOX2 gene loci showing the PIS comparison between H1ESC and K562 cells, as well as the concordant changes 
in DamID and TSA‑seq signals
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H1ESC and K562 cells, we evaluated the changes in 
gene expression from RNA-seq, chromatin accessibility 
from DNase-seq, and H3K27ac distribution from ChIP-
seq. Indeed, consistent changes were observed in all the 
three modalities, where genomic regions with strongly 
decreased PIS in K562 cells (i.e. “Strong-”) are associ-
ated with significantly lower gene expression, chroma-
tin accessibility, and H3K27ac signals (Fig. 2A, B and C). 
Opposite trends were also observed in the “Strong + ” 
state, suggesting that higher PIS correlates with higher 
transcription and a more active chromatin state. To test 
whether PIS changes are associated with functionally 
important genome regions, we performed enrichment 
analysis of cell-type-specific genes, as well as super-
enhancers, in the four types of domains. The rationale 
for using super-enhancers is that super-enhancers are 
hallmarks of cell fate and cell identity [38]. As shown in 
Figure S2A and B, cell-type-specific genes and super-
enhancers are most significantly enriched in the genomic 
regions with strongly changed PIS and moderately 
enriched in domains with weakly changed PIS. Taken 
together, our analyses demonstrated that the quantitative 
compartmentalization changes are closely related to gene 
regulation and play a critical role in cell identity.

Many genome-wide techniques have emerged recently 
to probe the positioning of chromosomal regions with 
respect to specific subnuclear structures, such as speckles 
and laminas, and revealed that differential nuclear posi-
tioning adds an additional layer of regulation to modu-
late gene expression [11, 12, 16, 17]. To show if the PIS 
changes derived from Hi-C data correlate with the differ-
ences in nuclear positioning, we integrated the lamina B1 
DamID and TSA-seq data in H1ESC and K562 cells from 
the 4D Nucleosome consortium [13]. Specifically, lamina 
B1 DamID is a technique to measure the physical inter-
actions between chromosomal regions and the lamina B1 
protein in nuclear membrane. Higher DamID signals rep-
resent higher interactions between chromatin and lamina 
[12] (Fig. 2D). TSA-seq estimates the cytological distance 
between chromosomal regions and nuclear speckles. A 
higher TSA-seq score means a closer distance to speck-
les and is usually associated with higher transcriptional 
activities and more active chromatin states [17] (Fig. 2E). 
After normalization, our data show that regions with 
strongly increased PIS (“Strong + ”) in K562 cells have 
lower interactions with the nuclear lamina and closer 
distance to nuclear speckles. A consistent trend was also 
observed for regions with decreased PIS (“Strong-”). 
Figure  2F summarizes the close relation between PIS 
changes and the other two techniques by using two cell-
type marker genes, MYB and SOX2. MYB is a transcrip-
tion factor that plays an essential role in hematopoiesis 
[39] and is highly expressed in K562 cells (Figure S2C), 

whereas SOX2 is a critical regulator related to pluripo-
tency [40] and highly expressed in H1ESCs (Figure S2C). 
At the MYB locus, DARIC reveals that there is a signifi-
cant increase in PIS in K562 cells as compared to H1ESC. 
In concordance, the interaction between the MYB locus 
and nuclear lamina is significantly reduced and the dis-
tance to nuclear speckles is closer. Trends with consist-
ent changes were also seen for the SOX2 locus. Taken 
together, our analyses suggest that the quantitative dif-
ferences in PIS may provide a useful guide for the inves-
tigation of nuclear repositioning in development and 
diseases.

Comparison between DARIC and existing methods
Unlike the conventional compartment switching analy-
sis which focuses on the qualitative differences, DARIC 
adopts a quantitative approach. To demonstrate DARIC’s 
improvements over the conventional method, we com-
pared these two approaches in the differential compart-
ment analysis between H1ESC and K562 cells.

To this end, we first performed PCA in H1ESC and 
K562, each with two replicates. The PC1 values from the 
two replicates were averaged within each cell type and 
then compared between the two cell types, which revealed 
four types of genomic bins: AA and BB (bins without 
switching compartments), AB, and BA (bins switched 
compartments). As shown in Fig. 3A, 8.2% of the genome 
switch from compartment A to B, and 8.9% of the genome 
is characterized by the opposite switch, much less than the 
genomic coverage revealed by the quantitative analysis by 
DARIC (Fig.  1E). Furthermore, we overlapped the PC1-
switched genomic bins with the quantitatively differential 
bins revealed by DARIC. Notably, most of the genomic 
bins switching from compartment B to A (4125 out of 
4999, 83%) are identified by DARIC (Fig. 3B). A compari-
son of PIS differences reveals that the 874 switching-spe-
cific genomic bins (17% of the total “BA” genomic bins) 
have significantly lower differences than the other types of 
regions, explaining why they are not identified by DARIC 
(Fig. 3C). It was also observed that there are more genomic 
regions that are characterized by significant quantitative 
PIS increases without switching compartments (hereaf-
ter denoted as DARIC-specific regions) (Fig.  3B). To test 
whether these loci represent functionally relevant changes, 
we evaluated the TSA-seq, DamID, and gene expression 
changes among the three types of regions: DARIC-spe-
cific, overlapped, and switching-specific, with the random 
genomic regions used as background. Compared to the 
random background, DARIC-specific regions have higher 
TSA-seq signals (Fig. 3D), lower DamID signals (Fig. 3E), 
and higher gene expressions (Fig.  3F), suggesting that 
those regions unique to the quantitative analysis are func-
tionally important and thus cannot be overlooked in the 
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Fig. 3 Comparison between DARIC and existing methods. A Genomic coverage of the four types of domains in terms of compartment changes. 
‘AB’ represents a 50 kb genomic bin in compartment A in H1ESC that switch to compartment B in K562 cells. B Venn diagram representing 
the overlap between the ‘Strong + ’ state revealed by DARIC and the ‘BA’ state in PC1‑based switching analysis. The numbers in the plot represent 
the numbers of 50 kb bins. C Violin plot showing the PIS differences for the three types of domains defined in (B). D‑F Violin plots showing 
the comparisons of TSA‑seq signal changes (D), lamina B1 DamID signal changes (E), and gene expression fold changes (F) in the three types 
of domains defined in (B). Gray distributions in each figure represent the signal changes for background regions that are randomly selected 
from the genome.***, p < 1e‑3;n.s, not significant (p > 0.05), Mann‑Whitney U test. G Venn diagram showing the overlap of genomic bins identified 
with increased PIS/PC1 values in K562 by DARIC and dcHiC. Numbers of 50 kb bins were shown in the diagram. H Enrichment of K562‑specific 
genes for the three types of genomic regions defined in (G). I An exemplary region showing DARIC and dcHiC output with increased PIS in K562 
cells
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differential compartment analysis. Similarly, we performed 
the analysis between the quantitatively decreased regions 
(“Strong-”) with genomic bins switched from A to B (i.e. 
“AB”), and obtained results showing the same trend (Figure 
S3A-D). Collectively, by comparing DARIC with the prev-
alent compartment switching analysis, we showed that the 
conventional switching analysis misses a significant por-
tion of quantitatively differential genomic regions which 
are closely associated with differential nuclear positioning 
and gene expression.

Next we further compared DARIC with dcHiC [41], 
a recent method using the quantitative PC1 values to 
find the differential compartmentalization domains. We 
applied dcHiC to H1ESC and K562 cells and identified 
the significantly differential genomic bins at a bin resolu-
tion of 50  kb and a p-value cut-off of 0.01 (same as the 
cutoff used in DARIC). Subsequently, the genomic bins 
identified with significantly increased PC1 values in 
K562 were compared with the PIS increased regions (i.e. 
“Strong + ”) from DARIC. As shown in Fig. 3G, most of 
the genomic bins identified by dcHiC (83%, 2644 out of 
3194 bins) are also identified by DARIC. To check if the 
genomic regions specific to each method are biologically 
relevant, we looked at if K562-specific genes are enriched 
in those regions. A higher enrichment of K562-specific 
genes would suggest a tighter functional relevancy for 
the genomic regions. Figure  3H shows that the regions 
identified by DARIC are enriched with K562-specific 
genes, suggesting DARIC-specific genomic regions are 
biologically meaningful. As expected, the regions iden-
tified by both methods exhibit the highest enrichment 
of K562-specific genes. Nevertheless, dcHiC-specific 
regions did not demonstrate an enrichment of K562-spe-
cific genes. The same analyses were also repeated for PIS-
decreased regions and similar conclusions were reached 
(Figure S3E, F). Notably, compared with dcHiC which 
tend to output discrete and discontinuous genomic bins 
as results (Fig. 3I and Figure S3G), DARIC can output the 
whole differential domain and keep the domain continu-
ity nature of chromatin, largely due to the usage of HMM 
model which considers effects of neighboring chroma-
tin regions. We also compared DARIC with HOMER, a 
method to find differential compartment domains based 
on the correlation between interaction profiles of two 
Hi-C matrices. Similar results were obtained (Figure 
S3H-K). Altogether, these results strongly suggest that 
DARIC achieves superior performance in the compara-
tive analyses of compartmentalization.

DARIC is robust to protocol and technical variations of Hi‑C
A common challenge in Hi-C data comparison relates 
to the protocol and technical variations involved in data 
generation, such as the choice of restriction enzymes 

and sequencing depth. Indeed, a systematic evaluation 
of chromosome conformation assays by Oksuz et al. [42] 
reveals that the usage of different restriction enzymes 
can affect compartment analysis. As such, it is critical to 
assess and remove these systematic biases before quanti-
tative and statistical analyses.

To assess the effects of restriction enzymes on differen-
tial compartment analysis, we calculated and compared 
the PIS tracks of Hi-C samples from the same cell type 
and with three restriction enzymes that are commonly 
used in Hi-C protocols: HindIII, MboI, and DpnII. While 
MboI and DpnII produce fragments at kilobase resolu-
tion, HindIII cuts the genome at relatively large frag-
ments of several kilobases. Specifically, the three Hi-C 
datasets generated in GM12878 cells were downloaded 
from the 4DN consortium. They were down-sampled 
to the same sequencing depth and PIS tracks were cal-
culated. A comparison of PIS tracks reveals that they 
are highly correlated, while MboI and DpnII PIS tracks 
have a slightly higher correlation, likely because the two 
enzymes recognize and cut the same DNA sequences 
(Fig.  4A). However, visualization of PIS tracks in the 
genome browser (Figure S4A, upper panel) or examina-
tion of the PIS distribution (left panel of Fig. 4B) reveals 
that HindIII is distinct from the other two in data scal-
ing, where HindIII dataset displays lower amplitude, sug-
gesting the necessity to remove this systematic difference 
before further analysis. We used the MA-norm mod-
ule from DARIC to normalize the MboI and DpnII PIS 
tracks with respect to HindIII and observed that the dis-
tinct differences in data scaling are eliminated, as shown 
in Fig. 4B (right panel) and Figure S4A (lower panel), sug-
gesting that DARIC can robustly handle Hi-C datasets 
from different restriction enzymes.

Sequencing depth is another common yet crucial 
confounding factor in Hi-C data comparison. To assess 
the impacts of sequencing depth on DARIC, we com-
pared the PIS tracks resulting from Hi-C datasets at 
various sequencing depths. Specifically, we down-
loaded a deeply sequenced Hi-C dataset of H1ESC 
from the 4DN consortium and down-sampled it into 
eight different depths, ranging from 150 million to 2 
billion valid read pairs. PIS tracks were then obtained 
from DARIC at the resolution of 50 kb. Similarity anal-
ysis reveals that all the PIS tracks are highly correlated 
(Fig.  4C). Furthermore, PIS distributions (Fig.  4D), as 
well as genome browser snapshots (Figure S4B), show 
that these Hi-C datasets at different sequencing depths 
display no obvious differences in data scaling, suggest-
ing that DARIC is not sensitive to the sequencing depth 
of the Hi-C data. Taken together, our analyses demon-
strate that DARIC is robust to protocol and technical 
variations of the input Hi-C data.
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Applying DARIC to time‑course Hi‑C data 
during cardiomyocyte differentiation reveals that activated 
genes involving compartmentalization changes 
correspond to more specific cellular functions
In order to systematically characterize dynamic compart-
mentalization landscapes during cell differentiation, we 
applied DARIC to a time-course Hi-C dataset [33] delin-
eating the human cardiomyocyte differentiation from 
ESCs at day 0 to primitive cardiomyocytes at day 15, with 

three intermediate stages (top panel of Fig. 5A). Specifi-
cally, PIS tracks were calculated from the Hi-C data at 
each time point and residual PIS tracks were obtained 
for neighboring time points. DARIC was then applied 
to the four residual PIS tracks simultaneously to identify 
the genomic regions with significant compartmentaliza-
tion changes. A single HMM model was trained for all 
the samples to facilitate cross-sample comparison (Fig-
ure S5A). Comparing DARIC’s results with PC1-based 

Fig. 4 DARIC is robust to technical variations in Hi‑C data, such as choices of restriction enzymes and sequencing depth. A Heatmap showing 
the high correlation between PIS tracks generated from Hi‑C data of different restriction enzymes, including HindIII, MboI, and DpnII. The three 
datasets are from GM12878. B Histograms showing the distributions of PIS calculated from Hi‑C datasets with the three restriction enzymes, 
before and after normalization by DARIC. C Heatmap showing the high correlation of PIS calculated from Hi‑C datasets at different sequencing 
depths. D Histograms showing the similar distributions of PIS from Hi‑C data at different sequencing depths

(See figure on next page.)
Fig. 5 Applying DARIC to delineating compartment changes during cardiomyocyte differentiation. A Flow charts and pie charts comparing 
the genomic coverage of significantly changed regions in compartmentation revealed by DARIC and PC1‑based switching analysis. B Stacked 
bar plot showing the percentage of genomic regions undergoing significant compartment changes during the cardiomyocyte differentiation. 
C Genome browser snapshots at the HAND2 and SOX2 locus showing compartment changes during differentiation and concordant epigenetic 
changes. D, E Bar plots showing the concordant gene expression changes for HAND2 (D) and SOX2 (E) during the differentiation. ***, p < 0.001, 
Wald test from DESeq2. F Pie chart representing the numbers of cardiomyocyte‑specific genes which are associated or not associated 
with significant PIS increases. Cardiomyocyte‑specific genes are defined as those significantly up‑regulated in Day15 compared to Day00. G Gene 
and enhancer density comparison for the two gene sets as defined in (F). H An illustration showing the two mechanisms involved in the activation 
of cardiomyocytespecific genes during differentiation
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Fig. 5 (See legend on previous page.)
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switching analysis, as expected, we found a much higher 
percentage of the genome associated with significant 
changes in compartmentalization (Fig.  5A). For exam-
ple, during the transition from Day00 to Day02, DARIC 
identifies ~ 4 times more genomic regions with strongly 
increased compartmentalization with active compart-
ment A than the conventional PC1-based switching 
analysis (15% vs. 4%). Furthermore, in the whole differ-
entiation course, 68% of the genome is associated with 
compartmentalization changes, yet only 26% of the 
genome has switched compartments (Fig. 5B), suggesting 
that the plasticity of the compartmentalization landscape 
was greatly underestimated by the PC1-based switching 
analysis. Among the genomic regions with significant 
quantitative changes in compartmentalization, there are 
genes with critical roles in regulating cell identity, such as 
HAND2 and SOX2 (Fig. 5C). HAND2 is an essential tran-
scription factor for cardiac morphogenesis [43] and is up-
regulated during cardiomyocyte differentiation (Fig. 5D). 
Temporal PISs show that the HAND2 locus has increas-
ingly higher interactions with the active compartment A 
and DARIC correctly annotates the locus with “Strong + ” 
when comparing Day15 with Day00. A similar example 
was for SOX2, which is a critical factor in pluripotency 
[44] and is associated with gradually decreasing interac-
tions with the active compartment during cardiomyocyte 
differentiation (Fig. 5C and E). Collectively, these analy-
ses indicate that the quantitative compartmentalization 
changes are important for cell identity and DARIC can 
accurately capture these changes.

Out of the 1948 genes that are activated in Day15 
comparing to Day00, 825 genes (42%) are associated 
with significant PIS increases (Fig.  5F). We speculated 
that there might be differences in the activation mecha-
nisms of these two sets of genes. Indeed, we found that 
the genes involved in significant PIS increases tend to be 
less accessible to local functional elements like genes or 
enhancers because they tend to reside in less gene-dense 
or enhancer-dense regions (Fig.  5G). We hypothesize 
that the activity of these genes are more preferentially 
regulated via large-scale 3D genome reorganization 
(Fig.  5H). As additional support, we analyzed the cor-
responding Hi-C data and observed that the chromatin 
loops associated with the genes involved in PIS increases 
are significantly longer (Figure S5B). Gene Ontology 
enrichment analysis suggests that the genes associated 
with PIS increases are more enriched in cardiomyocyte-
specific functions (Figure S5C), consistent with previ-
ous studies showing that more specific genes tend to use 
distant regulatory elements [45, 46]. Taken together, our 
analyses using DARIC reveal more biological insights 
about the dynamic compartmentalization during cell 
differentiation.

Evaluating compartmentalization variability 
landscape of human genome 
A thorough understanding of the compartmentalization 
variability landscape of the human genome is still lacking, 
largely due to the limitations in the qualitative switching-
based analysis. The compartmentalization quantification 
and normalization modules in DARIC provide an unbi-
ased approach for this task. To this end, we leveraged the 
rich Hi-C resources housed in the 4DN consortium and 
evaluated the variability landscape of compartmentaliza-
tion of the human genome (Fig. 6A). We first performed a 
comprehensive query and interrogation of available Hi-C 
datasets in 4DN, resulting in Hi-C data of 32 cell lines or 
primary cells without additional treatments. We analyzed 
the compartmentalization landscape at the resolution of 
50 kb. Quality control filtered out 13 Hi-C samples likely 
due to limited sequencing depth, resulting in Hi-C data 
for 19 cell types, covering blood cells (B lymphocytes, 
lymphoblasts), various brain cells (astrocytes of the cere-
bellum/spinal cord, and microvascular endothelial cells), 
lung epithelial cells, skin malignant melanoma and oth-
ers (see detailed information of all the 19 Hi-C datasets 
in Table S2). We then calculated PIS for each cell type 
and normalized it with respect to the PIS in H1ESC. The 
normalized PIS tracks were then used for the variability 
analysis (Fig. 6B).

We used the standard deviation of PIS as the metric to 
assess the compartmentalization variability. To identify 
the genomic domains at different variability levels, we 
trained an HMM model based on the mean and standard 
deviation of PIS to segment the genome into five types 
of domains: “conserved A” (con A), “conserved B” (con 
B), “variable A” (var A), “variable B” (var B), and “vari-
able” (Fig. 6B and C), where “con A” and”con B” represent 
the domains in constitutive compartment A or B and 
show low variability, “variable A” and “variable B” repre-
sent domains with slightly higher variability but a clear 
compartmental type preference, and “variable” domains 
display the highest variability level and show frequent 
switching between the two compartment types (Fig. 6C). 
Nuclear positioning data in H1ESCs, such as TSA-seq 
and lamina B1 DamID data, reveal that these five states 
occupy distinct spaces in the lamina-to-speckle axis, 
where “conA” and “con B” regions are the most distant 
or closest to nuclear lamina respectively, and the other 
three states exhibit a gradual trend in the intermedi-
ate space (Fig.  6D and E). Same trends were observed 
in other cell types (Figure S6A and B). Furthermore, the 
five states display gradually differential enrichments in 
genomic elements (Fig. 6F), where the conA state is the 
most enriched in CpG-islands, promoters, and UTRs, 
and the conB state shows the strongest depletion in these 
states. Elements with a high level of sequence repeating, 
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Fig. 6 Applying DARIC to a compendium of Hi‑C datasets across many cell types. A Flowchart showing the pipeline of the analysis. B A snapshot 
of chromosome 1 showing the PIS tracks across 19 cell lines, the mean and standard deviation of PIS, and segmentation of the genome into five 
states according to the mean and variability of PIS. C Mean and standard deviation of PIS, as well as the genomic coverage, for the five HMM states. 
D, E Distributions of TSA‑seq (D) and DamID signals (E) for the five types of states. F Heatmap depicting the enrichment of functional genomic 
elements in the five types of domains. G Heatmap showing the enrichment of tissue‑specific genes in the five types of domains. H Stacked bar plot 
showing the sub‑compartment composition for the five types of domains. I PIS variability, defined as the standard deviation of PIS across the 19 cell 
lines, of the five types of sub‑compartments
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such as LINEs (Long Interspersed Nuclear Elements), 
LTRs (Long Terminal Repeats), and simple repeats, tend 
to show higher enrichment in non-A-type compart-
ments (i.e. variable, varB and conB). To understand if 
there is a link between compartmentalization variability 
and gene expression variability, we looked at how cell-
type-specific genes distribute in the five states with dis-
tinct compartment variability (Fig.  6G). To this end, we 
accessed the gene expression matrix spanning 30 tissues 
from GTEx [47] and examined the enrichment of tissue-
specific genes in the five states. Specifically, we used Tau 
index [48], which ranges from 0 (uniformly expressed 
in all tissues) to 1 (uniquely expressed in one tissue, see 
methods for details), to measure each gene’s expression 
specificity. Genes with a Tau index higher than 0.3 were 
deemed as specific genes in one tissue. Interestingly, we 
found that tissue-specific genes are highly enriched in the 
non-A-type state (Fig. 6G), and the variable state exhibits 
an overall strong enrichment across the panel of tissues, 
highlighting a strong correlation between compartment 
variability and expression specificity.

Sub-compartments are finer chromatin structures 
that can be obtained from Hi-C data with high coverage. 
Analysis in GM12878 cells [6] revealed that compartment 
A can be divided into two sub-compartments, A1 and 
A2, and compartment B into three sub-compartments, 
B1-3. Sub-compartments exhibit refined associations 
with many functional features, such as histone modifica-
tion marks, replication timing, and gene expression [6]. 
However, a thorough understanding of sub-compart-
ments is still lacking. Our analysis in the compendium of 
Hi-C datasets enables a better understanding of the com-
partmentalization variability at the sub-compartment 
level. Notably, we found that the five states based on 
compartment variability show a remarkable correspond-
ence to sub-compartments in GM12878 data, where the 
conA state is mostly composed of the active A1 state and 
the conB state is mostly made up of inactive B3 states 
(Fig. 6H). A direct comparison of the compartment vari-
ability of the five types of sub-compartments further sup-
ports that there is a differential pattern in the variability 
of the five sub-compartments (Fig. 6I). Similarly, results 
in other cell types reveal the same observation (Figure 
S6C and D). Taken together, our analyses strongly sug-
gest that compartment variability corresponds well with 
the sub-compartments.

Discussion
While PCA is a powerful approach for binary classifi-
cation of the genome into the active and inactive com-
partments, PC1-based switching analysis is insufficient 
to reflect the true changes in compartmentalization due 
to its inherent qualitative nature. To bridge this gap, we 

developed DARIC, a computational framework to find 
the quantitatively differential compartment domains. 
We developed a metric named PIS to represent the pref-
erence of compartment type and quantify the interaction 
strength with the active A compartment relative to the 
B compartment. Remarkably, although PIS shows a high 
correlation with the PC1 values from the PCA analysis, 
it has several advantages. For example, PIS has a clear 
biological meaning, thus enabling further normaliza-
tion and statistical comparison analysis. Comparison 
of Hi-C datasets is usually complicated by the technical 
and protocol variations. To overcome this challenge, we 
borrowed a concept from MA-norm, a powerful method 
originally developed for the normalization of ChIP-seq 
data, for normalizing the PIS of two Hi-C samples. We 
demonstrated that this normalization module can elimi-
nate the systematic bias between two Hi-C datasets, 
thus enabling a fair and robust differential analysis. To 
find the differential compartment domains, we used 
HMM to segment and annotate the genome into four 
states, where the domains with strongly increased or 
decreased PIS are identified as the differential ones. If 
replicate data are available, DARIC can perform further 
statistical analyses to evaluate the significance of the dif-
ferential domains, to filter out noises caused by techni-
cal variations. In summary, DARIC provides a complete 
framework and pipeline for quantitatively differential 
compartment analyses.

We integrated transcriptomics, chromatin acces-
sibility, and epigenetic profiling data to validate the 
functional relevance of the quantitatively differential 
compartmental domains identified by DARIC. Our 
analyses demonstrate that quantitative PIS changes 
correspond to concordant changes in these modalities. 
Furthermore, integrative analysis with nuclear position-
ing data shows that PIS changes correlate with the dif-
ferential nuclear positioning in the lamina-to-speckle 
axis, suggesting that PIS changes can be used to esti-
mate nuclear positioning differences with chromatin 
conformation data as the input. Altogether, our analyses 
demonstrate that DARIC effectively identifies quantita-
tive and biologically meaningful changes in chromatin 
states and nuclear positioning, which could not be cap-
tured by the previous method [4].

We illustrated the utility of DARIC by applying 
it to delineate the compartmentalization dynamics 
in cardiomyocyte differentiation and analyzing the 
compartmentalization variability landscape using a 
compendium of Hi-C data. Compared to the conven-
tional PC1-based switching analyses, DARIC identi-
fied significantly more genomic regions undergoing 
compartmental changes during differentiation, which 
include genes that are critical for cell identities, such as 
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HAND2 and SOX2 genes during cardiomyocyte differ-
entiation from ESCs. These findings further highlight 
the importance of the quantitative compartmentaliza-
tion changes and suggest that the degree of compart-
mentalization plasticity is underestimated by previous 
analyses. We further found that the activated genes 
with significant PIS increases are more specific and less 
abundant in local functional elements like genes and 
enhancers, in line with the previous findings that more 
specific genes are more involved in interactions with 
more distal elements. Those applications demonstrate 
that DARIC is useful in identifying the differential 
compartmental regions and revealing new insights into 
how 3D genome organization adds an additional layer 
to gene regulation.
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Additional file 1: Figure 1. Introduction of the DARIC framework. A 
Scatter plot showing the high correlation between PIS and PC1 values 
from the H1ESC Hi‑C data. B MA plot showing the systematic differ‑
ences between H1ESC and K562 cells. Each dot represents a 50kb bin. 
The Red dashed line represents the fitted line from the M and A values. 
C MA plot after normalization showing the elimination of the systematic 
differences between the two cell types. D‑E The emission matrix (D) and 
state coverage matrix (E) for the 5‑state HMM model. F Confusion matrix 
showing the overlap between the states of 5‑state model and those of 
the 4‑state model. Numbers represent 50kb bins. Figure 2. Functional 
association between gene regulation and differential compartments 
revealed by DARIC. A‑B Heatmap showing the enrichment of cell type‑
specific genes (A) and superenhancers. (B) in the four states identified by 
DARIC. Values show the log2(observed/expected) enrichment. C Bar plots 
showing the expression of SOX2 and MYB genes in H1ESC and K562 cells. 
Figure 3. Comparison between DARIC and existing methods. A Venn 
diagram presenting the overlap between the ‘Strong‑’ state revealed by 
DARIC and the ‘AB’ state in conventional analyses. The numbers in the 
plot represent the numbers of 50kb bins. B Violin plot showing the PIS 
differences for the three types of domains defined in (A). C‑D Violin plots 
showing the comparisons of Lamina1‑DamID signal changes (C), and 
gene expression fold changes (D) in the three types of domains defined in 
(A). E Venn diagram showing the overlap of genomic bins identified with 
decreased PIS/PC1 values in K562 by DARIC and dcHiC. Numbers of 50kb 
bins were shown in the diagram. F Enrichment of H1ESC‑specific genes 
for the three types of genomic regions defined in (E). G An exemplary 
region showing DARIC and dcHiC output with decreased PIS in K562 cells. 
H‑K Performance comparison between DARIC and HOMER using H1ESC 
versus K562 as an example. (H) Venn diagram showing the overlap of 
genomic bins identified with increased PIS values in K562 by DARIC and 
HOMER. Numbers of 50kb bins were shown in the diagram. (I) Enrichment 
of K562‑specific genes for the three types of genomic regions defined 
in (H). (J) Venn diagram showing the overlap of genomic bins identified 
with decreased PIS values in K562 by DARIC and HOMER. Numbers of 
50kb bins were shown in the diagram. (K) Enrichment of H1ESC‑specific 
genes for the three types of genomic regions defined in (J). Figure 4. 
DARIC is robust to technical variations in Hi‑C data, such as choices of 
restriction enzymes and sequencing depth. A Snapshot of chromosome 6 
showing the comparison in scaling differences in PIS from three different 
restriction enzymes before and after the normalization step performed by 
DARIC. B Snapshot of chromosome 6 showing the high similarity of PIS 
from Hi‑C data at different sequencing depths. Figure 5. Applying DARIC 
to delineating compartment changes during cardiomyocyte differentia‑
tion. A Emission matrix resulting from the HMM model trained in the 

cardiomyocyte system. B Cardiomyocyte‑specific genes associated with 
significant PIS increases during the differentiation tend to be involved in 
longer loops than those without PIS increases. C GO enrichment analysis 
for two sets of cardiomyocyte‑specific genes classified by whether associ‑
ated with significant PIS changes. Figure 6. Applying DARIC to a compen‑
dium of Hi‑C datasets across many cell types. A Distribution of TSA‑seq 
signals in the five variability states in the three cell lines. B Distribution of 
DamID signals in K562 cells. C Stacked bar plots showing the composition 
percentages of the five sub‑compartments in the five variability states. D 
PIS variability comparison for the five sub‑compartments.

Additional file 2: Table S1. Data used for the H1ESC‑K562 comparison.

Additional file 3: Table 2. Analyzed Hi‑C datasets from the 4DN 
consortium.
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