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Abstract 

Background Malvaceae is an economically important plant family of 4,225 species in nine subfamilies. Phylogenetic 
relationships among the nine subfamilies have always been controversial, especially for Brownlowioideae, whose 
phylogenetic position remains largely unknown due to the lack of samples in previous analysis datasets. To greatly 
clarify the phylogenetic relationship of Malvaceae, we newly sequenced and assembled the plastome of Diplodiscus 
trichospermus taxonomically located in Brownlowioideae, and downloaded the allied genomes from public database 
to build a dataset covering all subfamily members of Malvaceae.

Results The annotation results showed that the plastome of Diplodiscus trichospermus has a typical quadripartite 
structure, comprising 112 unique genes, namely 78 protein-coding genes, 30 tRNA genes and 4 rRNA genes. The total 
length was 158,570 bp with 37.2% GC content. Based on the maximum likelihood method and Bayesian inference, 
a robust phylogenetic backbone of Malvaceae was reconstructed. The topology showed that Malvaceae was divided 
distinctly into two major branches which were previously recognized as Byttneriina and Malvadendrina. In the Malva-
dendrina clade, Malvoideae and Bombacoideae formed, as always, a close sister clade named as Malvatheca. Subfam-
ily Helicteroideae occupied the most basal position and was followed by Sterculioideae which was sister to the alli-
ance of Malvatheca, Brownlowioideae, Dombeyoideae, and Tilioideae. Brownlowioideae together with the clade 
comprising Dombeyoideae and Tilioideae formed a sister clade to Malvatheca. In addition, one specific conservation 
SSR and three specific palindrome sequences were observed in Brownlowioideae.

Conclusions In this study, the phylogenetic framework of subfamilies in Malvaceae has been resolved clearly 
based on plastomes, which may contribute to a better understanding of the classification and plastome evolution 
for Malvaceae.
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Background
Comprehensive and robust phylogenetic trees can 
advance our understanding of life origin, species differ-
entiation and evolutionary process [1]. Complete chlo-
roplast (cp) genomes usually inherited maternally have 
a moderate nucleotide substitution rate [2], and provide 
variation-rich nucleotide sequences compared with a 
few plastid or nuclear DNA markers, which have been 
widely used for plant phylogeny reconstruction, estimat-
ing divergence and generating genetic markers in recent 
years [1, 3–7]. Predominantly, the whole cp genomes 
contain 5–130 genes and its size ranges from 11  kb [8] 
to 240  kb (Accession: NC_031206 unpublished) in land 
plants, and generally exhibits a typical quadripartite 
structure consisting of two inverted repeats (IRs), one 
small single copy (SSC) and one large single copy (LSC) 
[9].

Malvaceae, the largest family in Malvales, incorpo-
rates the former separate families Malvaceae s.s., Bom-
bacaceae, Sterculiaceae, and Tiliaceae [10]. It comprises 
4,225 species in 244 genera in nine subfamilies [10, 11]. 
They are distributed more abundantly in tropical and 
subtropical regions, and were found all over the world 
except from the Arctic, the Antarctic, and the Gobi 
Desert [11]. Malvaceae, several members of which are 
widely used in agriculture, forestry, and horticulture, is 
an economically important plant family within the order 
Malvales in rosids. The economic importance includes 
herbal medicines [12, 13], fibers [14], gums [15, 16], fruits 
[17], vegetables [18–22], oils [23], beverages [14], timbers 
[24, 25], and numerous ornamental cultivars [26].

In traditional circumscription, Tiliaceae, Sterculiaceae, 
Bombacaceae, and Malvaceae s.s. were recognized as the 
"core Malvales", and the close relationship among these 
families was generally recognized [27, 28]. The first phy-
logenetic study focused on this group based on morpho-
logical features showed that only Malvaceae s.s. is likely 
monophyletic, and the other three families are paraphy-
letic or polyphyletic. Therefore, the "core Malvales" were 
proposed to be recognized at the familial level, i.e., Mal-
vaceae s.l. [29]. This taxonomic treatment was supported 
by subsequent both morphological and molecular studies 
[10, 30–34]. Based on molecular studies encompassing a 
small number of DNA fragments, Malvaceae have been 
subdivided into nine subfamilies (i.e., Byttnerioideae, 
Grewioideae, Helicteroideae, Sterculioideae, Brown-
lowioideae, Dombeyoideae, Tilioideae, Bombacoideae, 
and Malvoideae), comprising two sister clades (i.e., 
Byttneriina and Malvadendrina) [10, 31]. Apart from the 
fact that Bombacoideae and Malvoideae together formed 
a well-supported clade named as Malvatheca, and 
Byttneriina (including Byttnerioideae and Grewioideae) 
formed a sister clade with the remaining Malvaceae 

taxa, relationships of other subfamilies have been poorly 
resolved [35–41]. Until recent studies based on plastid 
genomes, the phylogenetic relationships among nine sub-
families have been largely improved [42–46]. However, 
since the datasets in their analysis lack one to three sub-
family members in most cases, the relationships among 
several of its nine subfamilies still remain unclear. Only 
Cvetković et al. [47] reported the complete phylogenetic 
tree based on cp genomes, which exhibited a well-sup-
ported topology confirming the split of the family into 
Byttneriina and Malvadendrina. Defectively, in their 
topology, the clade including Brownlowioideae, Dombe-
yoideae, and Tilioideae was supported as sister clade to 
Malvatheca with moderate bootstrap (bs = 72). Moreo-
ver, only one species belonging to Brownlowioideae was 
included in their dataset. Thus, further phylogenetic 
analysis including more species in Brownlowioideae to 
clarify the phylogeny within Malvaceae is necessary.

In Malvaceae, many studies have assessed the pos-
sibility that cp genomes can be used to clarify the phy-
logenetic relationships, or to improve topology of 
phylogenetic tree among its subfamilies [42–44, 46, 48]. 
Since the cp genome of Gossypium hirsutum represent-
ing the first plastome in the Malvaceae was reported 
in 2006 [49], complete cp genome of a large number of 
species in Malvaceae were sequenced. Up to Oct 21, 
2022, a total of 296 records of complete cp genome were 
retrieved from Genbank, including 132 species from nine 
subfamilies, but only one complete cp genome of Brown-
lowioideae has been retrieved. Here, we newly sequenced 
and assembled the plastome of Diplodiscus trichosper-
mus recognized in Brownlowioideae and downloaded 
the allied genomes from public database to construct the 
dataset representing all subfamilies of Malvaceae, aiming 
to greatly clarify the phylogeny of Malvaceae, especially 
the phylogenetic position of Brownlowioideae.

Results
Plastome structure and RSCU of Diplodiscus trichosperma
The complete cp genome of Diplodiscus trichosperma 
was successfully assembled and annotated (Fig.  1). Like 
the most species of Malvaceae, its plastome has a typi-
cal quadripartite structure [44, 50, 51], namely, the two 
repeat regions (IRs) are separated by a large single copy 
region (LSC) and a small single copy region (SSC). The 
total length was 158,570  bp with 37.2% GC content. 
112 unique genes were found in complete cp genome of 
Diplodiscus trichosperma, including 78 protein-coding 
genes, 30 tRNA genes, 4 rRNA genes. LSC (87,808  bp), 
SSC (19,558 bp), and IR (25,602 bp) included 82, 13, and 
17 unique genes respectively.

Codon usage bias, preferential or non-random use 
for synonymous codons, is a universal phenomenon 



Page 3 of 15Wu et al. BMC Genomics          (2023) 24:571  

observed in organisms [52–54]. It is generally affected 
by gene mutation, natural selection, and genetic drift 
[55, 56]. To analyze the frequency of codon usage, a 
total of 78 unique coding sequences were extracted 
from cp genome to calculate the relative synonymous 
codon usage values (RSCU). All genes began with the 
codon AUG, except ndhD gene with the non-AUG start 
codon (GUG) (Fig. 2). 31 codons in the 78 unique CDSs 
have a positive bias (RSCU value > 1), where 29 are A- or 
U-ending codons, and the most frequent was AUU isole-
ucine-encoding (987 occurrences). Correspondingly, the 
negative bias (RSCU value < 1) was found in 33 codons 

where 30 are G- or C-ending, and the least frequent 
codon was GUG methionine-encoding (only 1 occur-
rence). All stop codons were found, especially the UAA 
with 42 occurrences showed the strong codon usage bias 
(RSCU value = 1.62).

Phylogenetic analysis
To reveal the phylogenetic position of Brownlowioideae 
in Malvaceae, we reconstructed the Bayesian inference 
(BI) and maximum likelihood (ML) trees based on 148 
genomes (including all genes and intergenic spacers) cov-
ering all subfamilies in Malvaceae and three outgroups. 
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All 148 cp genome sequences have a typical quadripartite 
structure, and its genome size ranges from 157,936  bp 
to 168,953  bp. The IR length ranges from 23,726  bp 
to 34,496  bp. By aligning the genome to a reference 
sequence, we found that SSC in almost half of the 148 
sequences have forward read orientation (the SSC ori-
entation of Malva wigandii was designed as a reference), 
while the remains possess the reverse orientation. Thus, 
we normalized the orientation of all sequences according 
to LSC-IRb-SSC-IRa for subsequent phylogenetic analy-
ses. The analysis recovered a robust phylogenetic back-
bone of Malvaceae, and a closer relationship between 
Brownlowioideae, Tilioideae, and Dombeyoideae (Fig.  3 
and Additional file 1). All phylogenetic trees constructed 
by RAxML, IQ-TREE 2 or MrBayes have strong support 
values in each node of their topology, and the inferred 
relationships are completely congruent among these 
trees (Additional file 1).

Unsurprisingly, Grewioideae and Byttnerioideae 
formed a clade named as Byttneriina, which was a sister 
to the clade comprising the residual subfamilies in Mal-
vaceae named as Malvadendrina. In the Malvadendrina 
clade, Malvoideae and Bombacoideae formed a close sis-
ter clade named as Malvatheca; subfamily Helicteroideae 
occupied the most basal position and was followed by 
Sterculioideae which was sister to the alliance of Mal-
voideae, Bombacoideae, Dombeyoideae, Tilioideae, and 

Brownlowioideae; Brownlowioideae together with the 
clade including Dombeyoideae and Tilioideae formed 
a sister clade to Malvatheca. Overall, the topology we 
recovered is basically identical to previous analysis 
based on the cp genomes, except for some results based 
on molecular fragments where the topology of the phy-
logenetic tree has weak support, and the phylogenetic 
position of some subfamilies such as Sterculioideae and 
Dombeyoideae is unstable (Fig. 4).

Tree topology tests were performed on the phyloge-
netic trees previously considered controversial (Fig.  4). 
The statistical tests rejected hypotheses b (Brownlow-
ioideae and Dombeyoideae formed a sister group and 
Sterculioideae was close to Malvatheca), c (Sterculioideae 
and Tilioideae formed a close clade which was sister to 
Malvatheca) and d (Dombeyoideae formed the earli-
est divergent clade), but failed to reject hypothesis a 
(Helicteroideae located at the most basal position and 
Brownlowioideae formed a sister to the clade comprising 
Tilioideae and Dombeyoideae) which possess high confi-
dence (Table 1). The result indicated a reliable phyloge-
netic tree of Malvaceae where the systematic position of 
Brownlowioideae was resolved with great certainty.

Comparison of genome structures
To analyse the junctions of four distinct regions (LSC, 
IRb, SSL, and IRa) in cp genomes within Malvaceae, a 
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dataset including the sequence newly generated in this 
study and another 31 species downloaded from pub-
lic database was constructed. This dataset comprised all 
subfamily members of Malvaceae and three outgroups. 
We visualized the IR boundaries and the gene order of 

Malvaceae showed as Figs. 5 and 6 respectively. The con-
traction and expansion of IRs exhibited similar patterns 
(Fig. 5), namely, rps19 and rpl2 located in the vicinity of 
the LSC/IRb junctions (JLB); trnN and ndhF located in 
IRb/SSC (JSB); ycf1 and trnN located in SSC/IRa (JSA); 

Fig. 3 The plastid phylogeny of the Malvaceae inferred from complete cp genome sequences. The numbers at each node indicate the bootstrap 
support (BS) / posterior probability (PP) / (SH-aLRT support / aBayes support / ultrafast bootstrap support). The unlabeled nodes indicate 100% / 
1.0 / (100% / 1 / 100%) support values. Clades are color-coded according to subfamily. The blue numbers deposited in triangle shows the species 
number in each subfamily
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Fig. 4 Phylogenetic relationships among subfamilies of Malvaceae. The number labeled by red and blue font indicates the ML bootstrap values 
and BI posterior probability respectively. The unlabeled nodes indicate 100% and (or) 1.0 support values. a In this study. b From Cvetković et al. [47]. 
c From Hernández-Gutiérrez and Magallón [41]. d From Alverson et al. [31]. e From Wang et al. [46]. f From Li et al. [45]. g From Conover et al. [42]. h 
From Nyffeler et al. [37]

Table 1 Statistical tests of alternative tree topology hypotheses conducted by IQ-TREE 2

a Helicteroideae located at the most basal position and Brownlowioideae formed a sister to the clade comprising the Tilioideae and Dombeyoideae (present study); b 
Brownlowioideae and Dombeyoideae formed a sister group and Sterculioideae was close to Malvatheca (structurally identical to Hernández-Gutiérrez and Magallón 
[41]); c Sterculioideae and Tilioideae formed a close clade which was sister to Malvatheca (structurally identical to Conover et al. [42]); d Dombeyoideae formed the 
earliest divergent clade (structurally identical to Nyffeler et al. [37]). a, b, c, and d corresponding to Additional file 4a, b, c, and d respectively. The value of deltaL 
indicates that logL differs from the maximal log1 in the comparison. bp-RELL, bootstrap proportion using RELL method [57]; p-KH, p-value of one-sided Kishino-
Hasegawa test [58]; p-SH, p-value of Shimodaira-Hasegawa test [59]; c-ELW, Expected Likelihood Weight [60]. p-AU, p-value of approximately unbiased (AU) test [61]. 
Plus signs denote the 95% confidence sets. Minus signs denote significant exclusion. All test performed on 10,000 replicates using the RELL method

Tree logL deltaL bp-RELL p-KH p-SH p-WKH p-WSH c-ELW p-AU

a -1,014,060.351 0 1 + 1 + 1 + 1 + 1 + 1 + 1 + 

b -1,014,228.252 167.9 0- 0- 0.0001- 0- 0- 1.37e-25- 2.29e-05-

c -1,014,230.306 169.95 0- 0- 0.0001- 0- 0- 1.16e-24- 1.06e-82-

d -1,014,632.753 572.4 0- 0- 0- 0- 0- 4.61e-159- 0.00018-
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rpl2 and trnH located in IRa/LSC (JLA). Apparently, 
the genes enclosing each junction site or bp distance 
of the genes from the junction site are not coincident 
with the phylogenetic tree. In subfamily Bombacoideae, 
although Ceiba insignis and Pachira macrocarpa showed 
a close relationship, their junction genes were different. 
In Byttnerioideae and Grewioideae, their junction pat-
terns were completely identical, namely rps19 extended 
from LSC to IRb; the whole rpl2 and trnN were included 
in IRs; ndhF mostly existed in SSC and partially in IRb 
region; ycf1 completely located in SSC; unsurprisingly, 
the trnH gene of each cp genome presented completely 
in LSC region. The similar structural feature was also 

observed in subfamily Bombacoideae and Malvoideae, 
except that ndhF was mostly localized in SSC and ycf1 
started from the IRa region and integrated into the SSC 
region. In conclusion, the junction patterns of most Mal-
vaceae species were similar to Myrtaceae [62], Lythra-
ceae [63], Combretaceae [64] and Brassicaceae [65] in 
Malvids, namely rps19 and rpl2 in JLB, trnN and ndhF in 
JSB, ycf1 and trnN in JSA, rpl2 and trnH in JLA.

In addition, the gene order of cp genome is highly con-
served among subfamilies in Malvaceae (Fig.  6), except 
for partial gene order changes caused by the contrac-
tion or expansion in the IR regions or gene duplications 
in single-copy regions. The contraction of IR regions in 

Fig. 5 Comparison of the IR-boundaries among species of Malvaceae. The number at the tail and tip of mini arrows showed the gene length 
and bp distance from the corresponding junction site respectively. The sum of the numbers at both ends of the ‘ + ’ is the gene length, and each 
number showed the bp distance from the corresponding junction site. In the phylogenetic tree on the left, clades are color-coded according 
to subfamily. The ML bootstrap values / BI posterior probability was marked at each node. The unlabeled nodes indicate 100% / 1.0 support values. 
The sequence newly generated in this study was marked by asterisk
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Pachira macrocarpa and Bombax ceiba led to the trans-
fer of trnN and trnR to SSC region, while the contrac-
tion of IR regions in Durio zibethinus and Pterospermum 
truncatolobatum resulted in the transfer of rpl2 and rpl2 
together with rpl23 to LSC respectively. The expansion 
of the IR regions in Heritiera littoralis led to the loss of 
ycf1, rps15, and ndhH from SSC. Additionally, the dupli-
cations of trnH in LSC and rpl32 in SSC were observed in 
Colona floribunda and Pterospermum truncatolobatum 
respectively.

SSRs, palindromic sequences and conserved sequence 
analysis
Combining the sequences newly generated in this 
study and reported in public database, a total of 145 cp 
genomes, which covered 9 subfamilies, 42 genera, and 
145 species (see Additional file  2 for detail), were used 
to investigate the sequence features. Almost of all sub-
families in Malvaceae have its specifical variable number 
of tandem repeat (VNTR) sequences, except Malvoid-
eae where we not found complete conservation SSRs 
(Fig.  7). Only one conservation VNTR was observed 
in Grewioideae, Byttnerioideae, and Brownlowioideae 
respectively, while at least two sequences in other sub-
families, especially four and nine in Bombacoideae and 
Tilioideae respectively. The members in Malvatheca and 
in the clade comprising Dombeyoideae and Tilioideae 

shared the VNTR sequences "TAT ATG GAT AAT ATA 
TGG ATAA" and "ACT AAT GAA ACT AAT GAA " respec-
tively. Byttnerioideae and Grewioideae were observed 
to share two conserved VNTR sequences located in 
the intergenic spacer between ycf4 gene and cemA 
gene. Furthermore, the palindrome sequences shared 
among subfamilies were also analysed. In Brownlow-
ioideae, three palindrome sequences were observed in 
its members, two of which were situated in IRs and one 
in trnL-UAA gene. A palindrome sequence ("AGA TTG 
CAA TCT ") which posited in ndhA gene was shared by 
Dombeyoideae, Tilioideae, and Brownlowioideae. The 
palindrome sequence ("CCG CTA TAG CGG ") in rpoB 
gene was observed as completely conservation in Stercu-
lioideae. In Grewioideae, Byttnerioideae, and Dombey-
oideae, one shared palindromic sequence was found in 
the intergenic spacer in each subfamily (Fig. 7). The clade 
comprising Sterculioideae, Brownlowioideae, Tilioideae, 
Dombeyoideae, and Malvatheca shared two palindro-
mic sequences ("TTG ATC GAT CAA " and "TTT CTA 
GAAA") located in IRs. The clade Byttneriina shared 
"TTG ATC ATG ATC AA". Interestingly, the palindromic 
sequence "AAA ATC GAT TTT " and "GAA CGT TC" are 
lost in Malvoideae and Bombacoideae respectively. All 
Malvaceae members shared four palindromic sequences 
(Fig. 7). In addition, we found more conserved sequences 
in the branch nodes containing two or more closely 

Fig. 6 The gene order map of Malvaceae cp genomes. the genes marked with a blue underline are located in IRb region. The IRa region 
was removed from analysis
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related subfamilies (see Additional file 3 for detail). These 
sequences may provide evolutionary evidence for the 
divergence of each subfamily.

Discussion
Chloroplast genome of Malvaceae
In this study, 145 representative taxa from 42 genera of 
Malvaceae and three outgroups were included in analysis 
dataset. These cp genomes have wide variations of SSC 
orientation as claimed by Cheng et  al. [51], especially 
for genus Hibiscus as Fig. 8. However, whether this is the 
case or not, further third-generation sequencing data 
may be necessary to confirm it. There is no doubt that the 
inconsistency of the reference selection when annotating 
plastomes also can result in a variable read orientation 
[66].

The majority of cp genomes in angiosperm have con-
servative quadripartite structure, namely two inverted 
repeats were separated by one small single copy and 
one large single copy [67], and the genome size ranges 
from 11 kb [8] to 240 kb (in Pelargonium transvaalense, 
Accession: NC_031206.1). In our dataset, no exception 

was observed in the quadripartite cp genome structure 
of Malvaceae, and its genome size which ranged from 
157,936  bp to 168,953  bp was also within the general 
size for angiosperms, suggesting that the species exhib-
ited extremely conserved cp genome size and structure in 
Malvaceae.

The IR region is important to stabilize cp genome 
structure, and its slower nucleotide substitution rates 
compared with single-copy regions can enhance copy-
correction activity [68]. About 10,000 bp variations of IR 
length of cp genome in Malvaceae indicated the notice-
able genetic differences generally resulting from the con-
traction or expansion of the IR regions [69]. The changes 
in IR regions may result in a rearrangement of their 
gene order [70]. An obvious expansion in IRs of Heri-
tiera littoralis resulted in that three genes (ycf1, rps15, 
and ndhH) general located in SSC were transferred to IR 
regions, while Bombax ceiba (Bombacoideae), Pachira 
macrocarpa (Bombacoideae), Durio zibethinus (Helicter-
oideae), and Pterospermum truncatolobatum (Dombey-
oideae) have a contrary case where some genes general 
in IRs were transferred to sing-copy regions (Fig. 6). The 

Fig. 7 The SSRs and palindromic sequences shared within or among subfamilies. The black and red sequences indicate SSRs and palindromic 
sequences respectively. The solid circle indicates the presence of sequence while the hollow circle indicates the absence of sequence
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events of IRs contraction or expansion also occurred in 
Rutaceae [71], Sapindaceae [72], Meliaceae [73], Ona-
graceae [74], and Thymelaeaceae, which all belong to 
the order Malvids. Especially in Thymelaeaceae, the IR 
length is nearly twice of it in most angiosperms, resulting 
in about 2–3  kb residue in SSC region which only con-
tains the ndhF and rpl32 genes [75].

The gene duplication in cp genome is an essen-
tial source of organelle evolution, new genes, and new 
genetic functions [76]. The gene duplication in single-
copy regions was usually caused by the expansion of the 
IR regions [76], and only a few not involving the IRs have 
been documented in cp genomes, such as psbZ in Wolf-
fia [77], trnQ-UUG in Epimedium and Geraniaceae [78, 
79], psbA and trnT-GGU in Pinus [80, 81], and psbJ in 
Trachelium [82]. Gene duplication events not involving 
the IRs were detected in a few Malvaceae species (trnH 
occurs in LSC of Colona floribunda, and rpl32 occurs 
in SSC of Pterospermum truncatolobatum), indicating 
that the cp genome of Malvaceae may be undergoing an 
evolution of new genes or new gene functions to further 
adapt to the changeable environment.

Interestingly, the above genetic events (IR regions con-
traction and expansion, and gene duplication) in Mal-
vaceae are not exclusive to a single subfamily or several 
closely related subfamilies, but are scattered into differ-
ent subfamilies. Thus, it is evident that gene losses or 
gains in the repeat regions or gene duplication in single-
copy regions may not indicate a phylogenetic signal at the 

subfamily level, which is similar to the claims of Jansen 
et al. [83].

Phylogenetic relationships inference
Malvaceae, which provides food, beverage, timber and 
traditional medicine for humans, especially most impor-
tant fiber crops, is an importantly economical plant fam-
ily in rosids [84]. However, the intrafamilial phylogenetic 
relationships are currently controversial, which may be 
caused by two primary reasons. One is that no sample 
of Brownlowioideae was included in the dataset, which 
thereby led to the fact that its phylogenetic position was 
unknown [46]; the other is that the phylogenetic trees 
were generally reconstructed by using one or a few loci, 
which resulted in different topologies with relatively low 
supports [37].

The plastome, general conservation, uniparental 
inheritance, and less prone to recombination between 
homologous copies [5, 49], is an ideal model for study-
ing gene evolution and phylogenetic relationships. Com-
pared to a limited number of DNA fragments which 
provide relatively little genetic variation, the whole cp 
genome sequences contain more integrated and adequate 
genetic information, and were regarded as an effective 
tool to investigate the phylogenetic relationships and 
gene evolution [4, 7, 85]. To produce a high-supported 
tree and clarify their phylogeny, we employed the whole 
cp genome sequences to evaluate the phylogenetic rela-
tionship among subfamilies in Malvaceae. Maximum 

Fig. 8 The orientation of cp genomes for Hibiscus. Malva wigandii (NC_049129) was designed as the target sequence. The blue line indicates 
the same direction as the target sequence, while the red line indicates the opposite direction
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likelihood analysis and Bayesian inference recovered a 
strongly supported phylogenetic backbone of Malva-
ceae. Our newly generated phylogenetic tree (Fig.  4a) 
is structurally identical to the one recently reported by 
Cvetković, et al. [47] (Fig. 4b). There is a moderate sup-
port between Malvatheca and the clade comprising 
Tilioideae, Dombeyoideae, and Brownlowioideae for the 
phylogenetic tree recovered by Cvetković, et  al., while 
strongly supported value (BS = 97, PP = 1) for ours. The 
phylogenetic tree of Malvaceae is distinctly divided into 
two major branches, namely Byttneriina and Malvaden-
drina formed a sister group without controversy [31, 41, 
46]. In addition, the Byttneriina including Byttnerioideae 
and Grewioideae shared the largest number of conserved 
sequences, and these sequences can be up to 182  bp in 
length (see Additional file 3 for detail), which may result 
in a distinct divergence from Malvadendrina.

Within the Malvadendrina clade, the close relationship 
of the Malvoideae and Bombacoideae was firstly identi-
fied [31, 36] and had no controversy for a long time. The 
majority of studies on phylogeny of Malvaceae showed 
that Helicteroideae located at the base of Malvadend-
rina (Fig. 4b, c, d, e, f, g), while based on concatenation 
of atpB, matK and ndhF or atpB, trnK-matK, ndhF, rbcL 
and ITS showed that Dombeyoideae was the first diver-
gent (Fig. 4h) [37, 86]. The topologies between Tilioideae, 
Brownlowioideae, and Sterculioideae have been largely 
incongruent and remain unresolved. Especially for 
Brownlowioideae, its phylogenetic position remains 
largely unknown for that no sample in Brownlowioideae 
was included in analysis dataset [42, 45, 46]. Alverson 
et al. [31] tried to recover the phylogeny of the "core Mal-
vales" based on the ndhF sequences which was the first 
dataset including the sample of Brownlowioideae, but the 
relationship between Brownlowioideae, Sterculioideae, 
Malvatheca, and the clade comprising the Dombey-
oideae and Tilioideae had not been resolved (Fig. 4d). The 
tree reconstructed by concatenation of atpB, matK and 
ndhF revealed the Brownlowioideae as sister to the clade 
comprising Sterculioideae and Malvatheca with weak 
support (Fig.  4h) [37]. Furthermore, the close relation-
ship between Brownlowioideae and Dombeyoideae was 
reported by Hernández-Gutiérrez and Magallón [41], but 
the bootstrap support value is extremely low (Fig.  4c). 
Up to 2021, a robust relationship between Brownlow-
ioideae, Tilioideae, and Dombeyoideae was confirmed by 
Cvetković, et al. [47] based on the cp genome data where 
Brownlowioideae was represented by only one sequence, 
namely Brownlowioideae is sister group to the other two 
subfamilies. The identical phylogeny was also recovered 
by our dataset comprising three sequences in Brownlow-
ioideae. In addition, the systematic position of Stercu-
lioideae is generally controversial. Some studies argued it 

formed as a sister to Malvatheca clade (Fig. 4c, h) [37, 41], 
while others supported it as a close relative to Tilioideae 
(Fig. 4g) [42]. Recently, cp genomic data resolved Stercu-
lioideae as the base divergent clades after Helicteroideae 
in Malvadendrina [45–47], which is consistent with our 
study.

Conclusions
Clarifying the phylogenetic backbone of Malvaceae may 
contribute to exploiting the alternative food, drink, fiber, 
and wood resources from this economically impor-
tant family and protect them better in the future. Here, 
we recovered a robust phylogenetic tree of "core Mal-
vales", and revealed Brownlowioideae was sister group to 
Tilioideae and Dombeyoideae. The result exhibited that 
the cp genomic data not only can improve resolution of 
phylogenetic relationship among orders, families or even 
more genera, but also can resolve the phylogeny perfectly 
at subfamily level. Despite robust support values in every 
internode among subfamilies, more morphological syna-
pomorphies are still required to support this phyloge-
netic relationship derived from cp genomes. In addition, 
the analysis of this study showed that the expansion or 
contraction of IR regions and gene duplication in single-
copy regions are scattered in different subfamilies, so that 
they may not provide obvious phylogenetic signals at the 
subfamily level.

Materials and methods
Plant materials and total DNA extraction
Plant samples of Diplodiscus trichosperma were collected 
from Jianfeng Town, Ledong Li Autonomous County, 
Hainan Province, China (N 18.7001767, E 108.7062028). 
The voucher specimen (Mingsong Wu, WuMS216) was 
deposited in the herbarium of Sichuan University (SZ).

Total genomic DNA was extracted from young devel-
oping leaf tissues collected from the living plant, and 
dried immediately by silica gel using the modified CTAB 
method [87]. Genome skimming was conducted by 
Novogene Bioinformatics Technology Co. Ltd. (Tian-
jin, China) using next-generation sequencing technolo-
gies on the Illumina NovaSeq 6000 platform with 150 bp 
paired-end reads and 350 bp insert size.

Genome assembly and annotation
A total of 3.21 Gb paired-end sequencing data was gen-
erated to proceed the further analysis. The GetOrganelle 
pipeline [88], Bandage [89] and Plastid Genome Annota-
tor [90] were employed to assemble the complete plas-
tome, visualize the assemblies and annotate the genome 
features respectively. The cp genome of Malva wigandii 
(NC_049129) was designated as a reference for annota-
tion. The start/stop codons, intron/exon boundaries, and 
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tRNA genes for the preliminary annotation result were 
manually adjusted by Geneious Prime 2020.1.2 (Biomat-
ters Ltd., Auckland, New Zealand).

Relative synonymous codon usage and gene map
The relative synonymous codon usage (RSCU) of pro-
tein-coding genes was calculated and visualized using a 
python script written by Mingsong Wu. The circle gene 
maps of the plastid genes were drawn by OGDRAW [91].

Comparative analysis of genome structure
To compare the cp genome structural features of all sub-
families in Malvaceae, we downloaded all available cp 
genomes of Malvaceae from Genbank (https:// www. ncbi. 
nlm. nih. gov/ nucco re/), CGIR (https:// ngdc. cncb. ac. cn/ 
cgir/), and reported by Cvetković et  al. [47]. A typical 
species was selected for each genus, with the exception 
of the subfamily Malvoideae, where only 4 species were 
selected to represent 4 of the 16 genera. A total of 32 cp 
genomes were employed as the analysis dataset, cover-
ing all subfamily members in the Malvaceae and three 
outgroups. In addition, we reannotated all sequences 
using the plastome of Malva wigandii (NC_049129) as 
a reference. The LasterZ plugin in Geneious was used to 
normalize the orientation of all sequences according to 
LSC-IRb-SSC-IRa. The genome sequences were aligned 
by MAFFT v.7.308 [92] with default parameters. The 
gene order and gene content adjacent to the borders of 
the two single copies were visualized and compared by a 
python script written by Mingsong Wu.

SSRs, palindromic sequences and completely conserved 
sequences identification
Simple sequence repeats (SSRs) grouped into four cat-
egories (i.e., P-SSRs, C-SSRs, I-SSRs, and VNTRs) were 
identified and localized using Krait software [93]. The 
default parameters were set for all SSRs analysis in this 
study. Palindromic sequences finder in NovoPro online 
tools (https:// www. novop rolabs. com/ tools/ dna- palin 
drome) was used to find the palindromic sequences. The 
completely conserved sequences within or among the 
subfamilies were identified using a python script written 
by Mingsong Wu.

Phylogenetic inference and tree topology comparison
We employed Pentace triptera together with Diplodis-
cus trichosperma to represent the subfamily Brownlow-
ioideae, and combined 142 allied genomes downloaded 
from public database to reconstruct the phylogenetic 
backbone of Malvaceae, and clarify the phylogenetic 
position of subfamily Brownlowioideae within "core 
Malves". A total of 148 genomes (see Additional file 2 for 
detail) were included in this dataset, and all sequences 

were reannotated with the reference genome. The ori-
entation of all sequences was standardized according to 
LSC-IRb-SSC-IRa. Whole cp genome sequences were 
used to construct the data matrix and MAFFT v.7.308 
[92] was employed to align the data matrix. The maxi-
mum likelihood (ML) and Bayesian inference (BI) phylo-
genetic trees were reconstructed using RAxML [94] and 
MrBayes [95] on CIPRES cluster (https:// www. phylo. 
org/) respectively. The parameters for ML were GTR-
GAMMA substitution model and 1000 bootstraps, and 
for BI were as follows: lset nst = 6; rates = gamma; mcmcp 
ngen = 1000000; relburnin = yes; burninfrac = 0.25; print-
freq = 1000; samplefreq = 1000; nchains = 4; savebr-
lens = yes; other settings = default. IQ-TREE 2 [96] was 
employed to infer another ML tree and performed the 
SH-aLRT test, aBayes test, as well as ultrafast bootstrap 
test with 10,000 replicates. The analyses were run with 
the command "iqtree2 -s inputfile.phy -m MFP –abayes 
–alrt 10000 -B 10000 -T AUTO".

The tree topologies were generated using Tre-
eGraph2 [97] to reflect the controversial hypotheses 
on the phylogeny of subfamilies in Malvaceae. Four 
aspects of Malvadendrina phylogeny that have been 
previously considered controversial were tested under 
a likelihood theory framework (see Additional file  4 
for detail): (a) Helicteroideae located at the most basal 
position and Brownlowioideae formed a sister to the 
clade comprising the Tilioideae and Dombeyoideae; 
(b) Brownlowioideae and Dombeyoideae formed a sis-
ter group and Sterculioideae was close to Malvatheca; 
(c) Sterculioideae and Tilioideae formed a close clade 
which was sister to Malvatheca; and (d) Dombey-
oideae formed the earliest divergent clade. Bootstrap 
proportion (BP) test [57], Kishino-Hasegawa (KH) test 
[58], Shimodaira-Hasegawa (SH) test [59], approxi-
mately unbiased (AU) test [61], weighted KH (WKH), 
weighted SH (WSH) and expected likelihood weight 
(ELW) [60] were performed in IQ-TREE 2 [96]. The 
number of RELL replicates was specified as 10,000. 
Probability values (p-values) of the KH, SH and AU 
test smaller than 0.05 indicate that the hypothesis 
was rejected (marked with a—sign). The command 
was "iqtree2 -s inputfile.phy -z inputfile.trees -n 0 -zb 
10000 -zw -au".
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org/ 10. 1186/ s12864- 023- 09680-z.

Additional file 1. The phylogenetic trees of Malvaceae. Clades are color-
coded according to subfamily. a, b and c indicate that ML tree recovered 
by RAxML, BI tree recovered by MrBayes and ML tree recovered by IQ-TREE 
2 respectively. Numbers at each node in a and b indicate the BS and PP 
values respectively. Numbers at each node in c indicate SH-aLRT support/
aBayes support/ultrafast bootstrap supports.
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Additional file 2. The species in Malvaceae covered in dataset. The yellow 
background indicates the plastome of Diplodiscus trichospermus newly 
sequenced in this study. Species marked in red font are designated as 
outer groups.

Additional file 3. The conserved sequences shared among subfamilies. 
The blue color indicated the sequences located in the IRs. 

Additional file 4. The hypothetical tree topologies generated by 
TreeGraph 2. a Helicteroideae located at the most basal position and 
Brownlowioideae formed a sister to the clade comprising Tilioideae and 
Dombeyoideae (present study); b Brownlowioideae and Dombeyoideae 
formed a sister group and Sterculioideae was close to Malvatheca; c 
Sterculioideae and Tilioideae formed a close clade which was sister to 
Malvatheca; d Dombeyoideae formed the earliest divergent clade.
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