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Transcriptome software results show 
significant variation among different 
commercial pipelines
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Abstract 

Background We have been documenting the biological responses to low levels of radiation (natural background) 
and very low level radiation (below background), and thus these studies are testing mild external stimuli to which 
we would expect relatively mild biological responses. We recently published a transcriptome software comparison 
study based on RNA-Seqs from a below background radiation treatment of two model organisms, E. coli and C. 
elegans (Thawng and Smith, BMC Genomics 23:452, 2022). We reported DNAstar-D (Deseq2 in the DNAstar software 
pipeline) to be the more conservative, realistic tool for differential gene expression compared to other transcriptome 
software packages (CLC, Partek and DNAstar-E (using edgeR). Here we report two follow-up studies (one with a new 
model organism, Aedes aegypti and another software package (Azenta) on transcriptome responses from varying dose 
rates using three different sources of natural radiation.

Results When E. coli was exposed to varying levels of K40, we again found that the DNAstar-D pipeline yielded 
a more conservative number of DEGs and a lower fold-difference than the CLC pipeline and DNAstar-E run in paral-
lel. After a 30 read minimum cutoff criterion was applied to the data, the number of significant DEGs ranged from 0 
to 81 with DNAstar-D, while the number of significant DEGs ranged from 4 to 117 and 14 to 139 using DNAstar-E 
and the CLC pipelines, respectively. In terms of the extent of expression, the highest foldchange DEG was observed 
in DNAstar-E with 19.7-fold followed by 12.5-fold in CLC and 4.3-fold in DNAstar-D. In a recently completed study 
with Ae. Aegypti and using another software package (Azenta), we analyzed the RNA-Seq response to similar sources 
of low-level radiation and again found the DNAstar-D pipeline to give the more conservative number and fold-expres-
sion of DEGs compared to other softwares. The number of significant DEGs ranged 31–221 in Azenta and 31 to 237 
in CLC, 19–252 in DNAstar-E and 0–67 in DNAStar-D. The highest fold-change of DEGs were found in CLC (1,350.9-
fold), with DNAstar-E (5.9 -fold) and Azenta (5.5-fold) intermediate, and the lowest levels of expression (4-fold) found 
in DNAstar-D.

Conclusions This study once again highlights the importance of choosing appropriate software for transcriptome 
analysis. Using three different biological models (bacteria, nematode and mosquito) in four different studies testing 
very low levels of radiation (Van Voorhies et al., Front Public Health 8:581796, 2020; Thawng and Smith, BMC Genom-
ics 23:452, 2022; current study), the CLC software package resulted in what appears to be an exaggerated gene 
expression response in terms of numbers of DEGs and extent of expression. Setting a 30-read cutoff diminishes this 
exaggerated response in most of the software tested. We have further affirmed that DNAstar-Deseq2 gives a more 

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Genomics

*Correspondence:
Geoffrey Battle Smith
gsmith@nmsu.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-023-09683-w&domain=pdf


Page 2 of 12Thawng and Smith  BMC Genomics          (2023) 24:662 

Background
The RNA sequencing (RNA-seq) approach has been a 
popular method of choice for many researchers who 
want to study gene expression in the biological fields [1–
3]. As the method’s level of resolution for gene expres-
sion has increased, the cost of RNA-seq has lowered, 
giving researchers unique insights into biological behav-
ior. Concurrently, many RNA-seq analysis tools/soft-
ware have been developed in recent years to complement 
and expand researchers’ abilities to analyze the resultant 
data [4–6]. Basically, the RNA-seq analysis steps include 
1) quality control analysis of the raw RNA-seq by trim-
ming and removing low quality sequences, 2) mapping 
or alignment of RNA-seq into the database if genome 
information is available or de novo mapping if genome 
information is not available, 3) quantification and nor-
malization of the transcript, and 4) differential gene 
expression analysis [7].

Many RNA-seq analysis software are developed to 
encompass these steps and each step in the analysis 
pipeline has different parameters that can be adjusted 
based on the software/tools [4, 8–10]. It is possible that 
one parameter of RNA-seq pipeline is adjustable in one 
software which is invariable with another software. Com-
mercial transcriptome analysis software like CLC, Partek 
and DNAstar have all steps of analysis in one package. 
For example, CLC has its own mapping system while 
normalization and differential gene expression is done 
by algorithms similar to edgeR [11]. Likewise, DNAstar 
has SeqManNGen for mapping, while edgeR and DESeq2 
are optionally available for normalization and differen-
tial gene expression. So, in addition to the importance 
in designing an experiment and choosing the number of 
biological replicates, but also the appropriate software to 

use and what parameters to set up in each analysis step 
are also important factors for the success of RNA-seq 
experiments [12–16].

Several comparative studies on differential expression 
software for transcriptome analysis have been reported 
and DESeq2 is a commonly used tool [17–21]. In a 
recent study, we compared four commercially available 
transcriptome software for differential gene expression 
studies using RNA-seq data from E. coli and C. elegans 
treated with different source of radiation, and we found 
that DESeq2 (in the DNAstar package) was a more 
conservative and appropriate software for treatments 
expected to give subtle gene expression patterns [22]. In 
this follow-up study, we evaluated another set of RNA-
seq data from E. coli exposed to different radiation doses 
of 40K using CLC, DNAstar-E (edgeR) and DNAstar-D 
(DESeq2) for differential gene expression. We also evalu-
ated RNA-seq data sets from the Aedes aegytpi mos-
quito treated with different sources of radiation using 
DNAstar-D (DESeq2), DNAstar-E (edgeR), CLC and 
Azenta (DESeq2).

Results
Transcriptome software/pipeline comparison
Figure  1 compares a new software package (Azenta) 
with two of the previously used softwares (CLC and 
DNASTAR) for differential gene expression analysis 
of RNA-seq in a new model organism, Ae. aegypti. In a 
new E. coli RNA-seq analysis comparing different levels 
of a natural radiation source (KCl), CLC and DNASTAR 
softwares were used. Important software variables are as 
follows:  The CLC package has two options available for 
mapping, namely local alignment and global alignment, 
whereas Trimmed Mean of M-values (TMM) is used in 

conservative transcriptome expression pattern which appears more suitable for studies expecting subtle gene expres-
sion patterns.

Keywords Transcriptome software, RNA-Seq, Low radiation, Pipeline, Fold-changes, Model organisms

Fig. 1 The different program mapping, normalization and statistical approaches used for each of the software pipelines used in this study
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normalization. The differential gene expression statistical 
package in CLC is based on General Linear Model with 
a negative binominal distribution algorithm (https:// digit 
alins ights. qiagen. com). Azenta uses STAR aligner for 
mapping RNA-seq to a reference genome and differential 
gene expression is analyzed by DESeq2 with normaliza-
tion by median-of-ratios (https:// www. azenta. com). In 
DNASTAR, SeqMan NGen is integrated in the program 
for mapping to reference genomes while BioConductor’s 
DESeq2 and edgeR are optionally available for differential 
gene expression calculation with its own normalization 
method (https:// www. dnast ar. com/ workf ows/ rna- seq/). 
As shown in Fig. 1, the three softwares use different map-
ping systems, using either TMM or median of ratio for 
Normalization. For DEG analysis, the DESeq2 statisti-
cal package is shared between DNAStar-D and Azenta, 
whereas DNAStarE uses edgeR and CLC uses its own 
statistical package (Fig. 1).

Differential gene expression of E. coli
Differentially expressed genes (DEGs) were analyzed 
using CLC and DNASTAR software based on E. coli 
being treated with different doses of 40K underground 

compared to a control dose at the NMSU surface. In 
a previous study, when we used a minimum raw read 
cutoff of 30, this removed exaggerated (eg. 25 – 180) 
fold-change effects with these types of low-level radia-
tion treatments. Here we tested that criterion and the 
raw data of DEGs were analyzed with and without a 30 
read cutoff (Fig.  2). Using the NMSU surface as a con-
trol where the cells were exposed to natural surface lev-
els of radiation, we again documented that imposing a 
30-read minimum cutoff lowered the number of DEGs, 
but with this dataset, the differences were not as large as 
we’ve documented in other studies cited above. The main 
effect is that, as we’ve documented previously, the dif-
ferent softwares gave quite different numbers of DEGs, 
with CLC yielding the most (14–139), DNAStar-D the 
least (0–81) with DNAStar E being intermediate (4–117) 
(Fig.  2, with the 30 read cutoff). Quantifying the extent 
of expression by examining maximum fold change with 
the 30 minimum cutoff (Fig. 3), CLC ranged from 9.7 – 
12.5, DNAStar- E (8.0–19.7) and DNAStar-D yielded 
the lowest fold-change (0—4.3). This is the same pattern 
that we’ve seen in previous studies using different radia-
tion treatments with E. coli and the C. elegans nematode 

Fig. 2 Number of differentially expressed genes (DEGs) in the E. coli study with and without imposing a 30-read cutoff criterion (Data includes 
only data with greater than 30 reads in all replicates treatments). Cells were exposed to 4 treatments underground at WIPP: Minus = Minus 
radiation from cells grown in a steel vault, KCL = Cells grown in a KCL-Irradiator (0.5 × KCL = 7.04 kg (31.8 nGy/hr), (1 × KCL = 14.02 kg (81.4 nGy/hr) 
and (2 × KCL = 22.55 kg (152.9 nGy/hr), Surface = Cells grown at surface as a control (natural background radiation)

https://digitalinsights.qiagen.com
https://digitalinsights.qiagen.com
https://www.azenta.com
https://www.dnastar.com/workflows/rna-seq/
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[21]. It is obvious that different softwares gave different 
numbers of DEGs and different extents of expression, 
but what is most interesting is that the three software 
packages give the same pattern of results, with DESeq2 
(DNAStart-D) being consistently the most conservative.

Differential gene expression of mosquito (Ae. aegypti)
The transcriptome of mosquito was first analyzed by 
the Azenta software package (the company which per-
formed RNA sequencing), and this analysis was com-
pared to our analyses using DNAStar (using DESeq2 or 
edge R statistics) and CLC. Each analysis produced lists 
of differentially expressed genes (DEGs) from the minus 
group (abnormally low radiation treatment) versus dif-
ferent sources of natural radiation amendments, namely 
incubators supplemented with KCl or pozzolan, in com-
parison with control mosquitos incubated at the WIPP 
surface. In agreement with our previous study [22], a 
30-read cutoff criterion again lowered the number of 
DEGs in all comparisons except in the case of DNAStar-
D, which gave the lowest DEGs and was unaffected by the 
cutoff (Fig. 4). The CLC and DNAstar-E pipelines showed 
the highest number of DEGs, with Azenta intermediate 
and DNAStar-D giving the lowest numbers. When the 
highest fold-change of DEGs was analyzed without the 

30-read cutoff, the most exaggerated fold change was 
observed in CLC with up to 6825-fold, DNAstar-E 105-
fold, 10-fold in Azenta and 4-fold in DNAstar-D (Fig. 5). 
After the 30 read cutoff was applied, most of these exag-
gerated fold changes were removed except in CLC anal-
ysis where 1351 fold change still remained the highest 
(Fig.  5). Again, the 30 read cutoff had no effect on the 
maximum fold change in DNAstar-D.

Repeated analysis supported our previous findings in E. 
coli – that the DNAStar package provided more conserv-
ative DEG calculations that are likely more appropriate 
for these studies that are testing a relatively subtle radia-
tion effect. For example, comparing the total number of 
DEGs among the three treatments (75 for DNAStar-D 
and 304 for Azenta, Fig. 4), the Azenta analysis resulted 
in more than four times as many DEGs as the DNAStar-
D package yielded. Both Azenta and DNAStar-D used 
DESeq2 for analyzing differential gene expression, there-
fore the difference in number of DEGs apparently is the 
result of the mapping system difference between the two 
softwares. In Figs. 2, 3, 4 and 5, four treatment compari-
sons were carried out using E. coli and 3 comparisons 
were used for Ae. aegypti. Examining both the number of 
DEGs and the extent of expression (as measured by fold-
change) resulted in 14 data sets. Of the 14 comparisons 

Fig. 3 Maximum fold change observed in DEGs of E. coli with and without the 30-read cutoff
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using the 30 read cutoff criterion, the CLC software 
yielded the highest value in 12 of the 14 comparisons.

Discussion
We have been studying the cell and organismal response 
to the deprivation of normal background levels of radia-
tion by incubating different model organisms in a salt 
deposit 658 m underground at the Waste Isolation Pilot 
Plant (WIPP) outside of Carlsbad, NM (example publica-
tions [22–26]). The WIPP is the United States only deep 
repository for weapons-related nuclear waste, and, since 
the 1’st waste emplacement in 1999, 71,000 metric tons 
of transuranic waste have been reposited. Previously 
this nuclear waste had been stored aboveground at 34 
facilities, and, as a result of waste emplacement at WIPP, 
these temporary storage sites have been reduced to 19 
(chrome-extension://efaidnbmnnnibpcajpcglclefindmk
aj/https:// wipp. energy. gov/ Libra ry/ TRUwa ste/ ATWIR- 
2021_ CBFO_ Final. pdf ).

At the north end of the mine, one km from the nuclear 
waste there is a large experimental area that has been 
used by physicists (eg. the Enriched Xenon Observatory 

experiment, https:// www- proje ct. slac. stanf ord. edu/ exo/ 
defau lt. htm) and biologists (see eg. publications above) 
to perform measurements and experiments in a very 
low background, radiologically quiet environment. It is 
of course ironic to be performing radiologically sensitive 
measurements in a nuclear waste repository, but it does 
give credence to isolating the waste in a halite deposit 
where one km of salt is more than enough to completely 
shield the radiation. A depiction of the WIPP reposi-
tory and the location of our Low Background Radiation 
Experimental (LBRE) lab is shown in Fig. 6.

The transcriptome experiments we have carried out are 
a basic comparison to the radiation-reduced treatment 
from cells incubated underground in a pre-WW II steel 
vault (to further shield cells from radiation) and this is 
compared to a control aboveground that is experiencing 
background radiation. Over the years we have developed 
additional controls where underground we add back a 
natural source of radiation, for example KCl (which has 
0.01% 40K) or we use a volcanic source like Pozzolan to 
mimic background. In our experiments, we are test-
ing treatments and controls that differ by relatively little 

Fig. 4 Number of differentially expressed genes (DEGs) in mosquito with and without imposing a 30-read cutoff criterion (Data includes 
only data with greater than 30 reads in all replicates treatments). Mosquito were exposed to 3 treatments underground at WIPP: Minus = Minus 
radiation from mosquito grown in a steel vault (0.004 nGy/hr), KCL = Mosquito grown in a KCL-Irradiator (81.4 nGy/hr), Pozz = Mosquito grown 
in Pozzolan-Irradiator (70.7 nGy/hr). Surface = Mosquito grown at surface as a control (natural background radiation) (35 mGy/hr)

https://wipp.energy.gov/Library/TRUwaste/ATWIR-2021_CBFO_Final.pdf
https://wipp.energy.gov/Library/TRUwaste/ATWIR-2021_CBFO_Final.pdf
https://www-project.slac.stanford.edu/exo/default.htm
https://www-project.slac.stanford.edu/exo/default.htm
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Fig. 5 Maximum fold change in DEGs of mosquito

Fig. 6 Location of the Low Background Radiation Experiment (LBRE) lab 2150 ft. below the surface and 3150 ft. from the nuclear waste at the Waste 
Isolation Pilot Plant (WIPP). The numbers in red indicate the radiation dose rates at the surface (35 nGy/hr) and in the LBRE lab (2.34 nGy/hr). Note, 
the pre- WWII steel vault adjoins the LBRE lab and has a lower radiation dose rate (0.004—0.9 nGy/hr, depending on the isotopes in the growth 
media). Adapted from Castillo and Smith, 2017 [27]
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radiation, the difference between background radiation 
(which is low) and below-background (which is very low).

In our recent work, we’ve documented surprisingly 
high fold-changes in many of the differentially regulated 
genes. For example, using 3 different commercial tran-
scriptome analyses programs (CLC Genomic, Partek 
and DNAStar-RPKM), 24 of the 26 major sperm related 
C. elegans genes were more than 10-fold up-regulated 
(range 10.5 – 42.9, Van Voorhies et al. 2020 Table 1 [26]) 
in the absence of normal levels of radiation. Consider-
ing the low vs lower radiation treatment differences, we 
were surprised of the extent of up-regulation, but since 
all three pipelines showed this, the manuscript was pub-
lished. Recently, we’ve taken a more careful look at the 
different statistical analyses options and, adjusting some 
of the parameters of the programs, found that impos-
ing a less than 30 read cutoff lowered the maximum-fold 
change for all the C. elegans DEGs from 936.5 to 14.6 
(CLC Genomics) and from 761.3 to 20.8 (DNAStar using 
EdgeR). Interestingly, for the DNAStar option using 
the DESeq2 statistical package, the 30 read-cutoff did 
not make any difference, with both options showing an 
already-conservative 3.3 maximum fold-change (Fig.  3B 
in Thawng and Smith, 2022 [22]). The more conservative 
number and extent of regulation of the C. elegans genes 
reported in 2022 did not change the biological interpre-
tation we had reached in our 2020 VanVoorhies paper, 
but the more refined use of these commercial softwares 
gave more realistic estimates of the extent of differential 
expression.

Without the short read cut-off criterion, both the num-
ber of DEGs and the extent of fold-changes are typically 
exaggerated. It is also important to examine the raw reads 
and normalization data of the significant genes because 
exaggerated fold-changes in some of the genes may still 
persist because of mapping. Finally, the extent of the 
fold-change cut-off (eg., 2-fold or 1.5-fold in this case) 
is important to consider when comparing two or more 
softwares for transcriptome analysis since the percent-
age of agreement between softwares will be increased as 

the fold-change cutoff decreases. This is especially true 
when a very conservative transcriptome software like 
DNAstar-D is used for comparison with others (Fig. 2 in 
Thawng and Smith, BMC, 2022 [22]).

As mentioned in  the introduction, another considera-
tion should be given to each software mapping param-
eters. For example, in CLC, mapping parameters include 
mismatch cost, insertion cost, deletion cost, length frac-
tion, similarity fraction, local or global alignment while in 
DNAstar, SeqMan NGen mapping parameters including 
Mer size, minimum match %, maximum aligned length 
and maximum gap size which are optionally available. 
Adjusting and optimizing those parameters could also 
affect the mapping results of each significant genes. In 
our studies, in order to make valid comparisons, we used 
the default parameters of each software analyses of tran-
scriptome data.

In looking at the raw mapping data of the specific gene 
with the most exaggerated fold change (6825-fold), it 
was apparent that the total gene reads were the combi-
nation of both intron and exon reads. Therefore, when 
using CLC, we would recommend 30 read cutoff should 
be applied to total exons reads not total gene reads when 
analyzing biological models such as mosquito which  of 
course have introns.

Our previous data are consistent with the current 
results in which the imposition of a 30-read cutoff 
eliminated most of the spuriously high DEGs and fold-
changes. Consistent with our current and recent [22] 
studies, DESeq2 performed better than other methods 
in terms of FDR control. Other researchers have shown 
the DESeq-2 retains statistical power and stability across 
sample sizes [6, 9, 29, 30]. In this study, we also demon-
strated that DESeq2 performed better in terms of being 
more consistent and conservative among the tested 
methods. Of course, there are other pipeline steps like 
what mapping program is used that also are important 
in determining outcomes. For example, both the Azenta 
and DNAStar-D packages use DESeq2 statistical analysis 
(and the same median of ratios normalization step), yet 
the total numbers of Ae. aegypti DEGs among 3 treat-
ment comparisons differed by 4-fold. The use of different 
mapping programs (Star aligner for Azenta and Seq-
Man NGen for DNAStar), most likely accounts for this 
difference.

In our radiation transcriptome studies to date in which 
we’ve used more than one software package, the CLC 
Genomics has generally resulted in the highest numbers 
of DEGs and fold-changes [22, 26]. The current study 
demonstrates the same pattern: in Figs. 2, 3, 4 and 5, four 
treatment comparisons were carried out using E.  coli 
and 3 comparisons were used for Ae. aegypti. Examining 
both the number of DEGs and the extent of expression as 

Table 1 Different source of radiation treatment for mosquito 
culture. The surface value were adapted from Chiou & Hayes, 
2004 [28]

Treatment Dose 
Rate 
(nGy/hr)

Minus (WIPP) 0.004

KCl 81.4

Pozzolana (n = 2) 70.7

Surface (Chiou & Hayes, 2004) [28] 35
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measured by fold-change resulted in 14 data sets. Of the 
14 comparisons using the 30 read cutoff criterion, CLC 
software yielded the highest value in 12 of the 14 com-
parisons. When shared DEGs were analyzed among the 
software, it varies widely based on the organisms.

When we analyzed the percentage agreement among 
the softwares, in the E coli study, percent agreement 
ranged from 0 to 53% (based on CLC as it showed the 
highest number of DEGs) among different software (Sup-
plementary Figure 1). In the Ae. aegypti study, it ranged 
from 0 to 25% agreement among all the tested software 
(Supplementary Figure  2). In this study, we focused on 
the DNAstar-D software because we think it is, due to 
its more conservative results, the most appropriate soft-
ware for studies expected to give subtle gene expression 
responses. As the DNAstar-D is more conservative in 
terms of resulting in lower number of DEGs and lower 
fold-change values compared to other softwares, the 
agreement percentage is also low compared to the other 
softwares. For example, in the Ae. aegypti mosquito data, 
the four softwares (DNAstar-D, DNAstar-E, Azenta and 
CLC) agree on only about 25% of the number of DEGs. 
However, if we remove DNAstar-D, the agreement 
among the other three (Azenta, CLC and DNAstar-E) 
would be more than 75%. However, this does not neces-
sarily mean one should choose CLC and Azenta because 
of the high agreement between them. Instead, we would 
suggest focusing on the software that is appropriate to 
the experiment (in this example, one which yields the 
relatively small treatment differences one would expect 
from experiments looking for subtle responses).

On the other hand, the percentage agreement can be 
increased by changing the fold-change cutoff value from 
2-fold to 1.5-fold. For instance, if the fold change cutoff 
was set for CLC and DNAstar-D at 1.5-fold, the number 
of significant DEGs for DNAstar would increase from 
67 to 418 and the number of significant DEGs for CLC 
would increase from 292 to 771. Therefore, the number 
of DEGs that are different between DNAstar D and CLC 
would decrease from 4.3 times (67 to 292) to 1.8 times 
(418 to 771). Subsequently, the number of DEGs in agree-
ment would increase to 47.6%.

The yearly cost of these commercial pipelines is not 
insignificant, ranging from 2000–3200 USD per year per 
software package. So, it is an interesting and important 
decision for lab directors to balance, for example, the 
employee time spent in learning to write code and imple-
ment “in-house” analyses vs. saving the labor and time 
costs and purchasing standard commercial packages that 
are likely to be more lab-to-lab comparable. In our lab, we 
have chosen to prioritize employee time in experimental 
design and biological science instead of students writing 
code, for example. Another consideration is the running 

time for each software which is of course dependent on 
the genome size. E. coli data analyses run faster than 
mosquito analyses, and so it takes 24  h (prokaryote) to 
48 h (eukaryaote) for turn-around times. In our lab, the 
computer that we used has 256 GB RAM which is the key 
parameter to ensure expedited processing for RNAseq 
analyses of large genomes.

Conclusions
RNA sequencing is a powerful method to study gene 
expression and is useful in identifying important, and 
possibly novel genes in biological studies [1]. However, 
the complexity of RNA-seq analysis software meth-
ods may limit its applications and experimental inter-
pretations [10]. In this study, we have shown that, from 
the same RNA sequence raw data, different softwares 
resulted in quite varied results. Using three different 
biological models (bacteria, nematode and mosquito) in 
four different studies testing very low levels of radiation 
(Van Voorhies et  al. [26]; Thawng and Smith, [22]; cur-
rent study), the CLC software package resulted in what 
appears to be an exaggerated gene expression response 
in terms of numbers of DEGs and extent of expression. 
On the other hand, using the DESeq-2 statistical analy-
sis package option in the DNAStar software consistently 
gave the most conservative estimates of the number 
and extent of differentially expressed genes [22, 26]. We 
believe these four studies represent experiments that 
are testing subtle, but important environmental stimuli, 
and thus we hope these results and suggestions will help 
other researchers who are testing variables expected to 
give small but biologically significant effects. It is impor-
tant for researchers who are not experts in bioinformatic 
programming (like us!) to be careful in choosing which 
transcriptome software and parameters to use for their 
RNA studies. We therefore recommend for transcrip-
tome studies utilizing commercial software for analysis: 
1. Choose the appropriate software depending on the 
experimental design and expected results. 2. If possible, 
compare results using more than one software pack-
age. 3. Apply a 30-read cutoff on raw data of significant 
genes. 4. Test other fold-change cutoffs than the stand-
ard 2.0 cutoff to test the effect of this criterion on how 
different software results agree. 5. Carefully consider the 
programs’ adjustable parameters in order to optimize the 
program to the data set being used.

Methods
E. coli culture conditions
A minus 80 °C frozen glycerol stock of Escherichia coli 
K-12 (ATCC 10798) was struck on TGY agar plates 
and incubated at 30  °C for 1  day. Four separate colo-
nies from the agar plate were inoculated into four 



Page 9 of 12Thawng and Smith  BMC Genomics          (2023) 24:662  

TGY broths (2  mL) in 15  mL tubes and incubated 
at 30  °C 250  rpm for 2  days. Then 20 µL of cultures 
were transferred to fresh TGY broth media (2 mL) and 
incubated overnight at 30  °C 250  rpm. After 16–18  h 
of incubation, the cultures were transported to WIPP 
and two of the biological replicates were refriger-
ated in a Surface lab until use the next day, and two 
of the reps were diluted 25 µL /10  mL of fresh TGY. 
The diluted cultures (1.5 mL) were transferred into the 
top 6 wells of four 24-well plates (MIDSCI, St. Louis, 
MO) and incubated at 30  °C 250 rpm. The cells incu-
bated 24 h underground at WIPP which represented a 
pre-incubation before the cells were transferred again 
to initiate a 3.5-h incubation. Plate counts and optical 
densities were measured at time-zero and after 3.5  h 
and cells were harvested for RNA (see below). The 
process was repeated with the other two biological 
replicates of cells which had been refrigerated for 24 h. 
In this way, four biological replicates were carried out 
in this experiment as described previously [22]. The 
24-well plates were incubated underground at WIPP 
in four Peltier incubators (Sheldon Lab model SR13P) 
under the following conditions: 1. In a 15.2  cm-thick 
vault made from pre-World War II steel (our “minus” 
treatment), and in three incubators with three dif-
ferent amounts of KCl (a natural source of radiation 
having 0.01% 40K) ranging from 7 – 22.6  kg. A linear 
relationship was observed between mass of KCl and 
dose rate in the three incubators (Fig.  7). For surface 
control experiments (normal/natural background radi-
ation), the cultures were conducted in a similar man-
ner as above except incubation of the cultures were 
performed at New Mexico State University (NMSU).

RNA collection and sequencing (E. coli)
RNA samples were prepared for bulk RNA-sequencing as 
previously described [22]. Briefy, on the 2’nd day of incu-
bation underground, exponential phase (3.5  h) cultures 
of E. coli was harvested as follows: 1 mL of RNA protect 
solution was added into 0.5  mL of culture and kept at 
room temperature for 5 min after mixing well. Cell pellets 
were harvested by centrifugation at 12,000 rpm for 5 min. 
The supernatant was decanted, and the pellet was kept at 
-20  °C. RNA was extracted from the cell pellet using an 
RNA isolation kit (RNeasy@ Mini Kit, QIAGEN) accord-
ing to manufacturer’s instruction. The quantity and qual-
ity of RNA was evaluated by Nano drop and by running 
on agarose gel electrophoresis. The total RNA samples 
were sent for sequencing at Novogene (Sacramento, CA). 
For E. coli library construction, rRNA was removed using 
the Ribo-Zero kit that leaves mRNA. First, mRNA was 
fragmented randomly by adding fragmentation buffer, 
then the cDNA was synthesized by using mRNA tem-
plate and random hexamers primer, after which a cus-
tom second-strand synthesis buffer (Illumina), dNTPs 
(dUTP, dATP, dGTP and dCTP), RNase H and DNA 
polymerase I were added to initiate the second-strand 
synthesis. This was followed by purification by AMPure 
XP beads, terminal repair, polyadenylation (for bacteria), 
sequencing adapter ligation, size selection and degrada-
tion of second-strand U-Contained cDNA by the USER 
enzyme. The strand-specific cDNA library was generated 
after the final PCR enrichment. Library concentration 
was first quantified using a Qubit 2.0 fuorometer (Life 
Technologies), and then diluted to 1 ug/µl before check-
ing insert size on an Agilent 2100 and quantifying to 
greater accuracy by quantitative PCR (Q-PCR) (Library 
activity > 2 nM. Qualified libraries were sequenced on an 

Fig. 7 KCl Irradiator dose response
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Illumina Nova Seq 6000 Platform (Illumina, San Diego, 
CA, USA) using a paired-end 150 run (2 × 150 bases). The 
raw reads RNA-seq data were deposited at NCBI acces-
sion no. PRJNA910508. Summary of RNA-seq quality 
can be found at Supplementary Table 1.

Data analysis
For the transcriptome analyses, CLC Genomic Work-
bench 12.2 (Qiagen Bioinformatics, Germantown, MD, 
USA) was used. All RNA Seq data were screened for False 
Discovery Rate (FDR) and were accepted if FDR < 0.05 
and 2-fold change. Raw RNA sequences were trimmed, 
aligned, and mapped against the reference genome of 
E. coli K-12 MG1655 (NC_000913.3) in CLC program 
with the following parameters: 2 maximum mismatches, 
90% minimum similarity fraction, and 10 maximum hits 
per read for mapping. The raw RNA-seq were also ana-
lyzed by DNAStar (Madison, Wisconsin, USA) with Seq-
Man N Gen (version 17.2.1.61) for mapping. Differential 
gene expression was analyzed by DNAstar (DESeq2) and 
DNAstar (edgeR). Other than using a 30-base read cutoff 
as indicated, default parameters of each software tool was 
used for all RNA-seq analyses. For 30 read cutoff criteria, 
we used only data that had greater than 30 reads in all 
eight replicates (4 replicates from control and 4 replicates 
from treatment) [22].

Mosquito rearing and radiation treatment
Male Ae. aegypti were subjected to radiation treatments 
at WIPP designed to test different radiation sources 
to test the effect of the “quality” of radiation at similar 
quantities (Table  1). The sources used for the radiation 
quality study were 1. Natural background (incubated in 
our surface lab at WIPP), 2. Below background at WIPP 
(underground in the steel vault, the “minus” treatment), 
3. pozzolana supplemented treatment, and 4. KCl supple-
mented treatment (Table 1). Mosquitoes were incubated 
between 23.5 and 24.5 °C and provided with 20% sucrose. 
Ae. aegypti were observed over a 16-day span to assess 
mortality, environmental conditions (temperature and 
humidity), and at the conclusion of the study, they were 
sampled for transcriptome analysis in triplicate.

RNA preparation and sequencing (mosquito)
RNA extractions were performed using a Qiagen RNe-
asy Mini Kit according to manufacturer suggested pro-
tocol with minor modification. Throughout, reagents 
and samples were kept cool on ice. Quality of RNA sam-
ples was evaluated using gel electrophoresis to observe 
bands, Nanodrop absorbance ratios (A260/280), and 
with RIN [31]. Extracted RNA were sent to Azenta 
Life Science for RNA sequencing and bioinformatics 
analysis. The raw RNA-seq were deposited at NCBI 

accession no. PRJNA915031. Summary of RNA-seq 
quality can be found at Supplementary Table 2.

Bioinformatic analysis
RNA-seq raw reads were trimmed to remove possi-
ble adapter squences and nucleotides with poor qual-
ity using Trimmomatic v.0.36. The trimmed reads were 
mapped to the Aedes aegypti LVP AGWG reference 
genome available on ENSEMBL using the STAR aligner 
v.2.5.2b. The STAR alinger is a splice aligner that 
detects splice junctions and incorporates them to help 
align the entire read sequences. Unique gene hit counts 
were calculated by using featureCounts from the Sub-
read package v.1.5.2. The hit counts were summarized 
and reported using the gene_id feature in the annota-
tion file. Only unique reads that fell within exon regions 
were counted. After extraction of the gene hit counts, 
the gene hit counts table was used for downstream dif-
ferential expression analysis. Using DESeq2, a com-
parison of gene expression between customer-defined 
groups of samples was performed. The Wald test was 
used to generate p-values and log2 fold changes. Genes 
with an adjusted p-value < 0.05 and absolute log2 fold 
change > 1 were called as significant differentially 
expressed genes for each comparison. The trimmed 
RNA-seq were also analyzed by DNASTAR. Seq Man 
Ngen was used for mapping to the genome databased 
and DNAstar (DESEq2) was used for normalization and 
differential gene expression. For 30 read cutoff criteria, 
we used only data that had greater than 30 reads in all 
six replicates (3 replicates from control and 3 replicates 
from treatment) [22].
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