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Abstract 

Background Genome-wide association studies (GWAS) are important for the acceleration of crop improvement 
through knowledge of marker-trait association (MTA). This report used DArT SNP markers to successfully perform 
GWAS on agro-morphological traits using 270 bambara groundnut [Vigna subterranea (L.) Verdc.] landraces sourced 
from diverse origins. The study aimed to identify marker traits association for nine agronomic traits using GWAS 
and their candidate genes. The experiment was conducted at two different locations laid out in alpha lattice design. 
The cowpea [Vigna unguiculata (L.) Walp.] reference genome (i.e. legume genome most closely related to bambara 
groundnut) assisted in the identification of candidate genes.

Results The analyses showed that linkage disequilibrium was found to decay rapidly with an average genetic 
distance of 148 kb. The broadsense heritability was relatively high and ranged from 48.39% (terminal leaf length) 
to 79.39% (number of pods per plant). The GWAS identified a total of 27 significant marker-trait associations (MTAs) 
for the nine studied traits explaining 5.27% to 24.86% of phenotypic variations. Among studied traits, the highest 
number of MTAs was obtained from seed coat colour (6) followed by days to flowering (5), while the least is days 
to maturity (1), explaining 5.76% to 11.03%, 14.5% to 19.49%, and 11.66% phenotypic variations, respectively. Also, 
a total of 17 candidate genes were identified, varying in number for different traits; seed coat colour (6), days to flow-
ering (3), terminal leaf length (2), terminal leaf width (2), number of seed per pod (2), pod width (1) and days to matu-
rity (1).

Conclusion These results revealed the prospect of GWAS in identification of SNP variations associated with agro-
nomic traits in bambara groundnut. Also, its present new opportunity to explore GWAS and marker assisted strategies 
in breeding of bambara groundnut for acceleration of the crop improvement.

Keywords Bambara groundnut, Candidate genes, DArT SNP, Linkage disequilibrium decay, Loci, GWAS, Marker trait 
association

Introduction
Bambara groundnut [Vigna subterrenea (L) Verdc.] is 
a legume of sub-Sahara African origin that plays an 
important socio-economic role in semi-arid regions of 
the continent [1]. The seed is a complete food because 
it contains 63% carbohydrate, 19% protein, and 6.5% fat 
[2] and could serve as alternative in areas where animal 
protein is limited because of high cost [3]. Also, it could 
serve as herbal medicine, animal feed, green fertilizer 
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and bio-pesticide [4, 5]. The only source of plant materi-
als for the crop is landraces which evolved from the wild 
relatives [6]. Most of the landraces are poor yielders [7] 
and there is a need for coordinated breeding efforts to 
improve their productivity. There is a wide repertoire of 
genetic diversity and prospects for genetic improvement 
of bambara groundnut using an integrative and compre-
hensive approach that combines multi-omics approaches 
[8]. Paliwal et al. [9] conducted a preliminary analysis on 
bambara groundnut and revealed significant variation 
in all the accessions.  Bambara groundnut is a self-polli-
nating crop with low level of heterozygosity among lan-
draces and selection based on single seed descent could 
results to pure line [10]. Pure line selection could be used 
for bambara groundnut improvement because artificial 
hybridization is difficult [11] but the breeding process is 
lengthy or time consuming. Therefore, the application of 
molecular markers with relevant agronomic traits would 
significantly reduce the cost and time of developing new 
varieties because they accelerate the rate of genetic gain 
in breeding program and assist in the selection of the 
best parents [12].

The usage of molecular markers has aided research-
ers to track segments of the genome which are linked 
to specific phenotypes of interest in QTL-mapping and 
genome-wide association studies [13]. Association map-
ping through genome wide association study gives insight 
on the genetic basis of complex traits in plants and has 
been used in many crop species to find QTLs and can-
didate genes [14]. It examines associations between phe-
notypic variations and nucleotide polymorphism [15]. 
Association mapping using natural a population would 
study many genotypes at once and generates more pre-
cise QTL positions if a sufficient number of molecular 
markers are available [16]. GWAS enables the under-
standing of genetic architecture of phenotypic traits and 
shows the genetic mechanism which controls the vari-
ation of phenotypic traits [17]. Furthermore, it uses the 
linkage disequilibrium (LD) concept which is the non-
random co-segregation of alleles at multiple loci, to sur-
vey genomic regions that describe significant variation 
to phenotypes [18]. The genome wide association analy-
sis depends on markers-traits association (MTA) using 
genetically diverse populations and representative mark-
ers [19] with identification of MTA as the initial step for 
marker assisted selection and is a vital tool used in vari-
etal improvement and rate of genetic gain [18, 20, 21]. 
They aid in a better understanding of genetic bases and 
dissection of genes which controls agro-morphological 
traits.

Despite the importance of GWAS in crop improve-
ment [22] and several benefits (nutritional and eco-
nomic) of bambara groundnut, its production in areas 

of the cultivation is still low because of the unavailability 
of improved varieties [23]. This has made the prospect 
of the crop at commercial or international level low and 
leads the production restricted to subsistence farmers or 
women in the rural areas. More so, the renewed interest 
in orphan crops like bambara groundnut call for actions 
towards creating high yielding, drought resistant, dis-
ease resistant and high nutritional value genotypes with 
application of molecular techniques. Unfortunately, the 
genome-wide association studies have not been reported 
in bambara groundnut to unravel the projection and vari-
ation sources linked to traits of agronomic importance 
or yield components [24]. Only a few reports are avail-
able on linkage-based QTL mapping for some agronomic 
traits using closely related crops in bambara groundnut 
that, suffers from poor mapping resolution, less allele 
mining due to the utilization of biparental population 
and difficult to develop mapping population. LD decay 
based on SNP molecular markers have been used in dif-
ferent crops like legumes [25, 26] and cereals [27, 28] but 
it has not been used in bambara groundnut. The under-
standing of LD decay in a population enables researcher 
to know the number of markers needed for association 
analysis [29].

Next-generation sequencing-based genotyping such 
as genotyping by sequencing (GBS) and diversity arrays 
technology-based sequencing (DArTseq) platforms 
have significantly contributed to the popularity of sin-
gle-nucleotide polymorphisms (SNPs) [30] and enable 
exploration of the genetic basis of agro-morphological 
traits at a finer resolution. Many molecular markers 
have been established and used for bambara ground-
nut landraces for assessing the breeding system [31], 
diversity and population structure [11, 32] and linkage 
analysis [33, 34]. A linkage map using a closely related 
crop has been used in bambara groundnut to facili-
tates the identification of important gene-containing 
regions for some agronomic traits which could aid in 
marker-assisted selection (MAS) in the crop breed-
ing programmes [34]. Association mapping has been 
widely used for dissecting the genetic architecture of 
agronomic traits in several crops: cowpea [35], sorghum 
[36], soybean [37], and maize [38]. Draft sequence of 
bambara groundnut genome has been released [2] with 
efforts still on going in order to assemble the complete 
genome of the crop. However, considering that com-
plete sequence assembly of cowpea is available and is 
close relative of the bambara groundnut (both belongs 
to leguminous family and genus Vigna), it becomes an 
important tool for the analysis of regions of interest in 
bambara groundnut showing their high degree of col-
linearity, 2n = 22 [39]. Amkul et al. [40] have used simi-
lar method with cowpea reference genome to identify 
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candidate genes controlling major QTLs in zombi pea 
[Vigna vexillata (L.) A. Rich] a legume species. This 
study was initiated with the objective of identifying 
marker traits association in bambara groundnut for 
some important agronomic traits using GWAS and 
investigate candidate genes.

Results
SNP analysis
The distribution of SNPs across the eleven chromo-
somes after filtering and removing of > 20% missing 
data and SNP that was unable to be mapped (scaf-
folds) to chromosome region (Table 1). The number of 
SNPs per chromosome varied across the eleven chro-
mosomes. The length of individual chromosome var-
ied from 65  Mb on chromosome 3 for highest length 
while chromosome 2 (33  Mb) had the lowest (Fig.  1). 
The marker density is not equally distributed within 
and between the chromosomes. The proportion of 

nucleotide substitutions as either transition (T/C and 
A/G) and transversion (G/T, A/C, G/C and A/T) are 
shown in supplementary Table  1. The percentage of 
allelic sites is T/C (30.23%), A/G (29.57%), G/T (9%), 
G/C (9%) and A/T (12.18%).

Phenotypic variation
The analysis of variance indicated significant differences 
(p < 0.001) among the landrace for all the studied traits 
(Table  2). Furthermore, landrace x Location (L x Loc) 
interaction for most of the agro-morphological traits 
were highly significant except number of seeds per pod 
while Rep(Loc) was not significant in all the studied 
traits. The broad sense heritability among the traits var-
ied from 48.39% for terminal leaf length to number of 
pods per plant (79.39%). All studied trait, recorded high 

Table 1 Genomic distribution of DArT SNPs physically mapped on each chromosome used for the analysis

Chromosome number Number of SNP Chromosome length (Mb) Percentage of SNP (%) Average SNP 
density (kb/
SNP)

1 226 42.03 10.71 186.00

2 194 33.36 9.19 171.96

3 281 65.20 13.32 232.01

4 164 42.67 7.77 260.17

5 193 48.57 9.15 251.66

6 171 33.91 8.10 198.32

7 246 40.80 11.66 165.86

8 169 37.97 8.01 224.69

9 204 43.84 9.67 214.89

10 116 41.20 5.50 355.20

11 146 41.64 6.92 285.18

Total 2110 471.19 100 2545.94

Fig. 1 Stacked bar chart describing the density of SNPs on the chromosome. The x-axis shows the interval distance in Mb
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heritability (> 60) with exception of pod length and ter-
minal leaf length with moderate heritability.

Correlation analysis
The relationship among the studied agro-morpho-
logical traits (Fig.  2) revealed strongest correlation 
between days to maturity and number of pods per plant 
(r = 0.60). The number of pods per plant had significant 
positive correlation with terminal leaf length (r = 0.30), 
terminal leaf width (r = 0.46), pod length (r = 0.13), 
pod width (r = 0.20) and number of seeds per pod 
(r = 0.11). Also, days to 50% flowering had significant 
correlation with days to maturity (r = 0.32), terminal 
leaf length (r = 0.13), terminal leaf width (r = 0.11), pod 
width (r = -0.13) and number of seed per pod (r = -0.17) 
while days to maturity showed significant correlation 
with terminal leaf length (r = 0.41), terminal leaf width 
(r = 0.40), pod length (r = 0.21), number of seeds per 
pod (r = 0.20) and number pods per plant (r = 0.60).

LD analysis
The distribution of pairwise LD values  (r2) associated 
with all the chromosomes were determined based on the 
genotyping information for 2110 genome wide SNPs in 
the 270 bambara groundnut landraces. A total of 104,226 
intra-chromosomal pairs were generated from the LD 
analysis and the mean  r2 of all pairs is 0.1 (Supplementary 
Table 2). The number of  r2 significant (p < 0.005) pairs was 
21,852 (20.97%) and a mean of 0.23. A non-linear regres-
sion curve exhibiting a decreasing trend of LD decay with 
an increase in the physical distance was observed (Fig. 3). 
The graph had a red curve line, which is the smoothing 
spline regression model fitted to LD decay, and a blue 
horizontal straight-line indicating the threshold above 
which  r2 values are likely due to genetic linkage. The anal-
ysis yielded an average linkage disequilibrium decay of 
148 kb and a whole genome average maximum  r2 of 0.46.

Table 2 ANOVA and broad sense heritability of the measured quantitative traits used for the association mapping

where Loc = Location, Rep = Replication, Hb
2 = Heritability in broadsence, ns = not significant

** = significant at (p < 0.01)

*** = significant at (p < 0.001)

Traits Rep(Loc) Location Landrace Loc x Landrace Residuals Hb
2

df = 3 df = 2 df = 269 df = 538 df = 780

Days to flowering (day) 27.97 ns 9272.06*** 22.23*** 19.55*** 6.76 61.13

Days to maturity (day) 185.42 ns 38,146.92*** 406.79*** 192.45*** 41.32 78.61

Terminal leaf length (mm) 503.06 ns 27,010.64*** 192.87*** 103.37*** 50.65 48.39

Terminal leaf width (mm) 10.62 ns 499.80** 52.34*** 20.96*** 9.11 61.24

Number of pod per plant 42.81 ns 6994.46*** 342.77*** 116.27*** 19.32 79.39

Number of seed per pod 0.03 ns 1.46 ns 0.14*** 0.12 ns 0.01 65.76

Pod length (mm) 104.50 ns 4290.45*** 71.33*** 39.14*** 22.76 54.62

Pod width (mm) 3.98 ns 13.66*** 51.23*** 47.30*** 1.26 68.51

Fig. 2 Correlation coefficient using mixed correlogram based on studied agro-morphological traits of the bambara groundnut. DF Days 
to flowering, DM Days to maturity, TLL Terminal leaflet length, TLW Terminal leaf width, NPP Number of pods per plant, NOSP Number of seed 
per pod, PL Pod length, PW Pod width



Page 5 of 14Uba et al. BMC Genomics          (2023) 24:593  

Genome‑wide marker‑trait associations and candidate 
genes
The maker trait associations (MTAs) identified a total of 
28 significant SNPs for the studied agro-morphological 
traits in the bambara groundnut population and were dis-
tributed across nine of the eleven chromosomes (Table 3, 
Fig.  4). The MTA identified for each trait varied from 
6 markers (seed coat colour and days to flowering) to 
1 marker for days to maturity. Similarly, the number of 
significant SNPs identified on each chromosome ranged 
from 1 (chromosome 8 and 10) to 6 (chromosome 7) 
while no marker trait association was identified on chro-
mosome 1. The percentage of phenotypic variation for 
identified significant SNP markers ranged from 5.27% for 
number of pods per plant to 24.86% for pod width. A total 
of 17 candidates’ genes were identified among all the nine 
traits studied (Table 4). The present study identified can-
didate gene for seed coat colour (6), days to flowering (3), 
days to maturity (1), terminal leaf length (2), terminal leaf 
width (2), pod width (1) and number of seed per pod (2).

Fig. 3 Linkage disequilibrium decay in the bambara groundnut 
germplasm

Table 3 Significant marker-trait associations identified in the GWAS analysis

Chr. Chromosome, PVE Phenotypic variance explained

Traits SNP Chr Position Allele SNP Effect P value PVE (%)

Seed coat colour snp_4184141 10 33,814,471 C/A 1.74 0.000113 11.03

snp_4180945 5 39,211,932 C/G 1.524 0.000132 5.76

snp_100214380 4 42,537,063 C/T -1.05 0.000223 8.25

snp_4184130 7 37,129,987 G/A 0.72 0.000251 8.99

snp_100201748 9 25,647,130 T/C 0.81 0.000361 10.94

snp_4183437 11 36,459,384 A/T 0.69 0.000375 9.06

Days to flowering snp_100206320 7 138,798 T/A 2.24 2.17E-05 14.87

snp_100216842 7 3,200,663 G/C 3.02 8.59E-05 15.82

snp_100241283 7 34,380,456 C/T 1.26 0.00025 17.03

snp_4183351 9 32,254,073 G/C 2.12 6.86E-05 14.58

snp_100243021 9 7,898,627 C/T -1.34 0.00034 19.49

snp_100144226 8 37,729,441 C/T 2.45 3E-05 14.53

Days to pod maturity snp_100239562 2 25,192,034 T/C 7.56 0.00045 11.66

Terminal leaf length snp_4183517 5 6,059,547 C/T -2.85 4.31E-05 9.04

snp_100134167 2 29,673,801 T/G 6.41 6.94E-05 13.86

snp_100225560 7 173,610 C/T 4.08 0.000339 9.43

Terminal leaf width snp_100205840 3 23,864,310 G/A 2.36 0.00033 10.16

snp_100187023 10 35,780,968 C/T 3.01 0.000418 6.82

Pod length snp_100218883 11 2,917,453 T/C 8.12 1.3E-08 24.42

snp_100134998 2 17,642,501 A/C 3.35 6.71E-05 12.77

Pod width snp_100203085 9 42,837,031 C/T -2.01 4.21E-08 24.86

snp_100205444 9 43,175,973 G/T -2.01 4.21E-08 17.79

snp_4178602 7 38,442,799 C/G -1.68 9.5E-05 10.68

Number of seed per pod snp_100213296 6 24,122,517 T/C 0.06 6.47E-06 11.58

snp_4181840 5 8,927,972 G/T -0.03 0.000229 11.47

Number of pods per plant snp_4179413 3 59,879,317 C/A -5.80 2.72E-05 5.27

snp_4176878 3 3,393,003 G/A 5.02 0.000205 7.33

snp_100181875 4 27,546,978 A/G -4.20 0.0003 11.49
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The MTAs on seed coat colour trait identified six 
candidate genes controlling seed pigment and seed 
coat colour (Vigun10g129300, Vigun10g129800, 
Vigun05g203400, Vigun07g253400, Vigun09g116600 
and Vigun11g157200) and the percentage of phe-
notypic variation among the significant SNP mark-
ers varied from 5.76% to 11.03%. However, on days to 
flowering three candidate genes (Vigun07g034000, 
Vigun09g157400 and Vigun09g071700) that regulate 
flowering time was identified with the percentage of 
phenotypic variation among significant markers ranges 
from 14.53% to 19.49% while for days to maturity only 

one candidate gene (Vigun02g095500) responsible for 
pod maturity was identified and the significant marker 
explained 11.66% of the phenotypic variation. Further-
more, candidate genes responsible for terminal leaf 
length (Vigun02g150200 and Vigun02g150500) and 
width (Vigun02g085200 and Vigun10g140300) which is 
one of the key organs for photosynthesis were identi-
fied. Pod length and width was analyzed as a measure 
of increase in organ size with one candidate gene for 
pod width (Vigun09g269300) identified. In addition, 
candidate gene identified for number of seed per pod 

Fig. 4 Manhattan plot of GWAS for the nine studied agronomic traits. The y axis refers to -log10 (p) values plotted against physical position on each 
of the 11 chromosomes. Dashed line indicates genome-wide significance threshold
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(Vigun06g111300 and Vigun06g111300) trait which play 
significant importance on bambara groundnut yield.

Discussion
SNP density
The marker density revealed that SNPs are in abun-
dance in telemetric regions of the chromosome than the 
pericentrometric regions and they varied across chro-
mosome arm positions. This could be due to bias from 
restriction enzymes used or difference in gene coverage. 
Similar findings have been reported by Serba et al. [28]. 
Furthermore, frequency of SNPs showed higher transi-
tions substitution (59.8%) than tranversion substitution 
(40.37%). This agrees with previous report on genome-
wide SNP in other crops [41–43]. The higher frequent of 
transitions substitution indicates they are better tolerated 
during natural selection because they are synonymous 
mutations in protein-coding sequences [44].

Linkage disequilibrium in bambara groundnut
This is the first report of quantification of LD decay in 
bambara groundnut, defining the extent of LD in the 
germplasm. The extent of genome-wide recombination 
is expected to be lower in self-pollinated crop like bam-
bara groundnut than what is observed in cross pollinated 
crops [45]. A rapid LD decay of 148 kb was observed in 

the 270 bambara groundnut landraces. This information 
is helpful for bambara groundnut breeders when consid-
ering the population composition and selection of mark-
ers for further association mapping studies. Thus, the 
rapid LD decay suggests that a small number of mark-
ers could provide sufficient genome coverage for find-
ing marker-traits associations with a diverse bambara 
groundnut population, although having higher number 
of markers are more desirable because it would lead to 
identification of more MTAs. Jia et  al. [46] noted that 
rapid LD decay revealed that the population used are 
sufficiently diversified and are suitable for GWAS analy-
sis. Furthermore, the rapid LD decay observed could be 
that bambara groundnut landraces have undergone more 
recombination and had higher genetic diversity. Higher 
genetic diversity of bambara groundnut landraces has 
been previously reported by Uba et  al. [32]. These LD 
decay estimates obtained in this bambara groundnut 
study are higher than previously published values for 
other self-pollinated crops like Medicago truncatula: 
3  kb [47], Arabidopsis thaliana: 3–4  kb [48], sorghum: 
50–100  kb [49], foxtail millet: 100  kb [46], cowpea: 
80–100  kb [26], cultivated mungbean: 100  kb [50] and 
Oryza sativa Indica: 123 kb [51] while is similar with cul-
tivated soybean: 150 kb [52]. However, the LD decay val-
ues are lower than previously reported on Oryza sativa 

Table 4 Candidate genes related to some agronomic traits identified

SCC Seed coat colour, DF Days to flowering, DM Days to maturity, TLL Terminal leaf length, TLW Terminal leaf width, NOSP Number of seed per pod, PW Pod width, Chr 
Chromosome

Trait Locus name Chr SNP Start End Gene name Species Reference

SCC Vigun10g129300 10 snp_4184141 33,732,100 33,726,737 MYC // Transcription factor MYC1 Wheat [61]

Vigun10g129800 10 snp_4184141 33,807,377 33,790,615 F-box/kelch-repeat protein Wheat [62]

Vigun05g203400 5 snp_4180945 39,196,947 39,189,868 Kinesin-2-related Groundnut [63]

Vigun07g253400 7 snp_4184130 37,214,868 37,213,449 2OG-FE II Oxygenase Rapeseed [64]

Vigun09g116600 9 snp_100201748 25,555,298 25,552,437 2OG-FE II Oxygenase Rapeseed [64]

Vigun11g157200 11 snp_4183437 36,595,286 36,590,650 E3 ubiquitin-protein ligase Cowpea

DF Vigun07g034000 7 snp_100216842 3,256,536 3,252,390 MADS box protein // Agamous-like 
MADS-box protein AGL18

Arabidopsis [66]

Vigun09g157400 9 snp_4183351 32,340,826 32,336,700 F-box protein—FKF1 Soybean [67]

Vigun09g071700 9 snp_100243021 7,868,711 7,865,812 C2H2-type zinc finger (zf-C2H2_6) [69]

DPM Vigun02g095500 2 snp_100239562 25,121,565 25,109,818 ATS1 genes Arabidopsis [70]

TLL Vigun02g150200 2 snp_100134167 29,719,503 29,716,096 BTB/POZ domain proteins Arabidopsis [71]

Vigun02g150500 2 snp_100134167 29,743,941 29,741,874 LOB domain-containing protein 
37-related

Maize [73]

TLW Vigun02g085200 3 snp_100205840 23,962,357 23,950,835 Protein kinase domain (Pkinase) Arabidopsis [72]

Vigun10g140300 10 snp_100187023 35,743,746 35,739,978 BTB/POZ domain (BTB) Arabidopsis [71]

NOSP Vigun06g111300 6 snp_100213296 24,033,017 24,026,490 Serine/Threonine-protein kinase Maize

Vigun06g111600 6 snp_100213296 24,053,108 24,051,150 B3 DNA binding domain (B3) Zombi pea [40]

PW Vigun09g269300 9 snp_100205444 43,212,110 43,207,233 Zinc finger CCHC domain containing 
protein

Medicago truncatula [77]
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Japonica: 167  kb [51], common bean: 400  kb [53] and 
chickpea: 450–550 kb [54] for self-pollinated crops.

Genome‑wide association mapping
In bambara groundnut, previous report aimed at elu-
cidating the genetics of agronomic traits have mainly 
focused on the maker traits association using biparen-
tal cross. This few available report on biparental cross 
used genetic linkage groups and was not identified based 
on bambara groundnut or cowpea reference genomes. 
Hence, it could not be compared directly with our results 
because there is no available literature. Understanding 
the diversity and population structure is in a germplasm 
panel is importance prerequisite needed for GWAS and 
has been performed in our previous report [32] and it 
indicates that the panel used are diverse. This study has 
successfully demonstrated that GWAS can be used in 
bambara groundnut to identify candidate genes and that 
GWAS could be used to identify important agronomic 
traits in the crop with reduced cost and time. The already 
available cowpea reference genome sequence [55] and 
functional annotation made it possible for us to iden-
tify putative candidate genes for some traits in bambara 
groundnut. The heritability estimates for most of stud-
ied traits were generally high and agreed with previous 
studies on bambara groundnut [56, 57]. Efforts in locat-
ing genes influencing various agronomic traits will aid to 
facilitate marker assisted selection application in bam-
bara groundnut. In this study, some significant MTAs 
have been found on chromosomes previously reported 
to contain QTL for some traits in cowpea. Example, seed 
coat colour was reported to be correlated with genomic 
regions on chromosomes 7, 9 and 10 [58] while on flow-
ering time for chromosome 9 [59]. These identified can-
didate genes were co-located with known or functionally 
related genes.

Seed coat colour is an important trait used for the 
characterization of bambara groundnut [60] and affects 
consumers’ preferences. These candidates’ genes on seed 
coat colour that were identified on chromosome 5, 7, 
9, 10 and 11 revealed that these chromosomes are very 
important in controlling this trait in bambara ground-
nut. Herniter et  al. [58] has pointed out the important 
of these chromosomes (5, 7, 9 and 10) in controlling 
seed coat colour in cowpea. Our data identified these 
candidate genes (Vigun10g129300, Vigun10g129800, 
Vigun05g203400, Vigun07g253400, Vigun09g116600 
and Vigun11g157200) for seed coat colour. The gene 
Vigun10g129300 (MYC1 transcription) encodes for 
TaMYCI involved in seed pericarp colour of wheat [61] 
while Vigun10g129800 gene (F-box/kelch-repeat protein) 
plays important role in seed pigmentation in wheat [62]. 
The Vigun05g203400 gene (Kinesin-2-related protein) is 

responsible for seed coat cracking and brown colour in 
Arachis hypogaea L [63]. Furthermore, candidate gene 
Vigun07g253400 and Vigun09g116600 (2OG-FE II Oxy-
genase superfamily protein) are involve in seed pigment 
metabolism for seed coat colour in rapeseed [64] while 
the gene Vigun11g157200 (E3 ubiquitin-protein ligase) 
involves in seed coat colour for cowpea [59].

Flowering time is an important agronomic trait that 
plays key role in the adaptation of a variety to specific 
agro-ecological areas. Several significant SNPs identi-
fied on chromosome 7 and 9 in the current study have 
shown the important of these chromosomes in con-
trolling flowering time and adaptation in this crop. In 
an earlier study in cowpea, Paudel et  al. [65] obtained 
similar result and noted that many significant SNPs 
identified in a chromosome for flowering time suggests 
important of the chromosome on the trait. Three can-
didate’s genes (Vigun07g034000, Vigun09g157400 and 
Vigun09g071700) that regulate flowering time were iden-
tified. The Vigun07g034000 gene (MADS box protein / 
Agamous-like MADS-box protein AGL18) have been 
reported to be responsible for floral repressor that affects 
flowering time in Arabidopsis [66] while Vigun09g157400 
gene (F-box protein, FKF1) affects flowering time in 
soybeans [67] and tomatoes [68]. The Vigun09g071700 
gene (C2H2-type zinc finger) can modify the chromatin 
of FLOWERING LOCUS C (FLC) involve in the tran-
scriptional regulation of flowering induction in Arabi-
dopsis [69]. However, for days to maturity the gene 
Vigun02g095500 (ATS1) gene have been reported to have 
distinct developmental functions unique to the maturing 
embryo in Arabidopsis [70].

Leaf size (terminal leaf length and width) is an impor-
tant organ responsible for photosynthesis and plays an 
important role during plant growth and development. 
Two candidate genes were identified terminal leaf length 
(Vigun02g150200 and Vigun02g150500) and two for ter-
minal leaf width (Vigun02g085200 and Vigun10g140300). 
The gene Vigun02g150200 and Vigun02g085200 (BTB/
POZ domain protein) encodes BLADE-ON-PETIOLE1 
required for leaf morphogenesis in Arabidopsis thaliana 
[71]. In addition, Vigun02g150500 gene (protein kinase 
domain, Pkinase) encode Tousled gene required for leaf 
and flower development in Arabidopsis [72]. Similarly, 
Vigun10g140300 candidate gene (LOB domain transcrip-
tion factors) functions to keep KNOX gene out of the ini-
tiating leaf in maize that affects leaf development [73].

The number of seeds per pod and pod size (pod length 
and width) plays key roles in the yield of legumes. Two 
candidate genes were identified for number of seeds 
per pod (Vigun06g111600 and Vigun06g111300) while 
one for pod size (Vigun09g269300). The candidate gene 
Vigun06g111600 (B3 DNA-binding domain protein) for 
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number of seed per pod plays important role on devel-
opment of ovule [40, 74] and reproductive meristem 
(REM) genes (i.e. REM34, REM35 and REM36) that 
influence male and female gametophyte development in 
Arabidopsis [75]. Furthermore, Vigun06g111300 gene 
(Serine/Threonine-protein kinase) encodes KNR6 gene 
on maize and regulates number of kernels per row with 
yield increase [76]. For pod width, the candidate gene 
Vigun09g269300 encodes Zinc finger CCHC domain 
containing protein in Medicago truncatula involve in 
seed size [77].

It is important to highlight the challenges faced in 
the present study when finding marker trait associa-
tions because of the limited number of landraces used 
and unavailability of the complete reference genome of 
bambara groundnut. The present study identified few 
markers trait associations but using higher number of 
landraces with diverse population and reference genome 
of the bambara groundnut would lead to detection of 
higher number of MTAs. The effect of population size 
on GWAS has been noted and the detection power of 
MTAs decreased according to reduction of population 
size [78]. Alqudah et  al. [22] reported that a range of 
100 to 500 genotypes are suitable for performing GWAS 
and the selection genotype population should consider 
the genetic background, genotypic and phenotypic vari-
ation. Although, population size affects power of GWAS 
[78], but the result of the present study should be consid-
ered early evidence about the genomic regions and mark-
ers associated with the study traits and should be further 
validated using higher number of genotypes in more 
diverse environments.

Conclusion
This study reports marker traits association and candi-
date genes identified for agro-morphological traits using 
270 bambara groundnut landraces diversity panel. The 
LD analysis revealed that the germplasm panel decayed 
rapidly at 148 kb. The GWAS using MLM mode identi-
fied a total of 28 MTAs for the studied agro-morpho-
logical traits with 17 candidate genes which would be 
beneficial in marker assisted selection and traits intro-
gression in bambara groundnut after their validation. 
Overall, this finding provides new insight on the pros-
pect or application of GWAS on bambara groundnut that 
would promote the use of marker assisted breeding strat-
egies for future use in the crop.

Material and methods
Plant material and phenotyping
The study comprised a collection of 270 landraces of 
bambara groundnut representing 17 countries from 

different regions of Africa (West, South, Central and 
East) and unknown origin sourced from United King-
dom germplasm. The landraces were obtained from the 
gene bank of International Institute for Tropical Agricul-
ture (IITA), Ibadan, Nigeria and Crop and Soil Science 
Research Farm in Bunda, Malawi (Fig.  5, Supplemen-
tary Table 3). The landraces were phenotyped in the year 
2019 at one location and in the year 2020 at two loca-
tions in Ethiopia. The phenotyping for the year 2019 was 
conducted at research and experimental farm of Jimma 
University in Oromia Regional State (designated as Loca-
tion 1) while in the year 2020 it was repeated at the same 
site used in the previous year (designated as Location 2) 
with additional site at Tepi agricultural research center 
(TARC) SNNP Regional State (designated as Location 
3). The landraces were evaluated using an alpha lattice 
design with two replications. Two seeds were planted per 
hill at a depth of 5 cm with inter and intra row spacing 
of 50 cm × 30 cm, respectively, and later thinned to one 
seed per hill after emergence. Best management practices 
recommended for bambara groundnut crop manage-
ment were adopted in all the locations. Nine agro-mor-
phological traits (seed coat colour, days to flowering, days 
to maturity, terminal leaflet length, terminal leaf width, 
number of pods per plant, number of seed per pod, 
pod length and pod width) were selected and measured 
according to the descriptors established for bambara 
groundnut [79].

Genotyping
Young leaves from each landrace were harvested from 
the greenhouse and put inside eppendorf tube with 
dry ice. The harvested leaf tissue was stored at − 80˚C 
and was lyophilized, then ground in tubes using a plate 
shaker. The DNA was extracted using Nucleomag Plant 
Genomic DNA extraction kit according to the proce-
dure of the manufacturers and the quality of the DNA 
was checked. Kilian et  al. [81] procedure was used to 
construct the library and Diversity Arrays Technol-
ogy and Sequencing (DArTSeq) complexity reduc-
tion was done, through PstI-TaqI digestion of genomic 
DNA and ligation of barcoded adapters followed by 
PCR amplification of adapter-ligated fragments. It 
was sequenced using single read sequencing run for 
77 bases using Hiseq2500. SNP markers were aligned 
to the completed reference genome of cowpea (Vigna 
unguiculata (L.) Walp) [55]. The markers that can be 
mapped to the reference genome were selected fur-
ther for polymorphism between all landraces. DArT-
seq marker scoring was conducted using the DArT 
Proprietary Limited (PL’S) proprietary SNP calling 
algorithms (DArTsoft 14) and the SNP markers were 
scored as “0” = reference allele homozygote, “1” = SNP 
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allele homozygote and “2” = heterozygote. The SNP 
marker quality was evaluated based on the individual 
marker related statistics according to Triticarte Pty 
Ltd. None polymorphic markers were removed and 
we selected SNP markers above 80% call rate and 95% 
reproducibility. TASSEL software [82] was employed 
for further filtering and SNPs with more than 20% 
missing values were removed.

Statistical analysis
Phenotypic analysis
The analysis of phenotypic data for alpha lattice design 
was computed with R software [83]. A mixed model was 
fitted per location and across locations for each trait to 
estimate the best linear unbiased estimators (BLUEs) of 
landraces means using multi environment trial analysis 
with (META-R) programme [84]. The analysis of vari-
ance (ANOVA) was performed across locations for lan-
draces, location, replication nested within location and 
landrace-by-location interactions.

where  Pijk = phenotypic response, µ = grand mean, 
 Gi = is the genetic effect of the genotype i,  Rj = is the 
fixed replicate effect of the replicate j;  Bk(j) = is the effect 

Pijk = µ+ Gi + Rj + Bk(j) + ǫijk

of incomplete block k within replication j and, ɛijk = the 
residual error.

The broad-sense heritability of the combined location 
analysis was calculated with the formula:

where  Hb2 is broad-sense heritability, σ 2
g  and σ 2

e  are the 
genotype and error variance components, respectively, 
σ 2
ge is the G × L interaction variance component, nRep 

is the number of replicates, and nLoc is the number of 
locations.

Spearman’s correlation was analyzed to understand the 
relationship among the studied agro-morphological traits 
using “PerfomanceAnalytics” package [85].

Linkage disequilibrium analysis
The Linkage disequilibrium (LD) was calculated as 
the squared allele frequency correlations  (r2) using 
TASSEL 5.2.33 [82]. Pairwise LD  r2 values were plot-
ted against the corresponding physical distance, and a 
non-linear regression model was fitted to estimate the 
genome wide LD decay according to Raman et al. [86]. 
A value of p < 0.005 was considered the significance 

Hb
2
=

σ 2
g

σ 2
g +

σ 2
ge

nLoc +
σ 2
e

nLocxnRep

Fig. 5 Geographical distribution of the 270 bambara groundnut accessions generated using DIVA-GIS software (version 1.4) environment http:// 
www. diva- gis. org [80]

http://www.diva-gis.org
http://www.diva-gis.org
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threshold for marker pairs to be in LD with each other. 
The LD decay was drawn using R statistical package 
[83] and a “LOESS” regression curve was fitted. The 
average LD decay of the association mapping panel 
was determined as the point at which LD curve inter-
cepts the critical  r2.

GWAS analysis
The GWAS was conducted using mixed linear model 
(MLM) algorithm implemented in R package [87]. The 
model incorporated the principal component analysis 
(PCA) to account for the population structure (Q) and 
kinship coefficient matrix (K) to correct for relatedness of 
the landraces. The BLUEs values for each trait generated 
from the META-R analysis were taken as the phenotype 
and the SNP markers taken as the genotype for GWAS. 
The dataset for the three locations were combined using 
meta-analysis according to Lo et  al. [88]. Meta-anal-
ysis is effective in increasing the power of association 
and detects genotype-by-environment interaction loci. 
Meta-analysis has the potential of overcoming limita-
tions of individual environment by increasing the resolu-
tion power and reduction in false-positive findings [89]. 
This method has been used in a cowpea experiment that 
involves multiple environments [88] and loci that have 
different effects across different environments are G × E 
interaction loci. Markers that revealed significant asso-
ciations were retained as true phenotype-to-genotype 
associations. The GWAS results were represented in a 
Manhattan plot using the R package “CMplot” (https:// 
github. com/ YinLi Lin/R- CMplot). The significant P-val-
ues (1/n; n = total numbers of SNP markers used) for the 
plant genome wide association studies was computed as 
described by several authors [90–92] and Bonferroni cor-
rection was applied to set thresholds for controlling the 
genome-wide type 1 error rate. Furthermore, the model 
fit was tested using the quantile–quantile (QQ) plot con-
sidering the deviation of the observed test statistics val-
ues from the expected test statistics values. Each SNP 
percentage contribution to the phenotypic variation was 
estimated using marker  R2 values multiplied by 100.

Candidate genes analysis
The cowpea reference genome [55] was used to deter-
mine the underlying candidate genes. To identify can-
didate genes, local LD decay was computed using 
TASSEL 5.2.33 software [82] to capture flanking regions 
of up to 148  kb on either side of significant SNPs. The 
gene models together with their functional annotation 
were obtained from the Joint Genome Institute cowpea 
genome portal (www. phyto zome. net). Candidates were 
selected based on whether the function of the genes had 

been characterized before in cowpea or if similar genes in 
other species had known roles.
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