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specificities and cis-regulatory SNPs in humans
Saeko Tahara1,2†, Takaho Tsuchiya1,3†, Hirotaka Matsumoto4,5 and Haruka Ozaki1,3,5* 

Abstract 

Background Transcription factors (TFs) exhibit heterogeneous DNA-binding specificities in individual cells 
and whole organisms under natural conditions, and de novo motif discovery usually provides multiple motifs, even 
from a single chromatin immunoprecipitation-sequencing (ChIP-seq) sample. Despite the accumulation of ChIP-seq 
data and ChIP-seq-derived motifs, the diversity of DNA-binding specificities across different TFs and cell types remains 
largely unexplored.

Results Here, we applied MOCCS2, our k-mer-based motif discovery method, to a collection of human TF ChIP-seq 
samples across diverse TFs and cell types, and systematically computed profiles of TF-binding specificity scores for all 
k-mers. After quality control, we compiled a set of TF-binding specificity score profiles for 2,976 high-quality ChIP-seq 
samples, comprising 473 TFs and 398 cell types. Using these high-quality samples, we confirmed that the k-mer-based 
TF-binding specificity profiles reflected TF- or TF-family dependent DNA-binding specificities. We then compared 
the binding specificity scores of ChIP-seq samples with the same TFs but with different cell type classes and found 
that half of the analyzed TFs exhibited differences in DNA-binding specificities across cell type classes. Additionally, 
we devised a method to detect differentially bound k-mers between two ChIP-seq samples and detected k-mers 
exhibiting statistically significant differences in binding specificity scores. Moreover, we demonstrated that differ-
ences in the binding specificity scores between k-mers on the reference and alternative alleles could be used to pre-
dict the effect of variants on TF binding, as validated by in vitro and in vivo assay datasets. Finally, we demonstrated 
that binding specificity score differences can be used to interpret disease-associated non-coding single-nucleotide 
polymorphisms (SNPs) as TF-affecting SNPs and provide candidates responsible for TFs and cell types.

Conclusions Our study provides a basis for investigating the regulation of gene expression in a TF-, TF family-, or cell-
type-dependent manner. Furthermore, our differential analysis of binding-specificity scores highlights noncoding 
disease-associated variants in humans.

Keywords Functional genomics, Transcription factor, ChIP-seq, DNA-binding motif, Cell type dependency, k-mer-
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Background
The regulation of gene expression is one of the most 
important mechanisms underlying proper cell function. 
Dysregulation of gene expression results in diseases 
such as developmental disorders and cancer. Gene 
expression is regulated by transcription factors (TFs) 
that bind to DNA by recognizing specific sequences. 
The human genome is estimated to contain more than 
1,600 human TFs, comprising more than 70 DNA-bind-
ing domain types [1]. Studies on TF-binding sites have 
revealed that TFs do not bind to a single sequence, but 
rather to a distinct set of similar DNA sequences. Such 
specific sequence patterns are known as DNA-binding 
motifs. These motifs can be elucidated using several 
representations, including consensus sequences, posi-
tion weight matrices (PWMs), k-mers, and hidden 
Markov models [2–4].

Chromatin immunoprecipitation-sequencing (ChIP-
seq) is used to detect in vivo TF-binding sites (TFBSs) 
in a genome-wide manner and generates thousands of 
DNA sequences with lengths of several hundred base 
pairs around TFBSs. Several specialized tools have been 
developed for de novo motif discovery using ChIP-
seq data [5]. Usually, more than one motif is found in 
a single ChIP-seq sample [6]. This reflects the hetero-
geneous sequence context surrounding TFBSs due to 
ambiguity in DNA recognition, different binding modes 
(e.g., heterodimerization, cooperative binding, and 
tethering), and the existence of transcriptional cofac-
tor motifs. Motifs derived from ChIP-seq and other 
assays (e.g., protein-binding microarrays and SELEX) 
have been summarized in several TF motif databases as 
PWMs or position frequency matrices [7–10].

Despite the accumulation of ChIP-seq data and ChIP-
seq-derived motifs, the diversity of TF-binding DNA 
sequences remains largely unknown. In particular, the 
differences in TF-binding sequences among different 
cell types or TFs have not been systematically explored. 
Many systematic studies using large ChIP-seq datasets 
have compared the localization and colocalization of 
TFBSs among cell types and TFs. They have revealed 
cell type specificities in TFBSs (e.g., [11]) and TF regu-
latory relationships [12]. Differences in TFBSs for the 
same TFs in different cell types have been attributed to 
changes in the TF partner [13, 14] or epigenome [15]. 
In contrast, several studies have attempted to identify 
discriminative motifs in a small number of ChIP-seq 
samples. These studies revealed distinct motifs among 
homologous TFs [16, 17], cooperative partner TFs 
[18], or different cell types [19]. However, the extent of 
diversity in TF-binding sequences across different TFs 
and cell types remains to be explored.

Recently, ChIP-seq data have been collected in second-
ary databases [20–23]. These compendiums of ChIP-seq 
data provide opportunities to analyze the diversity of TF-
binding sequences. For this purpose, k-mer representa-
tion is helpful, because k-mer representation can capture 
low-frequency sequences [24, 25] and has high interpret-
ability [25, 26]. Several methods have been proposed to 
discover k-mer motifs in ChIP-seq data [4, 24, 25, 27–
31] and to predict the effect of nucleotide substitutions 
on TF binding [32]. Thus, a comprehensive analysis and 
comparison of k-mer representations of the TF-bind-
ing sequences in each ChIP-seq sample would reveal 
the diversity of TF-binding sequences among different 
cell types and TFs within the entire available human TF 
ChIP-seq dataset. Such approach is exemplified in stud-
ies comparing k-mer motifs among different TFBSs of the 
same TF [30] or homologous TFs [17].

To investigate the diversity of TF-binding sequences, 
we applied MOCCS2 [24, 30], a previously developed 
k-mer-based motif discovery method, to ~ 3,000 human 
TF ChIP-seq samples across diverse TFs and cell types 
(Fig.  1A). Each ChIP-seq sample was represented as a 
profile of TF-binding specificity scores (MOCCS2scores) 
for each k-mer sequence, designated as a MOCCS profile 
(Fig. 1B). We demonstrated that similarities in MOCCS 
profiles between ChIP-seq samples were marked by simi-
larities in TFs (TF families) and interactions with other 
TFs (Fig. 1C). By comparing the MOCCS profiles for the 
same TF in different cell type classes, we found that half 
of the analyzed TFs exhibited differences in DNA-binding 
specificity across cell types (Fig. 1D). Moreover, differen-
tial analysis of the MOCCS profiles revealed differentially 
bound k-mers between ChIP-seq samples of different cell 
types or TFs (Fig. 1E). Furthermore, we showed that dif-
ferences in the MOCCS2scores (ΔMOCCS2scores) of 
each k-mer could be used to predict the effects of vari-
ants on TF binding, which were validated with the results 
of in vitro and in vivo assays (Fig. 1F). Finally, we demon-
strated that the ΔMOCCS2score can be used to interpret 
significant non-coding single-nucleotide polymorphisms 
(SNPs) as TF-affecting single-nucleotide variants 
and associate them with candidate TFs and cell types 
(Fig. 1G). Our study demonstrated that MOCCS profile 
analysis provides a basis for investigating gene expression 
regulation and non-coding disease-associated variants in 
humans.

Results
Overview of the MOCCS profile dataset across human TF 
ChIP‑seq samples
To elucidate the diversity of TF-binding sequences, we 
compiled a list of 2,976 high-quality human TF ChIP-
seq samples and obtained their peak calling results from 
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a ChIP-seq data repository, ChIP-Atlas [22] (Methods, 
Fig. 2A, Fig. S1). We then applied MOCCS2 [24, 30], our 
previously developed k-mer-based motif discovery tool, 

to each ChIP-seq sample and quantified the TF-binding 
specificity of each k-mer as a MOCCS2score. As a result, 
we obtained the profiles of MOCCS2score (MOCCS 

Fig. 1 Overview of MOCCS profiles for human TF ChIP-seq samples across TFs and cell types. A and B Procedure for obtaining MOCCS profiles. 
Human TF ChIP-seq samples across diverse TFs and cell types were obtained from ChIP-Atlas. Subsequently, MOCCS2, a previously developed 
k-mer-based motif discovery method, was applied to the ChIP-seq dataset. Each ChIP-seq sample was represented as a profile of TF-binding 
specificity scores (MOCCS2scores) for each k-mer sequence, designated as a MOCCS profile. C Similarities in MOCCS profiles between ChIP-seq 
samples were marked by similarities in TFs (TF families), and interactions with other TFs. D Comparing the MOCCS profiles for the same TF 
in different cell type classes showed cell-type-dependent TF-binding specificities. Half of the analyzed TFs exhibited differences in DNA-binding 
specificity across cell types. For the TFs that we could not perform statistical tests on due to a lack of data, etc., they are marked as Not Applicable 
(N.A.). E Differential k-mer detection. Differential analysis of the MOCCS profiles revealed differentially bound k-mers between ChIP-seq samples 
of different cell types or TFs. F The ΔMOCCS2score for a single-nucleotide polymorphism (SNP) was defined as the difference in the MOCCS2score 
between k-mers on reference and alternative alleles (ref-k-mers and alt-k-mers) in a single ChIP-seq. The ΔMOCCS2score was used to predict 
the effects of the SNP on TF binding, which were validated with the results of in vitro and in vivo assay data. G: ΔMOCCS2score can be used 
to interpret how significant non-coding SNPs from GWAS studies affect the binding of TFs in specific cell types
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profiles) for 2,976 high-quality samples across 473 TFs 
and 20 cell type classes (398 cell types) (Fig. 2B and S1D).

MOCCS profiles can detect TF‑specific binding k‑mers
We verified whether k-mers with a high MOCCS2score 
represented TF-binding sequences. For example, when 
MOCCS2 was applied to the GATA3 ChIP-seq sample, 
the k-mer AGA TAA , which is a known GATA3 PWM 
motif, possessed the highest MOCCS2score (Fig.  2C). 
Furthermore, to confirm that a high MOCCS2score is 
indicative of TF-binding sequences, we defined the k-mer 
with a top 10% PWM likelihood as a PWM-supported 
k-mer and evaluated the ability of the MOCCS2score 
to discriminate PWM-supported k-mers. Most CTCF 
(100%), SPI1 (100%), and FOXA1 (89%) ChIP-seq sam-
ples exhibited an AUROC exceeding 0.8 (Fig. 2D). These 
AUROC values were significantly higher than those of 
the permuted samples obtained by shuffling the MOC-
CS2scores (Wilcoxon signed-rank test, p < 1.2e-125), 
confirming that the MOCCS profiles can detect PWM-
supported TF-binding k-mers.

Next, to evaluate the statistical significance of the 
MOCCS2scores, we calculated the p-value of the MOC-
CS2score for each k-mer and the q-value for multiple 
testing corrections (Methods). We defined a k-mer satis-
fying a q-value < 0.05 as a significant k-mer. We verified 
that the q-values of the MOCCS2score exhibited high 
performance in the detection of TF-binding sequences 
(sensitivity > 86.6%, specificity > 99.7%) and effectively 
controlled for false discovery rate (FDR) using simulated 
datasets (Fig. S2A, B, and C, Methods). We then detected 
significant k-mers in the real ChIP-seq dataset, and the 
number of significant k-mers in each ChIP-seq sam-
ple was correlated with the number of peaks (Fig. S3A 
and B). In addition, to verify whether significant k-mers 
were consistent with sequences supported by PWMs, we 
evaluated the ability of PWM likelihood to discriminate 

significant k-mers from other k-mers. The AUROCs were 
significantly higher than those obtained when the PWM 
likelihood was permuted in 18 of the 20 TFs (Wilcoxon 
signed-rank test, q-value < 0.05) (Fig. 2E), indicating that 
significant k-mers tend to be supported by PWMs. These 
results confirm that the MOCCS profiles and significant 
k-mers identified in this study can be used to detect TF-
binding k-mers in ChIP-seq samples.

MOCCS profile comparison reveals similarity patterns 
of TF‑binding k‑mers
Given that MOCCS profiles reflect the binding specifi-
cities of TFs, we next attempted to compare the bind-
ing specifics between ChIP-seq samples using MOCCS 
profiles. We obtained the pairwise similarity of binding 
specificity for each pair of ChIP-seq samples by calculat-
ing the Jaccard index (k-sim Jaccard) of the two MOCCS 
profiles (Methods). We found that the same TF exhibited 
high similarity in the MOCCS profiles (Fig.  2F and G, 
S4A), which was confirmed when using another similar-
ity metric based on Pearson correlation coefficients (k-
sim Pearson, Methods) (Fig.  2G and S4A). In addition, 
ChIP-seq pairs of different TFs from the same TF family 
(group B) exhibited significantly higher similarities than 
pairs of different TFs and TF families (group C) (Mann–
Whitney U test, p < 2.2e-16) (Fig.  2G, S4A), which was 
consistent with the fact that TFs within the same TF 
families share the same DNA-binding domains. In addi-
tion, when we used Uniform Manifold Approximation 
and Projection (UMAP) to map ChIP-seq samples in a 
two-dimensional plane based on the Pearson correla-
tion coefficients of MOCCS profiles (Fig. 2H), ChIP-seq 
samples of the same TF or TF families were located in 
close proximity on the UMAP plot, whereas this ten-
dency diminished when sample labels were permuted 
(Fig.  2I, a permutation test, p < 6.26e-249). This is par-
tially explained by the degree of overlap of peak regions 

(See figure on next page.)
Fig. 2 MOCCS profile reflected TF- or TF-family dependent DNA-binding specificities. A Overview of the ChIP-seq data processing. MOCCS2 
was applied to human ChIP-seq samples from ChIP-Atlas, resulting in MOCCS profiles, k-mer-based TF-binding specificity profiles. Quality control 
metrics for ChIP-seq samples were calculated to filter samples (hard filter). B Number of ChIP-seq samples that passed through the hard filter. The 
colors indicate the cell type class (left) or TF (right). C Example of a MOCCS profile (GATA3, MDA-MB231). The highest MOCCS2score k-mer (AGA TAA 
) was similar to that of the GATA3 PWM (HOCOMOCO database). D Detection performance (AUROC) of canonical motifs (top 10% PWM-supported 
k-mers) using the MOCCS2score for the original (red) and shuffled (gray) data of CTCF, SPI1, and FOXA1. *q < 0.05 (Wilcoxon signed-rank test). E Top: 
Detection performance (AUROC) of significant k-mers of MOCCS2 using the top 10% PWM-supported k-mers: original (red) and shuffled (gray) data 
from CTCF, SPI1, and FOXA1. *q < 0.05 (Wilcoxon signed-rank test). Bottom: Bar plot displaying -log10(q-value) from Wilcoxon signed-rank test for 20 
TFs. F Heatmap of TF-dependent binding k-mer similarity (k-sim Jaccard) between the ChIP-seq samples. The color labels of rows and columns 
represent the TFs. G Violin plots of k-mer similarity indices, k-sim Pearson (green) and Jaccard (red), and the peak overlap index (blue) for different 
groups of ChIP-seq pairs. H UMAP visualization of MOCCS profiles. Point colors represent the ChIP-seq samples of the top 15 TFs (left) or TF families 
(right), with the largest sample size, or the rest (gray). I Ratios of neighboring pairs of the same TF (left) or TF family (right) for original and permuted 
data. * p < 6.26e-249 (permutation test; see Methods). J Star graphs displaying the TF similarity patterns between query TF (center) and the top 10 
TFs with the highest k-sim Pearson (edge colors). Circles indicate TFs belonging to the same TF family as the query TF. Avairable PWMs (HOCOMOCO 
database) are shown
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Fig. 2 (See legend on previous page.)
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(peak overlap index) (Methods) because k-sim Pearson 
or Jaccard significantly correlated with the peak overlap 
index (one-sample t-test of the correlation coefficient, 
p < 4.47e-05) (Fig. S4). However, some ChIP-seq sample 
pairs exhibited high k-sim Pearson or Jaccard values, but 
the peak overlapping index was low (Fig. S4B), suggesting 
that not only the overlaps of ChIP-seq peaks themselves, 
but also the derivation from the same TF and TF family, 
drive the similarity of TF-binding k-mers.

Considering these findings, we hypothesized that k-
sim Pearson could be used to extract similarity patterns 
among different TFs. From the TF families with the top 
10 adjacency values (Fig.  2I), we selected JUN, FOS, 
FOXF1, and ELK1. Using each of the four TFs as a query, 
we extracted the top 10 similar TFs based on k-sim Pear-
son (Fig. 2J). For all four query TFs, most of the top 10 
similar TFs belonged to the same TF family as that of the 
query TF. For example, when FOS and JUN were queried, 
AP-1 proteins [33] (FOS, JUN, and JUNB) were identified 
as the top three TFs, demonstrating the ability of k-sim 
Pearson to extract TF similarity patterns. The observed 
similarity and diversity of MOCCS profiles within TF 
families are consistent with a previous study demonstrat-
ing the similarity and diversity of DNA-binding motifs 
within TF families [1]. Collectively, the MOCCS pro-
file can reflect TF-specific binding sequences, and these 
comparisons revealed TF similarity patterns among the 
TFs and TF family-dependent similarities in the binding 
sequences.

MOCCS profile comparison reveals cell type‑dependent TFs 
and TF similarity patterns
We further investigated cell type-dependent similarities 
in MOCCS profiles (Fig.  3A). Based on the annotation 
matches for TF, TF family, cell type class, or cell type, we 
divided the MOCCS profiles into three groups with vari-
ous combinations of annotation matches (Fig. 3B). Com-
pared to group E, groups A and D exhibited a significant 

increase in the k-sim Pearson, k-sim Jaccard, and peak 
overlap indices (Mann–Whitney U test, p < 0.001) 
(Fig.  3B, S5), suggesting cell type-dependent similarities 
in the MOCCS profiles. We then compared the k-sim 
Pearson and Jaccard with the peak overlap index in each 
group, revealing significant correlations between k-sim 
Pearson and Jaccard with the peak overlap index (one-
sample t-test for the correlation coefficient, p < 4.47e-05) 
(Fig. S5). Accordingly, our k-sim Pearson and Jaccard 
approach quantified the similarities in TF-binding 
sequences between the two MOCCS profiles, consistent 
with the peak overlap index. Once again, we performed 
UMAP visualization and annotated the cell type classes 
using color, which revealed the adjacency of ChIP-seq 
samples of the same cell type class (Fig.  3C, left). This 
tendency diminished when we permuted the cell type 
class annotations of the ChIP-seq samples, indicating 
that ChIP-seq samples with the same cell type class had 
similar MOCCS profiles (Fig.  3C, right). Accordingly, 
MOCCS profile comparisons revealed cell type-depend-
ent similarities in binding sequences.

Next, we divided the MOCCS profiles for each TF by 
cell type class and compared the two MOCCS profiles 
using k-sim Jaccard, as it can explicitly quantify the over-
laps of significant k-mers (Methods) (Fig. 3A, right). For 
example, JUN exhibited a high k-sim Jaccard value in 
the same cell type class, which was statistically signifi-
cant compared to the different cell type classes (Fig. 3D). 
Similarly, we identified cell type-dependent TFs such as 
FOS and GATA2 and non-cell type-dependent TFs such 
as MYC (Fig. 3D). Given these examples, we defined cell 
type-dependent TFs as TFs whose k-sim Jaccard exhib-
ited statistical significance between the same and differ-
ent cell type classes (Mann–Whitney U test, p < 0.05). 
We identified 33 cell type-dependent (48%) and 36 non-
cell type-dependent (52%) TFs from the 69 TFs (Fig. 3E, 
Figs. S6 and 7, Table S1, Table S2). We did not observe 
any statistically significant preferences on TF families 

Fig. 3 Comparison of MOCCS profiles reveal cell type-dependent TFs and TF similarity patterns. A Schematic overview of MOCCS profile 
comparisons between ChIP-seq samples with the same TF and different cell type classes. B Violin plots of k-mer similarity indices (k-sim), 
Pearson and Jaccard, and the peak overlap index for different groups of ChIP-seq pairs. C Left: UMAP visualization of MOCCS profiles. The point 
colors represent ChIP-seq samples from different cell type classes. Right: Ratios of neighboring pairs of the same cell type class for the original 
and permuted data. * p < 6.26e-249 (permutation test; see Methods). D Heat maps and violin plots of k-sim Jaccard values between ChIP-seq 
samples of the same TFs. The color labels of the heatmaps represent the cell type classes. Cell type classes with only a single ChIP-seq sample 
were excluded from the visualization. In the violin plots, the x-axis indicates ChIP-seq sample pairs with the same and different cell type classes, 
and the y-axis indicates k-sim Jaccard values. * p < 0.05 (Mann–Whitney U test). E Left: Pie chart showing the ratio of cell type-dependent to non-cell 
type-dependent TFs. The null group comprises TFs that could not be tested due to the small sample size. Right: Schematic illustration of the cell 
type-dependent TFs. For the TFs that we could not perform statistical tests on due to a lack of data, etc., they are marked as Not Applicable (N.A.). 
F Star graphs display cell type-dependent TF similarity patterns for JUN and GATA2. For each query TF (center), the k-sim Jaccard value (edge colors) 
of the query TF and the top 15 TFs with the highest differences in k-sim Jaccard values between the two cell type classes (Blood and Pluripotent 
stem cells) are shown

(See figure on next page.)
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and cell type pairs between cell type-dependent and non-
cell type-dependent TFs (FDR > 0.05, the two-sided Chi-
squared test for difference of two proportions) (Tables 
S3 and S4), except for the “Blood-Pluripotency stem cell” 

pair (FDR = 0.048). Finally, we examined whether cell 
type-dependent TFs also exhibited cell type-dependent 
differences in similarity. As a demonstration, we used two 
cell type-dependent TFs, JUN and GATA2, as queries and 

Fig. 3 (See legend on previous page.)
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extracted the top 15 TFs with large differences in their 
k-sim Jaccard values between the two cell type classes 
(blood and pluripotent stem cells) (Fig.  3F). We found 
that cell type-dependent TFs also exhibited differences in 
similarity to other TFs, despite the availability of ChIP-
seq data for the 15 extracted TFs in both cell type classes. 
For instance, for JUN, the k-sim Jaccard with MAFK is 
higher in Pluripotent stem cells than in Blood. Addition-
ally, for GATA2, the association with NRF2 is greater in 
Blood than in Pluripotent stem cells. This suggests that 
cell type dependence in MOCCS profiles may be related 
to TF cooperation patterns in different cell types. Collec-
tively, these results reveal the cell type dependencies of 
TF-binding sequences and TF similarity patterns.

Differentially recognized k‑mers in two ChIP‑seq samples 
from different cell types or TFs
Given the sample-level differences in MOCCS profiles 
among the ChIP-seq samples, we focused on the k-mers 
that exhibited differences in MOCCS2scores between the 
two ChIP-seq samples. Like differentially expressed genes 
in RNA-seq analysis, the differential analysis of MOC-
CS2score would provide “differential k-mers,” i.e., k-mers 
that are differentially recognized by TFs between two 
ChIP-seq samples (Fig. 4A).

To identify differential k-mers, we devised a statisti-
cal test in which each k-mer’s p-value was calculated 
for the difference in the MOCCS2scores between two 
ChIP-seq samples and the p-value was converted to the 
corresponding q-value for multiple testing correction 
(Methods). We designated k-mers with q < 0.05 as dif-
ferential k-mers. Using the simulated datasets, we veri-
fied the q-values of the differential k-mers (Fig. S8A and 
B), resulting in > 75% sensitivity and > 98% specificity and 
these were controlled for FDR (Fig. 4B and C) under five 
conditions. This result indicated that our method can 
reliably detect differentially recognized k-mers in two 
ChIP-seq samples.

When we detected differential k-mers between two 
real ChIP-seq datasets, we found that differences in the 
biological contexts of the ChIP-seq samples paralleled 
the number of differential k-mers between the two ChIP-
seq samples. For example, a comparison of the MOCCS 
profiles of JUN between the same cell type (K-562) and 
different cell types (K-562 and HUVEC) identified 10 
(0.48%) and 293 (14.0%) differential k-mers, respectively 
(Fig. 4D). This indicated the detection of a higher num-
ber of differential k-mers in ChIP-seq samples from dif-
ferent cell types than in those from the same cell type. 
The same tendency applied to the differential k-mers 
between ChIP-seq samples of two different TFs. When 
we compared the MOCCS profiles of JUN and CTCF 
in K-562 cells (Fig.  4E), 293 differential k-mers (14.0%) 

were identified, which were greater than the 38 differen-
tial k-mers (1.82%) identified for the JUN and FOS pairs 
(Fig. 4E). Because JUN dimerizes with FOS [34], but not 
with CTCF, the higher number of differential k-mers in 
the comparison of JUN and CTCF is reasonable. For JUN 
and CTCF, differential k-mers with high MOCCS2scores 
contained PWM-supported k-mers (k-mers with maxi-
mum likelihood from known PWM motifs) (Fig.  4E). 
These results indicate that differential k-mers reflect dif-
ferent TF-binding sequences in different biological con-
texts such as cell types and TFs.

ΔMOCCS2score, the difference in the MOCCS2score, 
illuminates the effects of mutations on TF binding
In our previous studies, we found that differences in 
MOCCC2scores between k-mers associated with known 
canonical motifs and their variants with 1–2 base sub-
stitutions were useful for predicting changes in experi-
mentally measured binding affinities [26, 30]. Based on 
these observations, we investigated whether the differ-
ence in MOCCS2scores between two k-mers differing 
by one nucleotide could indicate single-nucleotide poly-
morphisms (SNPs) affecting TF binding. Specifically, we 
defined the ΔMOCCS2score for a SNP as the difference 
in the MOCCS2score between k-mers on reference and 
alternative alleles (ref-k-mers and alt-k-mers) in a single 
ChIP-seq; a positive and large ΔMOCCS2score indicates 
that a change from the reference to alternative allele 
potentially attenuates binding of a TF (Methods, Fig. 5A). 
In this study, we calculated the ΔMOCCS2score for each 
position within a 6-mer when a SNP was introduced at 
each respective position.

First, to verify whether the ΔMOCCS2score can be 
used to evaluate the effect of SNPs overlapping with TF-
binding sequences, we compared the ΔMOCCS2score 
with the results of a high-throughput multiplex protein-
DNA binding assay, SNP-SELEX [35] (Fig.  5B). SNP-
SELEX uses a preferential binding score (PBS) to assess 
the influence of SNPs on the in vitro binding specificity 
of TFs for DNA sequences. A positive and large PBS indi-
cates a change from the reference allele to the alternative 
allele, strongly attenuating TF binding. We calculated 
Spearman’s correlation coefficients between the PBS and 
ΔMOCCS2score of 381–6991 SNPs for 10 TFs. We found 
that 9 of the 10 TFs exhibited a positive correlation (one-
sample t-test, p < 0.05), whereas a permutation test (100 
permutations) by shuffling PBS scores exhibited no corre-
lation (Fig. 5C, Fig. S9A). Furthermore, the SNPs located 
in the center of the k-mers exhibited stronger positive 
correlations between the PBS and ΔMOCCS2score (Fig. 
S9B), suggesting that the ΔMOCCS2score correctly 
detected the effects of the SNPs on TF binding. These 
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results indicate that the ΔMOCCS2score was consistent 
with the in vitro SNP-SELEX findings.

Next, we compared the ΔMOCCS2score with allele-
specific binding (ASB) significance [36], which is a meas-
ure of the in  vivo ASB of SNPs based on TF ChIP-seq 
data (Fig.  5D). ASB significance quantifies the influence 

of SNPs on binding affinity, and a negative and larger 
ASB significance indicates that a change from the refer-
ence allele to the alternative allele potentially attenu-
ates TF binding. We evaluated the fraction of SNPs that 
were concordant with ΔMOCCS2score and ASB sig-
nificance (concordant SNPs). For example, 74% of the 

Fig. 4 Differential analysis of MOCCS profiles between ChIP-seq sample pairs can detect differentially recognized k-mers. A Schematic overview 
of the simulation of differential k-mer detection. B Simulation results of differential k-mer detection. Scatter plot showing MOCCS2scores of all 
6-mers in the two simulated ChIP-seq samples. The red and gray points represent the differential k-mers (q < 0.05) and other k-mers, respectively. 
C Bar plots showing the sensitivity, specificity, and false discovery rate (FDR) of differential k-mer detection under different simulation conditions 
(Fig. S8B). α is the percentage of input sequences (ChIP-seq peak regions) containing embedded “true significant k-mers,” N is the number 
of peaks in a ChIP-seq sample, and σ is the standard deviation of the embedded “true significant k-mers” from the center of the peak. D Scatter 
plots of MOCCS2scores showing differential k-mers between two ChIP-seq samples with the same (left) or different (right) cell types for the same 
TF (JUN). The red and blue points represent the differential k-mers (q < 0.05) and other k-mers, respectively. E Scatter plots of MOCCS2scores 
showing differential k-mers between ChIP-seq sample pairs of different TFs in the same cell types (K-562). The pair JUN and FOS (left) represents 
cofactor-effector pairs, whereas the pair JUN and CTCF (right) represents non-cofactor-effector pairs. The red and blue points represent differential 
k-mers (q < 0.05) and other k-mers, respectively. The PWM-supported differential k-mers and known PWM motifs (JASPAR) were compared 
between JUN and CTCF ChIP-seq samples
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focal SNPs in the GATA3 ChIP-seq data and 70% in the 
FOXA1 ChIP-seq data were concordant SNPs (Fig.  5E, 
left). Among the 16 tested TFs (6864–512,458 SNPs), 
14 had significantly higher percentages of concord-
ant SNPs than the permuted negative controls (Fig.  5E, 
right; Methods), indicating that ASB significance and the 
ΔMOCCS2score were consistent. Moreover, similar to 
the consistency between ASB significance and motif fold 
change from PWM motifs [36], the ΔMOCCS2score was 
consistent with the motif fold change (note that a nega-
tive motif fold change indicates a potential attenuation 
of TF binding), further supporting the consistency of the 
ΔMOCCS2score and ASB significance (Fig. S9C). Collec-
tively, these results confirmed that the ΔMOCCS2score 
of ref-k-mers and alt-k-mers can infer the effect of SNPs 
in TF-binding regions on TF-binding.

Evaluation of GWAS‑SNPs in TF‑binding regions 
and prediction of SNP‑affected TFs through ΔMOCCS2score 
profiles
More than 90% of the SNPs reported in genome-wide 
association studies (GWASs) are located in non-coding 
regions [37] and are enriched in predicted transcriptional 
regulatory regions [38]. However, predicting the effect of 
these SNPs on TF binding remains challenging [39]. To 
address this issue, we employed the ΔMOCCS2score as 
a means to infer the effect of each GWAS-SNP on TF 
binding (Fig. 6A). Four human disease phenotypes were 
selected: systemic lupus erythematosus (SLE), multiple 
sclerosis (MS), Crohn’s disease (CD), and inflammatory 
bowel disease (IBD). Of the 626–971 GWAS-SNPs for 
each phenotype, 0–24 SNPs overlapped peaks of each 
ChIP-seq sample (Note that we removed repeat and low-
confidence regions in the reference genome), and the 
GWAS-SNPs with significant ΔMOCCS2scores (q < 0.05, 
Methods) were distributed in each ChIP-seq sample (Fig. 
S10).

SLE is an autoimmune disease that affects multi-
ple organs, including the skin, joints, central nervous 

system, and kidneys [40]. We first focused on the SLE 
GWAS-SNPs with positive ΔMOCCS2scores (the SNPs 
that potentially attenuated TF binding) (Fig.  6B, left). 
SLE GWAS-SNPs exhibited a high ΔMOCCS2score 
(ΔMOCCS2score > 75) when they overlapped with the 
peaks in ChIP-seq samples of the blood cell type class, 
accounting for 63% of the top 30 SNP-ChIP-seq pairs 
(Fig.  6B, left). In the case of the SNPs with negative 
ΔMOCCS2scores (the SNPs that potentially enhanced 
TF binding specificities), SLE GWAS-SNPs exhibited low 
ΔMOCCS2scores (ΔMOCCS2score < –100) when they 
overlapped with the peaks in ChIP-seq samples of the 
blood cell type class, accounting for 84% of the 50 SNP-
ChIP-seq pairs (Fig. 6B, right). These results suggest that 
SLE GWAS-SNPs include SNPs that potentially attenuate 
and intensify TF binding and are enriched in blood cells, 
which is consistent with previous reports demonstrat-
ing the enrichment of SLE SNPs in chromatin-marked 
regions specific to hematopoietic cells [41, 42]. Moreover, 
the SLE GWAS SNPs were enriched in SPI1 ChIP-seq 
(Fig. S11) and the top GWAS SNPs for SLE corresponded 
to a known SPI1 motif. These results suggest that the 
ΔMOCCS2score can be used to predict the cell types in 
which GWAS-SNPs potentially influence TF-binding 
specificity.

For CD GWAS-SNPs, ChIP-seq samples of FOS 
exhibited the highest positive ΔMOCCS2score, which 
accounted for 43% of the ΔMOCCS2scores of the top 30 
SNP-ChIP-seq pairs (Fig. 6C, left). In the case of negative 
ΔMOCCS2scores, ChIP-seq samples of SPI1 exhibited 
the lowest ΔMOCCS2score, which accounted for 37% 
of the ΔMOCCS2scores of the 30 SNP-ChIP-seq pairs 
(Fig. 6C, right). ChIP-seq samples of FOS also exhibited 
low ΔMOCCS2scores, which accounted for 40% of the 
ΔMOCCS2scores of the 30 SNP-ChIP-seq pairs (Fig. 6C, 
right). While SPI1 and FOS appeared in both positive 
and negative ΔMOCCS2scores, different SNPs exhib-
ited positive and negative ΔMOCCS2scores, suggesting 
that CD GWAS-SNPs include SNPs that both potentially 

Fig. 5 ΔMOCCS2score profiles are consistent with the in vitro SNP-SELEX data and in vivo allele-specific-binding data. A Schematic overview 
of the ΔMOCCS2score calculation for SNP-overlapping TF-binding k-mers. B Data processing procedures to calculate the ΔMOCCS2score 
in SNP-overlapping TF-binding k-mers for a set of SNPs that exhibited significant differential binding to at least one TF in the SNP-SELEX 
experiments [35]. C Comparison of preferential binding score (PBS) (SNP-SELEX) and ΔMOCCS2score. Each point represents a SNP corresponding 
to a k-mer pair (ref-k-mer or alt-k-mer). Spearman’s correlation coefficient between the PBS and ΔMOCCS2score and the corresponding p-values 
(one-sample t-test) were calculated for each TF. Note that we visualized multiple ΔMOCCS2score values for each SNP in each TF because we 
calculated ΔMOCCS2scores for multiple ChIP-seq samples of all cell types available for the focal TFs. D Data processing procedures to calculate 
the ΔMOCCS2score for k-mers overlapping SNPs with allele-specific-binding (ASB) events [36]. E Left and middle: Comparison between ASB 
significance and ΔMOCCS2score. Each point represents a SNP corresponding to a k-mer pair (ref-k-mer or alt-k-mer). Red points are concordant 
SNPs and blue points are discordant SNPs. Right: Bar plots displaying the ratios of concordant to discordant SNPs for each TF. Asterisks indicate 
a significant concordance ratio in the TFs (p-values were calculated from the empirical null distribution of the percentage of concordant SNPs 
and adjusted for multiple testing corrections, q < 0.05)

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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Fig. 6 Prediction of effects of GWAS-SNPs on TF binding using ΔMOCCS2score profiles. A Schematic overview of the data processing procedures 
used to calculate the ΔMOCCS2score for k-mers overlapping GWAS-SNPs. B Combinations of SLE GWAS-SNPs and ChIP-seq samples with high 
ΔMOCCS2scores (ΔMOCCS2score > 75 (left) or ΔMOCCS2score < –100 (right), q < 0.05). Bar colors represent the cell type classes of the ChIP-seq 
samples. C Combinations of CD GWAS-SNPs and ChIP-seq samples with high ΔMOCCS2scores (ΔMOCCS2score > 100 (left) or ΔMOCCS2score < –100 
(right), q < 0.05). Bar colors represent the TFs of the ChIP-seq samples. D Prediction of the effect of a CD GWAS-SNP, rs17293632 (C > T), on TF binding 
using the ΔMOCCS2score profile. The ChIP-seq samples with large positive ΔMOCCS2scores are shown (ΔMOCCS2score > 100, q < 0.05). Bar colors 
represent TFs. The top three ChIP-seq samples with high absolute values of the ΔMOCCS2score were FOS. E GWAS-SNPs predicted to affect FOS 
binding using ΔMOCCS2score profiles in Crohn’s disease. The CD risk variant, rs17293632 (C > T), may strongly affect the binding of FOS, as shown 
in D 
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attenuate and intensify the binding of FOS and SPI1. 
Consistently, we found that the alt-k-mer of rs56167332 
(GGA AGT , ΔMOCCS2score < 0) corresponded to the 
motif of SPI1, and the ref-k-mer of rs13204048 (TGA 
CTC , ΔMOCCS2score > 0) corresponded to the motif of 
FOS. The enrichment of SPI1 and FOS was also evident 
in the IBD GWAS SNPs (Fig. S11), which is in line with 
CD being a type of IBD [43] and a previous report dem-
onstrating fold enrichment of GWAS loci within regions 
marked for SPI1 binding [44].

Furthermore, to interpret the effects of single CD 
SNP in detail, we focused on rs17293632 (ref-k-mer: 
GAC TCA; alt-k-mer: GAC TTA ), which has been 
reported as a CD-associated variant and an ASB SNP 
in JUN and FOS [36, 45]. Among the ChIP-seq samples 
whose peaks overlapped with rs17293632 with a high 
ΔMOCCS2score (ΔMOCCS2score > 100), FOS had the 
top ΔMOCCS2score (ΔMOCCS2score = 226.1) and 
accounted for 25% of the ΔMOCCS2scores of the top 
20 SNP-ChIP-seq pairs (Fig. 6D). In the case of negative 
ΔMOCCS2scores, there were no SNP-ChIP-seq pairs 
with a MOCCS2score < –30. These results suggest that 
rs17293632 can potentially decrease TF-binding (Fig. 6E) 
and exemplifies how the ΔMOCCS2score can predict 
which TF binding is altered using a given GWAS-SNP.

Finally, we confirmed that, as the allele frequency 
of GWAS-SNPs increased, the absolute values of the 
ΔMOCCS2score and the ratio of SNPs with a signifi-
cant ΔMOCCS2score tended to decrease (p < 0.001 
using F-test; Fig. S12). This is consistent with the fact 
that deleterious alleles tend to have lower allele frequen-
cies in the human population [46]. In summary, the 
ΔMOCCS2score obtained from the MOCCS profile can 
be applied to predict combinations of TFs and cell types 
whose binding specificity is influenced by SNPs associ-
ated with human diseases.

Discussion
In this study, we investigated the diversity of TF-binding 
sequences by profiling each k-mer’s binding specific-
ity across > 10,000 human TF ChIP-seq samples derived 
from various TFs and cell types using the MOCCS2score. 
By comparing the MOCCS profiles with conventional 
PWMs, we confirmed that these profiles could capture 
k-mers recognized by TFs (Fig.  2). We also confirmed 
that MOCCS profiles capture TF-binding sequence simi-
larities between (1) TFs of the same TF families and (2) 
cell types of the same cell type classes (Figs.  2 and 3). 
Moreover, by comparing the MOCCS profiles among 
the ChIP-seq data of the same TFs and different cell 
type classes, we found that approximately half of the TFs 
exhibited cell type dependency in TF-binding sequences 
(Fig.  3). Cell type-dependent TFs may pose challenges 

in the use of machine learning to predict TFBSs [47] 
and require more sophisticated methods such as multi-
task learning [48]. In addition, differential k-mer analysis 
revealed that k-mers changed the TF-binding specificities 
between different TFs and cell types (Fig. 4).

Considering that MOCCS profiles represent the DNA-
binding specificities of ChIPed TFs in ChIP-seq samples, 
we used these profiles to predict the impact of SNPs on 
TF binding. To this end, we calculated ΔMOCCS2scores 
to quantify the differences in TF-binding specificity 
between two k-mers from the MOCCS profiles. Using 
in  vitro SNP-SELEX and in  vivo ASB datasets, we con-
firmed that the ΔMOCCS2score analysis accurately 
predicted the SNPs affecting TF binding (Fig. 5). Further-
more, we examined the ΔMOCCS2scores for GWAS-
SNPs associated with several diseases across the entire 
high-quality human ChIP-seq dataset and identified can-
didate TFs and cell types associated with each disease 
(Fig.  6). Collectively, these results demonstrate how the 
MOCCS profiles and ΔMOCCS2scores contribute to our 
understanding of TF-binding sequences.

In this study, we did not investigate the molecular basis 
of the cell type dependency of binding sequences. One 
possibility is that different TF partners alter binding spec-
ificity, as systematically investigated using in vitro assays 
[49] and systematic data analyses [1]. We addressed this 
possibility by comparing MOCCS profiles with TFBS 
colocalization patterns. Another possible mechanism is 
a change in chromatin accessibility and 3D chromatin 
structure, which are associated with cell type-specific 
gene expression [50]. This mechanism can be examined 
by comparing MOCCS profiles with chromatin accessi-
bility and structures using DNase I-seq, ATAC-seq, and 
Hi-C data.

The value of k is a hyperparameter in k-mer-based 
methods, including MOCCS. Determining the appropri-
ate k value for each TF remains challenging. In this study, 
we chose a k value of 6, based on the initial examina-
tion of the accuracy of detecting PWM canonical motifs 
as follows: Briefly, we ran MOCCS with k = 6, 7, and 8, 
calculated the AUROC, as displayed in Fig. 2D, and com-
pared the accuracy of the different k values. The results 
demonstrated that the AUROC decreased as k increased 
from 6 (Fig. S13). Accordingly, we set k = 6 for all analyses 
in this study.

There are several possible directions for future stud-
ies in this field. The first is to investigate the relation-
ship between k-mer usage and other genomic features, 
including chromatin states, gene density, and gene func-
tion. The second is to use the ΔMOCCS2score to inter-
pret various types of mutation information, including 
mutation signatures [51] and indels [52]. The third is to 
apply the ΔMOCCS2score analysis of GWAS-SNPs to 
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drug-target discovery by searching for SNPs affecting TF 
binding and candidate cell types responsible for the phe-
notypes [53]. The fourth is to investigate the diversity of 
TF-binding sequences among human TF homologs, par-
ticularly in relation to their functional diversification. For 
example, the functional diversification of TF homologs 
was parallel to the diversification of MOCCS profiles in 
zebrafish [17]. The fifth is to systematically investigate 
the interposition dependencies within TF-binding motifs 
across cell types and TFs using the ΔMOCCS2score. 
Interposition dependencies are not limited to directly 
adjacent nucleotides [54], and k-mer-based motif analy-
ses have revealed interposition dependencies in TF-bind-
ing motifs in a limited number of cell types or TFs [26, 
30]. The sixth is the use of other motif representations. 
In this study, we proposed a k-mer method to compre-
hensively analyze binding specificities across various TFs 
and cell types. Clearly, by integrating other representa-
tions such as PWMs and hidden Markov models, there 
is potential to understand binding specificities in greater 
detail. Further advancements in this area of research are 
anticipated. Finally, to help researchers investigate gene 
expression regulations and human genetics, we are now 
developing a user-friendly database of the pre-computed 
results of MOCCS analyses, including MOCCS profiles 
and ΔMOCCS2scores, for quality-filtered human ChIP-
seq samples.

Conclusions
Our study profiled k-mer-based TF-binding specificities 
for a large-scale dataset of human TF ChIP-seq samples 
and revealed cell-type-dependent DNA-binding specifi-
cities for half of the analyzed TFs. We demonstrated that 
MOCCS profiles and the ΔMOCCS2score could predict 
the effects of variants on TF binding and interpret non-
coding GWAS-SNPs, providing a basis for investigating 
gene expression regulation and non-coding disease-asso-
ciated variants in humans.

Methods
Sample filtering of ChIP‑seq data
To control the quality of the ChIP-seq samples and 
MOCCS profiles, quality metrics were obtained and two 
thresholds for the metrics were set: soft and hard filters. 
To thoroughly evaluate the quality of ChIP-seq samples, 
both peak calling and read alignment information were 
necessary. Therefore, the following steps were performed 
first. FASTQ files were obtained using sra-tools_2.11.0. 
sif fasterq-dump or downloaded from the DDBJ database, 
and FASTQ files with the same SRX ID were concat-
enated into one FASTQ file. Bowtie2 (version 2.2.5) was 
then used to convert the FASTQ files to SAM files, which 

were subsequently converted to BAM files using SAM-
tools (version 1.9).

Soft filter
For the soft filter, quality control metrics were obtained 
from processing logs in ChIP-Atlas (https:// github. com/ 
inuta no/ chip- atlas/ wiki# tables- summa rizing- metad 
ata- and- files/) and the read alignment rate was obtained 
from the bowtie2 results. The thresholds were set as fol-
lows: the number of mapped reads, 10,000,000; the num-
ber of peaks, 100; and the read alignment rate, 54.09364 
(determined by mean − 2SD).

Hard filter
For the hard filter, quality metrics from DROMPAplus 
[55], which is a quality control tool for ChIP-seq experi-
ments, were used. DROMPAplus (version   1.8.1) was then 
applied to the BAM files of the ChIP-seq samples. 10,534 
DROMPAplus output files containing five parameters for 
ChIP-seq quality control were obtained: library complex-
ity, number of mapped reads, GC content, normalized 
strand cross-correlation coefficient (NSC), and back-
ground uniformity (Bu). The thresholds for the hard-fil-
tered samples were set as follows: library complexity > 0.8; 
number of mapped reads > 10,000,000; GC content < 60; 
NSC > 2.0; Bu > 0.8; and number of peaks > 100. In addi-
tion, the ChIP-seq samples of GFP, epitope tags, BrdU, 
and biotin were removed.

After applying the soft filter to the initial set of 10,534 
human TF ChIP-seq samples provided by ChIP-Atlas, we 
retained a total of 9,283 ChIP-seq samples (88.1%) (Fig. 
S1A). However, when we evaluated the performance of 
the MOCCS2score for distinguishing k-mers supported 
by PWM (top 10% likelihood), some soft-filtered sam-
ples still exhibited low performance (< 0.85 area under 
the receiver operating characteristic curve; AUROC) 
(Fig. S1B), possibly because of the presence of low-quality 
ChIP-seq samples. To further remove low-quality ChIP-
seq samples, we applied the hard filter and retained 2,976 
samples (Fig. S1A and C).

Preprocessing of ChIP‑seq data for MOCCS2
The peak calling data of human TF ChIP-seq samples 
(hg38) were obtained from the ChIP-Atlas database 
(https:// chip- atlas. org/), each peak region in the BED files 
was trimmed to + / − 350 bp from the TFBSs (the center 
of each peak region), and the BED files were converted to 
FASTA files using the BEDTools (version v2.27.1) getfasta 
tool for application to MOCCS2 with the option "–mask 
–low-count-threshold -1", as the former option ignores 
repeat-masked regions in the genome. Annotations of 
TFs (antigens), cell types, and cell type classes were also 
obtained from the ChIP-Atlas database.

https://github.com/inutano/chip-atlas/wiki#tables-summarizing-metadata-and-files/
https://github.com/inutano/chip-atlas/wiki#tables-summarizing-metadata-and-files/
https://github.com/inutano/chip-atlas/wiki#tables-summarizing-metadata-and-files/
https://chip-atlas.org/
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Calculation of the MOCCS2score using MOCCS2
MOCCS2 clarifies TF-binding k-mers from ChIP-seq 
peak calling data, as previously described [24, 30]. Specif-
ically, considering a histogram displaying the appearance 
of a k-mer around TFBSs, MOCCS2 quantifies the sharp-
ness of the histogram for each k-mer as an area under the 
curve (AUC) score and then calculates the MOCCS2s-
core for each k-mer by normalizing the AUC scores. The 
AUC score can be described as the area under the cumu-
lative relative frequency curve of the appearance of each 
k-mer sequence against the distance from the TFBS. W  is 
the size of the analyzed window where k-mer sequences 
are sought around the ChIP-peak positions, and n is the 
number of k-mer appearances in the ChIP-seq samples. 
If f (x) is the appearance count of each k-mer sequence 
at the position ±x bp (x ∈ [1,W ]) away from the TFBS, 
then the cumulative relative frequency distribution F(x) 
for the k-mer sequence is calculated as follows:

and its AUC score is calculated as follows:

The AUC increases as the shape of the histogram 
becomes sharper.

Some irrelevant k-mers with low appearance counts 
demonstrate high AUC scores due to the large standard 
deviations (SDs) of the AUC scores for low-occurrence 
k-mers [30]. To compensate for falsely high AUC scores, 
the MOCCS2score for each k-mer was defined as the 
AUC score divided by the SD at its appearance count. 
The SD of the AUC score for a k-mer was calculated as 
W√
12n

 , where n is the appearance count of the k-mer 
derived in [30]. The MOCCS2score was calculated as fol-
lows [30]:

P‑value of the MOCCS2score by MOCCS2
The p-values of the MOCCS2scores were calculated as 
follows: When a k-mer randomly appears within ±W  bp 
of a TFBS, f (x) (the distribution of the k-mer position 
from the TFBS) follows a uniform distribution U(0,W ) 
[24, 30]. Hence, the AUC score is regarded as the sample 
mean of the uniform distribution U(0,W ) minus W

2
:

(1)F(x) =
�x

i=1
f (i)

�W
j=1

f (j)

(2)AUC score = �W
x=1(F(x)−

x

W
)

(3)MOCCS2score =
√
12n

W
[AUC score]

xi ∼ U(0,W )(i = 1, ..., n)

According to the central limit theorem, when n is suffi-
ciently large, the sample mean of U(0,W ) follows a normal 
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 , 
when n is sufficiently large, the AUC score approximately 
follows a nominal distribution N (0, W

2

12n ) . The p-values of 
the observed AUC score s were calculated as follows:

In this study, the p-value of the MOCCS2score of a k-
mer was defined as the p-value of the corresponding AUC 
score.

The p-value of the AUC score was evaluated by com-
paring it with empirical p-values based on a simulation 
experiment. In this process, each k-mer position relative to 
the peak center was simulated by sampling from U(0,W ) . 
The AUC was calculated as the sampled mean − W/2, and 
n = 100 (assumed a k-mer with 100 counts) and W = 250 
were set. The simulation was repeated 10,000 times and the 
empirical distribution of the AUC score was obtained. The 
ratio of the empirical standard deviation to the theoretical 
value was 1.0064, indicating that the p-values based on the 
central limit theorem and those calculated from the empir-
ical cumulative distribution based on the simulation results 
were roughly consistent.

Detection and evaluation of significant k‑mers
Significant k-mers were defined as follows: The p-values 
of the MOCCS2scores of k-mers were calculated for each 
sample. Then, the corresponding q-value was calculated 
for each sample using the “p.adjust” function in the “stats” 
package in R for multiple testing corrections. k-mers with 
q < 0.05 were considered significant k-mers.

To evaluate the effectiveness of the significant k-mers, 
the classification performance of the significant k-mers 
was predicted using the PWM likelihoods of the ChIP-seq 
samples of the focal TF and the AUROC was calculated. 
Permutated samples were also generated by shuffling the 
PWM likelihood for k-mers.

Evaluation of the prediction performance 
of PWM‑supported k‑mers based on the MOCCS2score
Calculation of the likelihoods for each k‑mer based on PWM 
motifs
Motif PWMs were downloaded from the HOCOMOCO 
database (https:// hocom oco11. autos ome. ru/ downl oads_ 
v11). The likelihood of PWM was calculated for each 
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https://hocomoco11.autosome.ru/downloads_v11
https://hocomoco11.autosome.ru/downloads_v11
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k-mer by multiplying each base probability across posi-
tions in the PWM. For each k-mer and PWM, the k-mer 
was shifted to all possible offsets with respect to the 
PWM, the likelihood of each offset was computed, and 
the maximum likelihood value was selected as the repre-
sentative value among all offsets.

Evaluation of the performance of the MOCCS2score to detect 
PWM‑supported k‑mers
K-mers with a high likelihood (top 10%) were defined 
as “positive” k-mers (PWM-supported k-mers) and the 
other k-mers as “negative” k-mers. The classification per-
formance of the “positive” k-mers was evaluated using 
the MOCCS2score of the ChIP-seq samples of the focal 
TF and the AUROC was calculated. Permutated sam-
ples were generated by shuffling the MOCCS2scores for 
k-mers.

MOCCS profile comparison
Calculation of the k‑sim Pearson and Jaccard, and peak 
overlap index
Two similarity indices, k-sim Pearson and k-sim Jaccard, 
were defined and calculated for each pair of MOCCS 
profiles that passed through the hard filter (Fig. 3A). The 
k-sim Pearson of a pair of MOCCS profiles was defined 
as the Pearson correlation coefficient after setting the 
MOCCS2scores of the non-significant k-mers to zero. 
Note that MOCCS profiles in which all k-mers were non-
significant were excluded, as shown in Figs. 2 and 3, Fig. 
S4, S5, S6, and S7. The k-sim Jaccard of a pair of MOCCS 
profiles was defined as the Jaccard index of two sets of 
significant k-mers in the two MOCCS profiles (q < 0.05). 
Note that k-sim Pearson quantifies the similarity and 
considers the value of the MOCCS2score of each signifi-
cant k-mer, whereas k-sim Jaccard quantifies the degree 
of overlap of the significant k-mers.

The peak overlap index was calculated based on the 
ChIP-seq peak positions in the BED files obtained from 
ChIP-Atlas [22], which directly reflects the degree of 
peak overlap regions. First, for a pair of ChIP-seq samples 
(indexed as 1 and 2), n1all and n2all were calculated as 
the total number of peaks for ChIP-seq samples 1 and 2, 
respectively. Second, n1 (n2) was counted as the number 
of peaks in ChIP-seq sample 1 (2) that overlapped with 
peaks in ChIP-seq sample 2 (1) using BEDTools with the 
intersect option (intersect -u -a -b) [56]. Finally, the peak 
overlap index was calculated as follows:

To validate the k-sim Pearson and Jaccard indices, 
they were compared with the peak overlap index (Fig. 

peak overlap index =
1

2

(

n1

n1all
+

n2

n2all

)

S4). Note that CTCF was excluded from Figs. 2 and 3, S4 
and S5 for visualization. In the grouping of the MOCCS 
profile pairs, the pairs in which either sample annota-
tion included “Unclassified”, “Others,” or “No annotation” 
were also excluded.

UMAP visualization of MOCCS profiles and statistical tests
UMAP was performed on the set of MOCCS profiles 
using the R package “umap” [57] with the metric set as 
“pearson” and a spread of 10. The ChIP-seq samples on 
the UMAP plot were colored according to the TF, TF 
family, or cell type class. Unknown pairs whose annota-
tions included “Unclassified”, “Others”, or “No annota-
tion” were excluded.

The ratio of the same annotations (TF, TF family, and 
cell type class) was calculated in the top three neighbor-
ing ChIP-seq sample pairs defined by the k-sim Pearson 
method, and the same annotation ratio was subsequently 
averaged across the ChIP-seq samples. A permutation 
test was also performed by (1) shuffling the annotation 
for the ChIP-seq samples, (2) calculating the same anno-
tation ratio for each ChIP-seq sample, (3) calculating the 
average of the same annotation ratios across the ChIP-
seq samples, and (4) repeating steps (1)–(3) 1,000 times 
to obtain an empirical null distribution of the same anno-
tation ratio (Figs. 2I and 3C). CTCF was excluded from 
these UMAP procedures (Figs. 2 H, I and 3C).

Evaluation of TF similarity patterns using the k‑sim Pearson
The k-sim Pearson was calculated among the different 
types of TFs in a cell type class. JUN in the blood, FOS in 
the blood, FOXF1 in the digestive tract, and ELK1 in the 
uterus were selected as query TFs, and the k-sim Pearson 
was calculated among the TFs whose ChIP-seq samples 
passed the hard filter. The TFs with k-sim Pearson values 
in the top ten for each query TF were extracted and visu-
alized as star graphs.

Evaluation of TF‑dependent similarity of MOCCS profiles 
using the k‑sim Jaccard
The k-sim Jaccard was calculated for all pairs of MOCCS 
profiles. These k-sim Jaccard values were visualized as 
heat maps (Fig.  2F). In the heat map matrix, rows and 
columns represent each ChIP-seq sample. The samples 
were ordered by TFs, and the color labels were separated 
by TFs. All cell type classes with only a single ChIP-seq 
sample were excluded from visualization. Subsequently, 
TFs for which ChIP-seq samples were from a single cell 
type class were also excluded.

Evaluation of cell type‑dependent TFs using the k‑sim Jaccard
K-sim Jaccard values were calculated for all pairs of 
MOCCS profiles for each TF. These k-sim Jaccard 
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values were then visualized as heat maps grouped by 
cell type class. These k-sim Jaccard values were also 
visualized as violin plots by dividing ChIP-seq pairs 
into the same or different cell type classes. All cell 
type classes using only a single ChIP-seq sample were 
excluded (Fig.  3D and E, Fig. S6 and S7). In addition, 
the Mann–Whitney U test was used to examine the sta-
tistical significance of the differences in the k-sim Jac-
card values between the same and different cell type 
class groups. When a TF exhibited a significant differ-
ence in the Mann–Whitney U test, it was denoted as a 
cell type-dependent TF. The Mann–Whitney U test was 
also performed among all TFs to determine the ratio of 
cell type-dependent to non-cell type-dependent TFs.

Among the cell type-dependent TFs, JUN and GATA2 
were selected as query TFs to compare the TF similar-
ity patterns between the two cell type classes. The 15 
TFs with the largest difference in the k-sim Jaccard 
value between the two cell type classes were selected, 
and the two cell type classes with the highest number of 
available TFs were also selected.

Differential k‑mer detection between ChIP‑seq samples
Algorithm of differential k‑mer detection
To detect k-mers that are differentially recognized 
between two samples, differential k-mers were defined 
as follows: W  is the size of the search window for k-mer 
occurrences around TFBSs. ni and nj are the numbers 
of appearances of k-mers i and j , respectively. When 
k-mers i and j appear randomly around the TFBS, 
the AUC scores of i and j follow normal distributions 
N (0,W 2/12ni) and N (0,W 2/12nj) , respectively. The 
difference in the AUC scores between the two k-mers 
can be regarded as the difference in the means between 
two normally distributed populations with unequal 
variance. In such cases, a two-sample z-test is applied 
[58], which tests the hypothesis that two normally dis-
tributed populations with unequal variances have equal 
means. If σ 2

i and σ 2
j are the variances in each k-mer 

distribution, and we assume that the variance of the 
AUC score is constant regardless of the value of the 
AUC score, the test statistics are

and exhibit a standard normal distribution. The dif-
ference in the AUC scores of the two k-mers 
AUCi − AUCj followed the normal distribution 
N (0,

√

σ 2
i + σ 2

j) . This approach was also applied to 
the statistical testing of the ΔAUC score (difference in 
AUC scores between two samples), and p-values were 

Z =
AUCi − AUCj
√

σ 2
i/1+ σ 2

j/1

=
AUCi − AUCj
√

σ 2
i + σ 2

j

calculated from the normal distribution 
N (0,

√

σ 2
i + σ 2

j).

Simulation of differential k‑mer detection
To validate the differential k-mer detection method, 
simulated ChIP-seq peak data were generated (Fig. S8A). 
Two random ChIP-seq samples (S1 and S2) with N  peaks 
were generated, each of which was a random sequence of 
length 2W + 1 . All k-mers were then randomly assigned 
to one of the three categories (A, B, or C) and the k-mers 
of A and B were embedded in random sequences as 
follows:

• A: k-mers that are deemed as significant k-mers in S1 
and S2, and non-differential k-mers.

• B: k-mers that are deemed as significant k-mers in 
either S1 or S2, and differential k-mers.

B1: k-mers that are deemed as significant k-mers 
in S1, non-significant k-mers in S2, and differential 
k-mers that are more bound in the S1 condition.
B2: k-mers that are deemed as non-significant 
k-mers in S1, significant k-mers in S2, and differen-
tial k-mers that are more bound in the S2 condition

• C: k-mers not assigned to A or B

When each of the k-mers of A, B1, and B2 were embed-
ded in S1 and S2, a peak (sequence) was first randomly 
selected, and then the position in the sequence was 
randomly selected following Gaussian distributions for 
significant k-mers or uniform distributions for non-
significant k-mers (see Fig. S8A). After all of the k-mers 
were embedded, MOCCS2 was applied to each of the 
ChIP-seq samples (S1 and S2), and the p-value of the dif-
ference in the MOCCS2score was calculated.

This simulation encompassed several parameters: 
α, N, σ, W, l, m (see Fig. S8B). Notably, m (number of 
embedded significant k-mers) was set to 90 based on 
the average number of significant k-mers in 100 ran-
domly-selected real ChIP-seq samples. In addition, l 
(number of embedded differential k-mers) was set to 
45 based on the average number of effective differen-
tial k-mers in the following examination. First, for each 
pair of 100 randomly-selected real ChIP-seq samples, 
we (1) detected the differential k-mers, (2) searched 
for 1-bp- or 2-bp-shifted k-mers of the k-mers with 
lower FDR, (3) counted the number of differen-
tial k-mers after excluding the 1-bp- or 2-bp-shifted 
k-mers ( we call the remaining differential k-mers as 
effective differential k-mers). Then, we averaged the 
number of effective differential k-mers after excluding 
the 1-bp- or 2-bp-shifted k-mers across the ChIP-seq 
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samples pairs, which was around 45.We employed 
the number of effective differential k-mers in the real 
ChIP-seq samples because we focused on the perfor-
mance of detecting “true differential k-mers”, not the 
1-bp- or 2-bp-shifted k-mers of them in the simulated 
ChIP-seq samples.

Calculation and evaluation of ΔMOCCS2scores for SNPs 
in a single ChIP‑seq sample
Preparation of SNP‑overlapping k‑mer lists and calculation 
of ΔMOCCS2scores
The ΔMOCCS2score for a SNP in a ChIP-seq sample 
was calculated as follows: First, k-mers overlapping 
SNPs were obtained from the reference genome (hg38) 
(the SNP sets are described below). Then, k-mers cor-
responding to the reference genome sequence were 
defined as ref-k-mers, and k-mers that replaced the 
reference allele with the alternative allele were defined 
as alt-k-mers, generating pairs of ref-k-mers and alt-k-
mers for SNPs. There are k possible positions for SNPs 
in the k-mer; therefore, the positions of the SNPs in 
the k-mer were shifted from the 1st to the kth position 
from the left of the k-mer, creating k different pairs of 
ref-k-mers and alt-k-mers for each SNP.

Next, a table of AUC scores, counts, and MOC-
CS2scores corresponding to both the ref-k-mer and 
alt-k-mer were compiled from the k-mer list. The 
ΔMOCCS2scores (differences of MOCCS2score for 
ref-k-mer and alt-k-mer) and their p-values and q-val-
ues were calculated as in the differential k-mer detec-
tion algorithm and a ΔMOCCS2score profile was 
generated for each ChIP-seq sample.

Comparison of the ΔMOCCS2score with the SNP‑SELEX results
SNP-SELEX results were obtained from GSE118725 
[35] and the genomic coordinates of the SNPs were 
converted from hg19 to hg38 using liftover (https:// 
genome. ucsc. edu/ cgi- bin/ hgLif tOver) [59]. Then, SNPs 
overlapping the ChIP-seq sample peak region were 
selected and the k-mers overlapping SNPs from the ref-
erence genome were obtained (hg38) (ref-k-mer). Sub-
sequently, ref-k-mer and alt-k-mer pairs were created, 
the AUC score, count, and MOCCS2score for each k-
mer was obtained from the MOCCS profile, and the 
ΔMOCCS2scores, p-values, and q-values were calcu-
lated for each ChIP-seq sample. SNP-SELEX quantifies 
the difference in TF-binding specificity between refer-
ence and alternative alleles for each SNP as the prefer-
ential binding score (PBS) [35]. Spearman’s correlation 
coefficient was calculated between the ΔMOCCS2score 
and PBS for each ChIP-seq sample of the same TF.

Comparison of the ΔMOCCS2score with the ASB SNPs
SNP lists were obtained from the ADASTRA database 
[36] (https:// adast ra. autos ome. ru/ zanth ar, Release Susan 
v3.5.2), which contains ASB events and their correspond-
ing ASB significance across 674 TFs and 337 cell types. 
ASB significance indicates changes in the TF-binding 
specificity induced by ASB SNPs. SNPs overlapping the 
peak regions from the ChIP-seq samples were selected 
and k-mers overlapping SNPs from the reference genome 
were obtained (hg38) (ref-k-mer). After obtaining the alt-
k-mer corresponding to the ref-k-mer, the AUC score, 
count, and MOCCS2score were determined from the 
MOCCS profile and the ΔMOCCS2score, p-value, and 
q-value corresponding to each k-mer pair were calcu-
lated (ref-k-mer and alt-k-mer). A large negative ASB 
significance indicated a strong influence on TF binding 
caused by a change from the reference allele to the alter-
native allele.

To compare the ΔMOCCS2score and ASB significance, 
concordant SNPs between the ΔMOCCS2score and ASB 
significance were defined as those satisfying the following 
conditions: (1) ΔMOCCS2score was significant (q < 0.05); 
(2) |ASB significance| was significant (FDR < 0.05); and 
(3) the direction of change induced by the SNP was the 
same between the ΔMOCCS2score and ASB signifi-
cance. Based on this definition, the ratio of concordant 
SNPs and discordant SNPs was calculated for each TF. 
In addition, a permutation test was performed on the 
percentage of concordant SNPs for each TF by shuffling 
ΔMOCCS2score profiles 100 times, obtaining the empir-
ical null distribution of the ratio of concordant SNPs and 
calculating the p-value of the observed ratio. Further-
more, the fold change of PWM was obtained from the 
ADASTRA database and Spearman’s correlation between 
the PWM motif fold-change and the ΔMOCCS2score 
was calculated.

Evaluation of the ΔMOCCS2scores of GWAS‑SNPs
GWAS-SNP data was obtained from the GWAS 
catalog (https:// www. ebi. ac. uk/ gwas/) [60] for 
IBD (EFO_0003767), CD (EFO_0000384), MS 
(EFO_0003885), and SLE (EFO_0002690).

After selecting the SNPs that overlapped with the peaks 
of the ChIP-seq samples, k-mers that overlapped with the 
SNPs from the reference genome were obtained (hg38) 
(ref-k-mer). After obtaining the alt-k-mer by substituting 
one nucleotide in the ref-k-mer, the ΔMOCCS2score was 
calculated with a p-value and q-value for each ref-k-mer 
and alt-k-mer pair. SNPs whose ΔMOCCS2scores were 
not calculated were excluded because repeat and low-
confidence regions in the reference genome had been 
removed from the analyses.

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://adastra.autosome.ru/zanthar
https://www.ebi.ac.uk/gwas/
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The number of peak-overlapping or out-of-peak 
SNPs was counted and the ratio of SNPs with signifi-
cant ΔMOCCS2scores was calculated (q < 0.05) for each 
phenotype.

The association between allele frequency and absolute 
values of the ΔMOCCS2score or the ratio of SNPs with 
a significant ΔMOCCS2score was tested using linear 
regression. The (1) allele frequency or (2) rank of allele 
frequency after categorization was set into five bins as 
an explanatory variable and (1) the absolute values of the 
ΔMOCCS2score or (2) the ratio of SNPs with a signifi-
cant ΔMOCCS2score was set as a response. The p-val-
ues of the regression coefficients were calculated using 
F-tests.

Statistical tests
The statistical tests used for each respective purpose are 
as follows:

• Wilcoxon signed-rank test (as a non-parametric test 
for paired two-group comparison of non-Gaussian 
data): Fig. 2D, E 

• Mann–Whitney U test (as a non-parametric test for 
unpaired two-group comparison): Figs. 2G, 3B, D

• One sample t-test using the asymptotic t approxima-
tion (as a test of whether an observed Spearman cor-
relation coefficient is significantly different from zero; 
Implemented in the ‘cor.test()’ function in the R ‘stats’ 
package): Figures S4C, S5C, 5C

• Permutation test (as a test of whether an observed 
value was significantly high in the given complex data 
structures): Figs. 2I, 3C, 5E

• Two-sided Chi-squared test for difference of two 
proportions: Tables S3 and S4
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ASB  Allele-specific binding
AUROC  Area Under Receiver Operating Characteristic Curve
ChIP-seq  Chromatin immunoprecipitation sequencing
GWAS  Genome-wide association study
PBS  Preferential binding score
PWM  Position weight matrix
SNP  Single-nucleotide polymorphism
TF  Transcription factor
TFBS  Transcription factor binding site
MOCCS  Motif centrality analysis of ChIP-seq
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Additional file 1: Figure S1 Filtering of ChIP-seq samples. A: Schematic 
overview of ChIP-seq sample filtering. B: Violin plot showing the AUROC 
of the prediction of the top 10% PWM-supported k-mers based on the 

MOCCS2score. The red violin plot represents all CTCF ChIP-seq samples, 
the green plot represents soft-filtered CTCF ChIP-seq samples, and the 
blue plot represents hard-filtered CTCF ChIP-seq samples. High-quality 
ChIP-seq samples with high AUROC scores were retained after hard 
filtering. C: Distribution of each quality control metric of ChIP-seq sample 
filtering for samples that passed the hard filter (pink) and others (blue). D: 
Bar plots display the number of ChIP-seq samples that passed through the 
soft and hard filters. Bars are colored according to cell type classes or TFs. 
Figure S2 Simulation of significant k-mer detection. A: The procedure for 
generating simulated datasets. Simulated data generated by embed-
ding a “true significant k-mer” within random sequences was applied to 
MOCCS2 and the q-values of the MOCCS2score were calculated for each 
k-mer. B: Parameters for each simulation condition from #1 to #5. α is the 
percentage of input sequences containing embedded “true significant 
k-mers” , N is the number of peaks in a ChIP-seq sample, and σ is the 
standard deviation of the embedded “true significant k-mers” from the 
center of the peak. C: Simulation results for significant k-mer detection. 
The sensitivity, specificity, and FDR for detecting “true significant k-mers” 
are shown for different parameter settings. Figure S3 Number of peaks 
and significant k-mers in MOCCS profiles. A: Number of peaks in MOCCS 
profiles. The x-axis represents the log-transformed number of peaks with 
a base of 10 and the y-axis represents the number of ChIP-seq samples. 
B: Relationship between the number of peaks and significant k-mers in 
MOCCS profiles (left, q < 0.05; right, q < 0.01). Figure S4 Similarities in 
MOCCS profiles and peak locations for sample pairs of same or different 
TFs. A: Comparison of k-sim Jaccard, Pearson and peak overlap indices (a-c: 
groups of the same cell types). B: Two-dimensional density plot of k-sim 
Jaccard or Pearson with the peak overlap index (a-c: groups of the same 
cell types). C: Correlation coefficient of k-sim Jaccard or Pearson with the 
peak overlap index in each group. The y-axis indicates Spearman’ s correla-
tion coefficient. Red and blue indicate k-sim Pearson and Jaccard values, 
respectively (a-c: groups of the same cell types) Figure S5 Similarities in 
MOCCS profiles and peak locations for sample pairs of same/different 
cell types. A: Comparison of the k-sim Jaccard, Pearson, and peak overlap 
indices (a, d, and e: groups of the same TFs). B: Two-dimensional density 
plot of k-sim Jaccard or Pearson with the peak overlap index (a, d, and e: 
groups of the same TFs). C: Correlation coefficient of k-sim Jaccard or Pear-
son with the peak overlap index in each group. The y-axis indicates Spear-
man’ s correlation coefficient. Red and blue indicate k-sim Pearson and 
Jaccard values, respectively (a, d, and e: groups of the same TFs). Figure S6 
Heat maps of cell type-dependent TFs. The heat map color indicates the 
k-sim Jaccard value for the 33 cell type-dependent TFs. The color labels 
of the heat maps indicate the cell type classes. Cell type classes with only 
a single ChIP-seq sample were excluded from the visualization. Asterisks 
indicate the statistical significance of ChIP-seq samples with the same 
and different cell type classes (Mann–Whitney U test, p < 0.05). Figure S7 
Violin plots of all cell type-dependent TFs. The y-axis indicates the k-sim 
Jaccard value. The same and different groups were arranged along the 
x-axis. Asterisks indicate the statistical significance of ChIP-seq samples 
with the same and different cell type classes (Mann–Whitney U test, p < 
0.05). Figure S8 Simulation of differential k-mer detection. A: Simulated 
data processing. Simulated data with an embedded “true differential 
k-mer” and “true significant k-mer” was prepared by embedding a “true” 
k-mer within α% of a randomly generated sample of 2W + 1 bp (W = 350) 
DNA sequences and applied to MOCCS2. “True significant k-mers” were 
embedded following a normal distribution whose mean was W + 1 and 
whose standard deviation was σ. “True differential k-mers” were embed-
ded in S1 (or S2), similar to “true significant k-mers,” and were embedded in 
S2 (or S1) following a uniform distribution whose mean was 1 and whose 
standard deviation was (2 × W + 1) − (k − 1). It should be noted that we 
set k as k=6. B: Parameters for each simulation condition from #1 to #5. 
L is the number of differential k-mers and m is the number of significant 
k-mers. Figure S9 ΔMOCCS2score profiles were consistent with the 
in vitro SNP-SELEX and PWM motif fold change. A: Spearman’ s correlation 
coefficient between PBS (SNP-SELEX) and ΔMOCCS2score in each TF for 
the original and permuted data. Red points indicate the original Spear-
man’ s correlation coefficient, and blue points indicate the permutated 
data. B: Difference in ΔMOCCS2score profile consistency among the posi-
tions of SNPs in k-mers. The kth SNP position indicates the kth allele on the 
left side of the k-mer. C: The ΔMOCCS2score is consistent with the PWM 

https://doi.org/10.1186/s12864-023-09692-9
https://doi.org/10.1186/s12864-023-09692-9


Page 20 of 21Tahara et al. BMC Genomics          (2023) 24:597 

motif fold change. Figure S10 Number of peak-overlapping GWAS-SNPs 
with significant ΔMOCCS2scores. Number of peak-overlapping GWAS-
SNPs in each ChIP-seq sample. Each bar represents a ChIP-seq sample, and 
the y-axis represents the number of peak-overlapping GWAS-SNPs. The 
red fraction represents the number of peak-overlapping GWAS-SNPs with 
significant ΔMOCCS2scores (q < 0.05), and the gray fraction represents the 
number of GWAS SNPs with non-significant ΔMOCCS2scores. Figure S11 
Prediction of SNP-affected TFs and cell type classes using ΔMOCCS2score 
profiles. Top ChIP-seq samples with high ΔMOCCS2scores in each pheno-
type (IBD, inflammatory bowel disease; CD, Crohn’ s disease; MS, multiple 
sclerosis; SLE, systemic lupus erythematosus). The ΔMOCCS2score was cal-
culated for each SNP and ChIP-seq sample. Bar graph colors represent TFs 
or cell type classes. Figure S12 Association between the allele frequency 
and ΔMOCCS2score. Association between the allele frequency and (A) 
the absolute values of the ΔMOCCS2score or (B) the ratio of SNPs with 
significant ΔMOCCS2scores in each phenotype (IBD, inflammatory bowel 
disease; CD, Crohn’ s disease; MS, multiple sclerosis; SLE, systemic lupus 
erythematosus). Figure S13 Accuracy of detecting canonical motifs using 
MOCCS2score for different k. AUROC for detecting canonical PWM motifs 
using the MOCCS2score in the difference of value k. The x-axis represents 
the ratio of PWM-supported k-mers in all k-mers and the y-axis represents 
the AUROC. The colors of the violin plots represent the different k values.

Additional file 2: Supplementary Table 1. List of cell type-dependent 
TFs.

Additional file 3: Supplementary Table 2. List of cell type-dependent 
TFs and cell types.

Additional file 4: Supplementary Table 3. Number of cell type-depend-
ent TFs in each TF family.

Additional file 5: Supplementary Table 4. Number of cell type-depend-
ent TFs in each Cell-type-class pair.
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