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Abstract 

Background Gene expression has long been known to be influenced by the relative proximity of DNA regula-
tory elements. Topologically associating domains (TADs) are self-interacting genomic regions involved in regulating 
gene expression by controlling the proximity of these elements. Prior studies of TADs and their biological roles have 
revealed correlations between TAD changes and cellular differentiation. Here, we used Hi-C and RNA-seq data to cor-
relate TCR-induced changes in TAD structure and gene expression in human  CD4+ T cells.

Results We developed a pipeline, Differentially Expressed Gene Enrichment Finder (DEGEF), that identifies regions 
of differentially expressed gene enrichment. Using DEGEF, we found that TCR-regulated genes cluster non-uniformly 
across the genome and that these clusters preferentially localized in regions of TAD rearrangement. Interestingly, clus-
ters of upregulated genes preferentially formed new Hi-C contacts compared to downregulated clusters, suggesting 
that TCR-activated  CD4+ T cells may regulate genes by changing stimulatory contacts rather than inhibitory contacts.

Conclusions Our observations support a significant relationship between TAD rearrangements and changes in local 
gene expression. These findings indicate potentially important roles for TAD rearrangements in shaping their local reg-
ulatory environments and thus driving differential expression of nearby genes during  CD4+ T cell activation. Moreover, 
they provide new insights into global mechanisms that regulate gene expression.
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Background
Gene expression is known to be controlled by networks 
of interactions between transcription factors and DNA 
regulatory elements including enhancers and promot-
ers [1–3]. While enhancers may be located kilobases or 
megabases away from the genes they regulate or even on 
different chromosomes, they are typically in reasonable 
genomic proximity and interact with their target genes 
through changes in nuclear architecture. However, how 

genome organization influences the function of tran-
scriptional enhancers and how it drives spatiotemporal 
regulation of gene transcription remain unclear and are 
active areas of investigation [4].

Topologically associating domains (TADs) are self-
interacting regions of the genome that influence the 
accessibility of local DNA regulatory elements including 
enhancers and promoters [5, 6]. TADs physically restrict 
regulatory activities involving enhancer-promoter inter-
actions to specific, large regulatory domains and help to 
establish specific gene expression profiles [7]. Disruption 
of TAD boundaries can eliminate old enhancer-promoter 
contacts and form new ones, resulting in changes in local 
gene expression [8, 9]. Furthermore, disruption of TAD 
boundaries has been associated with many phenotypic 
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outcomes and diseases, including cancer [10–12] and 
malformations in limb development [13, 14].

One process that naturally involves changes in TAD 
boundaries and structure is T cell receptor (TCR) acti-
vation of primary immune cells [15]. Upon TCR activa-
tion with anti-CD3 and anti-CD28 antibodies,  CD4+ 
T cells undergo changes in gene expression and chro-
matin remodeling, resulting in differentially expressed 
genes (DEGs) and altered TADs [15–17]. However, how 
DEGs relate to changes in TADs in  CD4+ T cells remains 
poorly understood. To date, some correlations between 
DEGs and TAD changes have been observed in simi-
lar processes. Previously, investigators found genome-
wide changes in chromatin accessibility, TADs, and A/B 
compartments (the A compartment is associated with 
open active chromatin and the  B compartment with 
closed inactive chromatin) during T cell commitment 
[18]. Moreover, a second group observed that enhanc-
ers and genes connected by loops had higher correla-
tions between gene expression and H3K27 acetylation in 
human THP1 cells [19], while a third group used tagmen-
tation-based Hi-C to map spatiotemporal dynamics of 
chromatin structure in hematopoietic stem and progeni-
tor cells and myeloid differentiated cell populations and 
found that gene-body associating domains were struc-
tures of highly expressed genes [20].

Here, we examine the identities of DEGs longitudi-
nally at 20 min, 1 h, 4 h, and 24 h after TCR activation of 
 CD4+ T cells, their distribution throughout the genome, 
and their relationship to changes in genome organiza-
tion via TAD rearrangement. To this end, we developed 
a new algorithm named Differentially Expressed Gene 
Enrichment Finder (DEGEF), which identifies regions 
with significant enrichment of DEGs. We used DEGEF 
to identify clusters of DEGs at different time points fol-
lowing TCR stimulation of  CD4+ T cells. We then com-
pared the genomic locations of these clusters to those of 
TAD rearrangements as determined by Hi-C sequenc-
ing of the same samples. Strikingly, multiple clusters of 
DEGs overlapped regions of TAD rearrangement. To our 

knowledge, this represents the first systematic analysis in 
 CD4+ T cells of relationships between chromatin organi-
zation at the TAD level and gene expression changes in 
the context of genomic localization.

Results
Given the known relationship between DNA accessibil-
ity and gene expression, we hypothesized that  CD4+ T 
cell activation results in changes in chromatin organiza-
tion, which potentially then modulate changes in gene 
expression. Specifically, we conjectured that following T 
cell receptor activation of  CD4+ T cells by stimulation 
with anti-CD3 and anti-CD28, genomic regions with sig-
nificant changes in TAD structure would contain more 
DEGs (Fig. 1A), and genomic regions with a higher den-
sity of DEGs would be more likely to have undergone a 
TAD rearrangement than genomic regions with a lower 
density of DEGs.

To test this hypothesis, we developed a computational 
pipeline, DEGEF, to discover clusters of differential gene 
expression and TAD rearrangements from RNA-seq and 
Hi-C sequencing data, respectively, and then compare 
their overlap (Fig. 1B). We used this pipeline to analyze 
data from human  CD4+ T cells before and after TCR 
activation [17]. (For a more detailed description of the 
dataset used, see Methods). In brief, after aligning the 
Hi-C sequencing data, the pipeline used HiCPro [21] to 
build and normalize Hi-C contact matrices, which were 
then passed to HiCExplorer [22, 23] to call TADs across 
the genome. We then compared TAD boundaries before 
versus after TCR activation to identify TAD rearrange-
ments (see Methods for details on identifying TAD rear-
rangements). For RNA-seq data, the pipeline aligned the 
sequenced reads and then performed differential gene 
expression analysis using limma-voom with t-tests rela-
tive to a threshold (TREAT) [24–26] to identify DEGs 
and compute their fold changes (FCs) and statistical sig-
nificances. Our pipeline passed these results to DEGEF 
(Fig.  1C) to identify regions enriched in upregulated 
or downregulated genes. In brief, DEGEF assigns each 

(See figure on next page.)
Fig. 1 A computational approach exploring relationships between changes in TADs and gene expression. A Hypothesized relationship 
between genome compartmentalization and differential gene expression. Upon T-cell activation, TAD 1 does not change, whereas TAD 2 splits 
into two smaller TADs. Meanwhile, fewer changes in gene expression occur within TAD 1 than TAD 2 (see red and blue arrows). B Schematic 
of the analysis pipeline. Hi-C data from TCR-activated  CD4+ T cells were processed using BWA-mem2, HiCPro, and HiCExplorer to identify TADs 
and TAD rearrangements during TCR activation. RNA-seq data from the same  CD4+ T cells performed in duplicate were simultaneously processed 
using HiSAT2, featureCounts, and limma-voom with TREAT to identify DEGs during TCR activation. Then, DEGEF used the identified DEGs 
to identify genomic clusters of DEG enrichment. Finally, the locations of these TAD rearrangements and DEG clusters were compared to each 
other. C Schematic of DEGEF. First, limma-voom with TREAT identifies DEGs. Next, DEGEF computes a “raw score” (RS) of the degree of differential 
expression for each gene. It then sums the RSs in sliding, uniformly spaced genomic windows to compute an enrichment score (ES) for each locus. 
Finally, DEGEF computes p-values for each ES to determine significance, corrects for multiple hypothesis testing, and finally identifies peaks using 
an FDR threshold (e.g., FDR = 0.05)
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gene a “raw score” based on the level of upregulation or 
downregulation measured by limma-voom. A series of 
sliding genomic windows is used to sum the raw scores 

in each window to compute “enrichment scores” for loci 
throughout the genome, and the significance of each 
enrichment score is then computed. After correction for 

Fig. 1 (See legend on previous page.)
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multiple hypothesis testing, series of contiguous windows 
exceeding a given False Discovery Rate (FDR) threshold 
were identified as clusters of DEG enrichment (see Meth-
ods for a comprehensive description and characterization 
of DEGEF). Thus, we identified clusters of upregulation 
and clusters of downregulation across the genome upon 
TCR activation of  CD4+ T cells.

Characterization of clusters of DEGs after TCR activation
We used published data for  CD4+ T cells isolated from 
peripheral blood mononuclear cells from three healthy 
donors, where cells either were stimulated or not stimu-
lated with anti-CD3 and anti-CD28 [17]. RNA-seq and 
Hi-C were performed prior to stimulation and at 20 min, 
1  h, 4  h, and 24  h (single sample for 24  h; other time 
points were performed in duplicate) after stimulation. 
Overall, we observed similar changes in gene expression 
at these time points in  CD4+ T cells following TCR acti-
vation. Specifically, the majority of DEGs at 4 h post-acti-
vation were also identified at 24  h post-activation, with 
general increases in FC and significance with time post-
activation. (see Supplementary Text Sect.   9.1 and Sup-
plementary Fig. S1 for a more comprehensive description 
of DEGs identified by RNA sequencing).

From these identified DEGs, we used DEGEF to iden-
tify clusters of upregulated and of downregulated genes 
in T cells 24 h after activation compared to unstimulated 
T cells. Using a window width size of 500 kb, a window 
step size of 20 kb, an FDR threshold of 0.05, and quan-
tifying each gene’s raw score as the  log2(FC) in expres-
sion, we identified 17 clusters of upregulated genes and 
48 clusters of downregulated genes (Supplementary 
Tables 1 and 2) among 2505 upregulated genes and 2016 
downregulated genes at 24  h post-activation. The aver-
age cluster of upregulated genes spanned 1.25  Mb and 
contained 7 upregulated genes. The average cluster of 
downregulated genes spanned 1.22 Mb and contained 5 
downregulated genes. Additionally, when we ran DEGEF 
in “mixed” mode to identify clusters of DEGs regardless 
of direction (i.e., with either upregulation or downregu-
lation), we observed strong concordance with the results 
of running DEGEF separately in upregulated and down-
regulated modes (see Supplementary Text Sect.  9.2 and 
Supplementary Table 3).

As representative examples of DEGEF’s ability to search 
for clusters of upregulated genes, we visualized below 
two of the seventeen total clusters of upregulated genes 
identified across the genome surpassing the FDR = 0.05 
significance threshold. These two clusters were on chro-
mosome 4: one from 75.58 to 77  Mb and another from 
122.12 to 123.6  Mb (FDR = 1.13e-2; Fig.  2A). Known 
immunomodulator genes in these clusters include 
CXCL10, CXCL11, SEPTIN11, SDAD1, and USO1 in the 

first cluster and IL2, IL21, FGF2, SPRY1, SPATA5, and 
ADAD1 in the second cluster (see arrows). Overall, at 
24 h after TCR activation, 17 clusters enriched for upreg-
ulated genes were identified on 13 different chromo-
somes (Supplementary Table  1). We also visualized one 
representative cluster of downregulated genes on chro-
mosome 4 from 38.18 to 39.5 Mb out of 48 total down-
regulated clusters across the genome 24  h after TCR 
activation (FDR = 5.71e-3; Fig.  2B, see arrow). Known 
immunomodulators within this cluster that were down-
regulated include LINC01259, KLF3, TLR10, and TLR1. 
Overall, at 24 h after TCR activation, 48 clusters enriched 
for downregulated genes were identified on 19 different 
chromosomes (Supplementary Table 2).

DEGs within clusters exhibited greater changes in gene 
expression than DEGs outside clusters after TCR activa-
tion. Upregulated genes within clusters were associated 
with slightly lower p-values (Mann–Whitney U (MWU) 
test, p = 0.0682) and much higher  log2(FC) values (MWU 
test, p = 4.43e-11) than upregulated genes outside these 
clusters (Fig.  2C). Meanwhile, downregulated genes 
within clusters were associated with both lower p-val-
ues (MWU test, p = 2.60e-5) and lower  log2(FC) values 
(MWU test, p = 5.27e-21) than downregulated genes 
outside these clusters (Fig. 2D). These observations likely 
reflect DEGEF’s use of either  log2(FC) or significance to 
score genes when identifying clusters of DEGs.

To assess how DEGEF-identified clusters evolved with 
time following TCR activation, we examined the correla-
tion between “enrichment significances” (i.e., p-values) at 
all genomic loci at 1, 4, and 24  h after TCR simulation. 
Moderate correlation was observed for both upregula-
tion and downregulation. For upregulation, higher cor-
relation coefficients were observed between 1 and 4  h 
(Spearman’s rank correlation coefficient ρ = 0.560) and 
between 4 and 24 h (Spearman’s ρ = 0.581) than between 
1 and 24 h after TCR stimulation (Spearman’s ρ = 0.403; 
Fig. 2E). Similarly, for downregulation, correlation coeffi-
cients between 1 and 4 h (Spearman’s ρ = 0.638) and 4 and 
24  h (Spearman’s ρ = 0.660) were higher than observed 
between 1 and 24  h after TCR stimulation (Spearman’s 
ρ = 0.504; Fig. 2F). Based on the identities of the individ-
ual DEGs present at different timepoints after TCR acti-
vation, we believe that these observed differences in DEG 
clustering reflect real differences in gene expression pro-
files over the course of 24 h after TCR activation rather 
than noise inherent to our analysis.

Finally, we sought to determine how a subset of 
DEGEF-identified clusters of upregulated genes would 
evolve after TCR activation. We thus plotted the upregu-
lated FDRs of genomic loci on chromosome 4 (Fig. 2G) 
and downregulated FDRs of loci on chromosome 1 
(Fig.  2H) at 1, 4, and 24  h following TCR activation. 
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Fig. 2 Identification and characterization of clusters of DEGs from RNA sequencing data. A Clusters of upregulated genes on chromosome 4. 
From top to bottom, we visualize: 1) transcription start sites of upregulated (red) or not upregulated (gray) genes, 2) raw scores of upregulated 
genes, 3) enrichment scores of genomic loci spanning this chromosome, 4) -log10(p) of the enrichment scores for each locus, and 5) -log10(FDR) 
for each locus, with clusters surpassing FDR < 0.05 (dashed line) indicated by black arrows and red shading. B Cluster of downregulated genes 
(blue dots) on chromosome 4. The identified cluster with FDR < 0.05 (dashed line, bottom plot) is marked with a black arrow and blue shading. 
C Violin plots showcasing changes in FC and significance between upregulated genes within upregulated clusters versus those outside these 
clusters. D Violin plots showcasing changes in FC and significance between downregulated genes within downregulated clusters versus those 
outside these clusters. E Correlation matrices depicting Spearman’s coefficients between significances (p-values) of enrichment of upregulation 
across the genome at 1, 4, and 24 h after TCR activation. F Correlation matrices depicting Spearman’s coefficients between significances (p-values) 
of enrichment of downregulation across the genome at 1, 4, and 24 h after TCR activation. G Evolution of upregulated clusters on chromosome 4 
at 1, 4, and 24 h after TCR stimulation. Each track plots -log(enrichment FDR) at a different time after TCR activation. The cluster at 122.12 to 123.6 Mb 
(green) is significant at all time points, whereas the cluster at 75.58 to 77 Mb (purple) is significant only at 4 and 24 h after activation. H Evolution 
of downregulated clusters on chromosome 1 at 1, 4, and 24 h after TCR stimulation. Each track plots -log(enrichment FDR) at a different time 
after TCR activation. The cluster at 152.9 to 153.1 Mb (purple) is significant only at 1 and 24 h after activation
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Certain clusters were significant at 1  h and remained 
significant at 24  h after TCR activation (e.g., upregula-
tion cluster on chromosome 4 from 122.12 to 123.6 Mb; 
highlighted in green), whereas other clusters either 
waxed (e.g., upregulation cluster on chromosome 4 from 
75.58 to 77  Mb; highlighted in purple) or waned (e.g., 
downregulation cluster on chromosome 1 from 152.9 to 
154.1  Mb; highlighted in purple) in significance. These 
dynamic changes in cluster significance and localization 
corresponded to observed significant changes in the gene 
expression profiles of the  CD4+ T cells following TCR 
activation.

We also further evaluated DEGEF using an independ-
ent RNA-seq dataset from Th17 differentiated  CD4+ 
T cells [27]. We observed both similarities with shared 
clusters and differences with distinctive clusters when we 
compared these results to the more neutrally TCR-acti-
vated  CD4+ T cells described above (see Supplementary 
Text Sect. 9.3 and Supplementary Tables 4 and 5).

Characterization of TAD rearrangements following TCR 
activation
We next used Hi-C data to examine TADs within unstim-
ulated  CD4+ T cells and how they changed after TCR 
activation. We used HiCPro to generate Hi-C contact 
matrices and HiCExplorer to call TADs. Past studies 
have demonstrated variability in median size and num-
ber of TADs called by different algorithms and from 
contact matrices binned at different resolutions [28]. 
We compared results using TADbit [29], TopDom [30], 
and Insulation Score [31] (see Supplementary Text Sect.   
9.4 and Supplementary Fig. S2 for an overview of these 
comparisons). We observed slight differences in the TAD 
boundaries called by these different methods, but the 
TAD calls from HiCExplorer most faithfully matched 
previous reports of median TAD size and number in this 
dataset. Via visual inspection of HiCExplorer’s TAD calls, 
we noted these TADs correlated well with regions of high 
or low gene density and with principal components 1 and 
2 from linear decomposition of the Hi-C contact matrix. 
(see Supplementary Text Sect.   9.5 and Supplementary 
Fig. S3  for an  in-depth examination of a representative 
genomic region).

Although many TAD boundaries shifted following 
TCR stimulation, median TAD size remained simi-
lar (Fig.  3A) and positively correlated with the choice 
of contact matrix resolution during processing (i.e., bin 
size) (Fig. 3A). The overall number of TADs also did not 
substantially change over time post-activation (Fig.  3B); 
however, at higher resolution (smaller bin sizes), the 
number of TADs varied greatly between 1, 4, and 24  h 
after TCR activation (Fig. 3B), likely due to increased sto-
chasticity at smaller bin sizes. We selected a bin size of 

100  kb for downstream analyses, as the resulting TADs 
were consistent with a prior report on the number and 
size of TADs in unstimulated and stimulated  CD4+ T 
cells [15]. At this resolution, the median TAD size was 
1.2 Mb and did not change significantly with TCR activa-
tion, and the total number of TADs increased modestly 
from 1991 pre-activation to 2016 at 24 h post-activation 
(Fig.  3B). Although the total numbers of TADs did not 
change significantly, we observed interesting changes in 
their boundaries. We classified these TAD rearrange-
ments as “simple merge,” “simple split”, “complex merge,” 
“complex split,” or “balanced shift”, or “not rearranged” 
(Fig. 3C). Rearrangements were named “simple” if a sin-
gle TAD completely spanned the rearrangement either 
before (bottom triangles, green) or after (top triangles, 
purple) TCR activation versus “complex” if more than 
one TAD always spanned the rearrangement. We named 
rearrangements “merges” if they contained more TADs 
before activation than after activation, whereas “splits” 
contained more TADs after activation. Finally, regions 
in which an equal number of TADs spanned the region 
before and after activation were named “balanced shifts.” 
The total number of all rearrangement types increased 
with time post-activation (Fig.  3D). Simple merges and 
simple splits were the most frequent TAD rearrange-
ments, with simple merges being slightly more common 
than simple splits except at 24  h post-activation. Com-
plex splits and complex merges were the least common 
TAD rearrangements and were observed only after 4  h 
post-activation. For illustrative purposes, we visualized 
TAD rearrangements within a region of the genome 
on chromosome 9 from 78.4 to 122.8  Mb (Fig.  3E) and 
observed that regions that undergo TAD rearrangement 
tend to remain dynamic, with TAD structures continuing 
to evolve through 24 h after TCR activation.

Co‑localization of DEG clusters with TAD rearrangements
We next assessed the extent of overlap between DEGEF-
identified clusters of upregulated or downregulated 
genes and TAD rearrangements. Across the genome, an 
increasing percentage of loci underwent TAD rearrange-
ment from 1 to 24 h post-activation (24.6%, 28.0%, 39.1% 
of loci at 1, 4, and 24 h respectively); however, when we 
considered only regions within DEGEF-identified clus-
ters of upregulated or downregulated genes, we noted 
that most of the loci within these clusters had undergone 
TAD rearrangement by 24 h (Fig. 4A). At 1 and 4 h after 
TCR activation, the fraction of DEGEF-identified upreg-
ulated and downregulated clusters that had undergone 
TAD rearrangement was similar to the fraction of the 
genome that had undergone TAD rearrangement, indi-
cating no significant correlation between TAD rearrange-
ment and enrichment of differential gene expression 
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Fig. 3 Identification and characterization of TAD rearrangements from Hi-C sequencing data. A Violin plots summarizing TAD sizes over time 
after TCR activation and using different bin sizes during Hi-C processing. The average TAD size did not substantially change following TCR 
stimulation; however, user-selected choice of bin size positively correlated with the resulting TAD sizes. B Total number of TADs present over time 
after TCR activation, stratified by choice of bin size used for Hi-C processing. The total number of TADs remained constant over time post-activation 
using bin sizes of 50–500 kb. However, increased variability in TAD number was observed with the lowest bin size (10 kb), perhaps due to increased 
stochasticity of the Hi-C contact matrix at higher resolution, as fewer reads map to each matrix bin. C Possible categories of TAD rearrangements: 
“simple merge,” “not rearranged”, “simple split”, “complex merge,” “balanced shift”, or “complex split,”. Classification depended on the number of TAD 
boundaries within the rearrangement before (green) versus after (purple) TCR activation. D Number of each type of TAD rearrangement observed 
over time after TCR activation. All types monotonically increased with time post-activation. Simple merges and simple splits were the most 
common types of rearrangements. E Visualization of TAD rearrangements (orange) in chromosome 9: 78.4 Mb –122.8 Mb at different times after TCR 
activation, highlighting differences between pre-activation TADs (green) and post-activation TADs (purple). Rearranged regions tended to remain 
dynamic and continue to rearrange at later time points
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at these time points. However, at 24  h post-activation, 
whereas only 39.1% of the whole genome was encom-
passed by TAD rearrangements, 63.5% of regions within 
upregulation clusters and 60.7% of regions within down-
regulation clusters overlapped TAD rearrangements, 
with more than twofold-enrichment of “simple merges” 
within upregulated clusters (14.2% of whole genome ver-
sus 35.1% of upregulation clusters) and of “simple splits” 
within downregulated clusters (13.9% of whole genome 
versus 28.5% of downregulation clusters).

We next used FitHiChIP [32] to assess the significance 
of all Hi-C contacts and computed the odds ratios that 
the Hi-C contacts in DEGEF-identified regions were 
significant before versus after TCR activation. Except in 
clusters overlapping multiple rearrangements, the odds 

ratios corresponding to upregulated clusters were gen-
erally higher than those corresponding to downregu-
lated clusters (Fig.  4B), suggesting a tendency for new, 
statistically significant contacts to form in upregulated 
clusters compared to downregulated clusters. This trend 
persisted (median  log2(FC) = 1.35 for simple merges and 
2.99 for simple splits) after stratifying by type of TAD 
rearrangement, despite not achieving statistical signifi-
cance (MWU p = 0.0945 for simple merges and p = 0.1212 
for simple splits). Thus, in TCR-activated  CD4+ T cells, 
gene upregulation may be driven mostly by formation of 
new stimulatory contacts rather than dissolution of exist-
ing inhibitory contacts, whereas downregulation may be 
driven largely through elimination of stimulatory con-
tacts rather than formation of new inhibitory contacts.

Fig. 4 Global associations between TAD rearrangements and DEG clusters. A Stacked barplots demonstrating the percentage of bases 
within the entire genome, within upregulated clusters only, and within downregulated clusters only that fall within each type of TAD rearrangement 
at 1, 4, and 24 h after TCR activation. By 24 h, both upregulated and downregulated clusters significantly overlapped with TAD rearrangements. 
Simple merges are enriched in upregulated peaks, while simple splits are enriched in downregulated peaks. B Boxplot of odds ratios comparing 
the odds that any Hi-C loop contacting a DEGEF-identified cluster is significant after TCR activation versus the odds that it is significant before TCR 
activation. Aggregated across all types of rearrangements, upregulated clusters had significantly higher odds ratios than downregulated clusters 
(MWU p = 1.046e-2)
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Additionally, we assessed changes in chromatin acces-
sibility as measured by ATAC-seq within DEGEF-identi-
fied clusters of DEGs. We defined ATAC-seq peaks called 
by MACS2 [33] that surpassed a threshold of FDR < 0.05 
as regions of open chromatin. We observed an increase 
in open chromatin regions within DEGEF-identified clus-
ters of upregulation, from 582 peaks pre-activation to 
625 peaks post-activation. Conversely, we also observed a 
decrease in open chromatin regions in DEGEF-identified 
clusters of downregulation, from 1443 peaks pre-activa-
tion to 1390 peaks post-activation. Thus, upon TCR acti-
vation, increased chromatin accessibility likely leading to 
increased transcriptional activity was observed at clusters 
of upregulation. In contrast, decreased chromatin acces-
sibility likely leading to decreased transcriptional activity 
was observed at clusters of downregulation.

Finally, we examined representative examples of over-
lap between DEGEF-identified clusters of upregulated 
and downregulated genes and TAD rearrangements. 
One stretch on chromosome 5 (131.58 to 133.06  Mb) 
contained a cluster of upregulated genes that co-local-
ized with a “simple merge” 24  h after TCR activation 
(Fig.  5A). Differentially expressed immunomodulator 
genes within this cluster included IL3, CSF2, IL5, IL13, 
and IL4 (Fig. 5B). A new significant Hi-C loop from the 
5 kb bin starting at 131.435 Mb to the 5 kb bin starting 
at 132  Mb (black arrow in Fig.  5A) formed within this 
cluster after TCR activation. We hypothesized that this 
new loop formed during TAD merging and may bridge 
regulatory elements present in the first pre-activation 
TAD (129.8 to 131.5  Mb) to DEGs present in the sec-
ond, adjacent TAD (131.5 to 132.2  Mb), thus driving 
increased gene expression. Another stretch on chromo-
some 12 (14.84 to 15.9 Mb) contained a cluster of down-
regulated genes that co-localized with a “simple split” 
24  h post-activation (Fig.  5C). DEGs within this clus-
ter included MGP, ERP27, and PTPRO (Fig.  5D). Con-
ceivably, regulatory elements in each of the two newly 
formed TADs (14.2 to 15.3 Mb and 15.3 to 16.1 Mb) no 
longer had access to the genes present in the other TAD, 
as evidenced by decreased Hi-C looping after TCR acti-
vation. The loss of such interactions possibly contrib-
uted to downregulation of genes spanning the original 
TAD from 14.1 to 16.1  Mb that existed prior to TCR 
activation.

Discussion
In this manuscript, we used a new pipeline, DEGEF, to 
identify clusters of DEGs upon TCR activation in  CD4+ 
T cells. In earlier work, an existing algorithm, DER-
Finder, had been developed to discover novel, unanno-
tated small genomic regions of differential expression, 

such as previously unknown exons, at single-base res-
olution [34, 35], and its usage has been limited to this 
particular context. In contrast, our pipeline DEGEF is 
a first-of-its-kind algorithm that identifies clusters of 
upregulated and downregulated genes spanning rela-
tively large genomic regions; to our knowledge, such 
features are not available in any other tool. Moreover, 
we found that these regions of differentially expressed 
genes correlate well with regions undergoing large-
scale changes in chromatin structure via TAD rear-
rangement in biologically relevant contexts. Thus, our 
tool offers previously unavailable insight into genomic 
regions of higher than average differential gene expres-
sion and chromatin-related structure–function rela-
tionships associated with these regions.

Interestingly, increased numbers of downregu-
lated genes with time after TCR activation led to a 
corresponding increase in the number of clusters of 
downregulated genes, whereas increased numbers of 
upregulated genes led to the identification of approxi-
mately the same number of clusters of upregulated 
genes. Thus, genomic processes with a strong localiza-
tion component, such as intra-TAD DNA looping and 
short-range enhancer-enhancer or enhancer-promoter 
effects, might play a stronger role in driving upregula-
tion than downregulation following TCR stimulation of 
 CD4+ T cells.

Prior studies of Hi-C and RNA-seq data from pri-
mary immune cells provide limited analyses of the 
changes in TAD organization and gene expression 
in  CD4+ T cells upon TCR activation [15, 17]. While 
these studies noted trends in the number of TADs 
pre-activation that overlap with TADs post-activation 
and changes in median TAD size upon TCR activa-
tion, individual changes in TAD structure were not 
correlated with clusters of DEGs. Here, we correlated 
the observed gene expression changes with local rear-
rangements in TAD structure. Specifically, upon TCR 
activation, upregulated genes were more likely to be 
in regions where two TADs merged into a single TAD, 
whereas downregulated genes were more likely to be 
in regions where a single TAD split into two separate 
TADs. This suggests that TCR-induced gene upregula-
tion might result from increased access to cis-regula-
tory elements such as enhancers or super-enhancers in 
merged TADs, whereas TCR-induced gene downregu-
lation might result from decreased access to these cis-
regulatory elements. Finally, we observed that the Th2 
cytokine locus on chromosome 5 from 131 to 134 Mb 
remains a cluster of upregulation and is associated with 
local changes in chromatin structure during T cell acti-
vation, as has been observed in previous studies [36].
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Conclusions
In summary, we developed and used a novel algorithm 
DEGEF to identify clusters of upregulated and down-
regulated genes in TCR-stimulated  CD4+ T cells and 
demonstrated that they co-localize with regions of TAD 

rearrangement. At 24 h after TCR activation, clusters of 
upregulation preferentially localized where two separate 
TADs had merged into a single TAD  (simple merge), 
whereas clusters of downregulation preferentially local-
ized where a single TAD had split into two separate 

Fig. 5 Specific DEGEF-identified clusters overlap with TAD rearrangements. A Example of a DEGEF-identified cluster of upregulation 
on chromosome 5 from 131.6 Mb to 133.0 Mb that co-localizes with a simple merge at 24 h after TCR activation. Significant Hi-C contacts 
as determined by FitHiChIP before (green) and after (purple) TCR activation are shown in the bottom track. The black arrow indicates the formation 
of a new significant Hi-C contact spanning two formerly separate TADs. Upregulated (red) and downregulated (blue) genes are also shown. 
B Upregulated immunomodulators within the DEGEF-identified cluster shown in A. IL3, CSF2, IL5, IL13, and IL4 are all upregulated at 24 h 
after activation (orange) compared to before activation (blue). C Example of a DEGEF-identified cluster of downregulation on chromosome 12 
from 14.84 Mb to 15.9 Mb that co-localizes with a simple split at 24 h after TCR activation. Significant Hi-C contacts as determined by FitHiChIP 
before (green) and after (purple) TCR activation are shown in the bottom track. Upregulated (red) and downregulated (blue) genes in this region are 
also shown. D Downregulated immunomodulators within the DEGEF-identified cluster shown in C. MGP, ERP27, and PTPRO are all downregulated 
at 24 h after activation (orange) compared to before activation (blue)
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TADs (simple split). We identified a subset of TAD rear-
rangements associated with significant changes in gene 
expression and that may have functional significance as 
potential modulators of immune cell gene expression. It 
is conceivable that agents that modulate TADs and their 
boundaries may comprise a novel class of therapeutics. 
Specifically, given the technology to disrupt TADs in 
any cell type, it may be possible to activate the immune 
system when inappropriately suppressed or suppress it 
when inappropriately activated. If developed, such TAD-
modifying agents could have potential efficacy for many 
diseases, including cancer, where modulation and correc-
tion of dysregulated transcription is desirable.

Methods
Datasets used
To identify clusters of differentially expressed genes 
in  CD4+ T cells following TCR stimulation, we used a 
published dataset in which  CD4+ T cells isolated from 
peripheral blood mononuclear cells (PBMCs) from three 
healthy donors were stimulated with anti-CD3 and anti-
CD28 [17]. RNA and Hi-C sequencing were performed 
before stimulation and at 20 min and 1, 4, and 24 h (sin-
gle sample for 24  h; other time points were performed 
in duplicate) after stimulation. We identified DEGs and 
clusters of differential gene expression by using limma-
voom and DEGEF, respectively, to compare gene expres-
sion at the four time points after TCR activation versus 
baseline gene expression prior to TCR activation. We 
used localization data for known genomic regions (i.e., 
transcription start sites) and RNA-seq data to define 
broad regions of the genome that contain more DEGs 
than are expected by chance. We used HiCPro to align, 
filter, and normalize the Hi-C sequencing data and then 
used HiCExplorer’s hicFindTADs function to identify 
TADs at each time point.

Identifying TAD rearrangements
TAD rearrangements were defined as regions in which 
TAD structure varied between two different cellular 
treatment conditions, as assessed by Hi-C experiments 
conducted at various time points after TCR stimula-
tion. To identify TADs, we used HiCPro to align, fil-
ter, and normalize Hi-C sequencing data and then used 
HiCExplorer’s hicFindTADs function. To identify TAD 
rearrangements, TAD calls were compared between dif-
ferent conditions (e.g., T cells 24  h after TCR stimula-
tion versus unstimulated T cells). TAD boundaries were 
considered discordant if no corresponding boundary was 
found in the complementary TAD set within a 1-bin-
width radius (e.g., within 100  kb for TADs called using 
a 100  kb contact matrix). All genomic regions between 
concordant TAD boundaries were identified as potential 

TAD rearrangements. TAD rearrangements spanning 
centromeres denoted in the UCSC human genome anno-
tation (assembly GRCh38, hg38) were removed from 
further consideration, as the repetitive nature of these 
regions decreased the reproducibility of TAD calls in 
these regions.

Finally, depending on the number of TADs present 
within each potential rearrangement before and after cel-
lular perturbation (i.e., TCR activation), five classes of 
rearrangements were defined as follows:

1. Simple merges: multiple TADs merge into one TAD
2. Simple splits: one TAD splits into multiple TADs
3. Complex merges: multiple TADs merge into two or 

more TAD(s), with the total number of TADs in the 
region decreasing

4. Complex splits: two or more TADs split into more TADs, 
with the total number of TADs in the region increasing

5. Balanced shifts: two or more TADs rearrange bound-
aries, resulting in the same number of TADs

Besides these rearrangements, TADs may also undergo 
no change (“Not rearranged”).

DEGEF methodology
DEGEF is a computational pipeline that identifies clus-
ters of high DEG enrichment across the genome. RNA 
sequencing (RNA-seq) data are aligned, processed, and 
assessed for differential gene expression using limma-
voom with t-tests relative to a Threshold (TREAT), to 
assess differential gene expression exceeding a given fold-
change (FC) threshold [24–26, 37]. The resulting table of 
genes, their computed FCs, p-values, and false discovery 
rates (FDRs) outputted by limma-voom is then passed 
to DEGEF to identify regions enriched in DEGs using 
the steps outlined below. DEGEF can be run in “upregu-
lated,” “downregulated,” or “mixed” modes, depending on 
whether the user wishes to search for regions of signifi-
cant upregulation, downregulation, or both.

DEGEF first computes a raw score (RS) for each 
gene using one of three methods: “count,” “signifi-
cance,” or “foldchange.” Using “count” (default mode), 
DEGEF assigns a gene a value of 1 if it is upregulated 
(in “upregulated” mode) or downregulated (in “down-
regulated” mode) and 0 otherwise. Genes are classi-
fied as upregulated, downregulated, or not differentially 
regulated according to limma-voom results and user-
inputted threshold parameters for adjusted p-value and 
FC. DEGEF uses an adjusted p-value threshold of 0.05 
and a FC threshold of 2.0 as default parameters (i.e., 
a gene must have both an adjusted p-value ≤ 0.05 and 
FC ≥ 2 if upregulated or FC ≤ 0.5 if downregulated). In 
“mixed” mode, genes are assigned a value of 1 if they are 
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either  upregulated  or downregulated and 0 otherwise. 
Mathematically, we represent these functions as:

Using the “significance” method of raw scoring, genes 
are scored using the negative common logarithm of their 
adjusted p-values by limma-voom if they are upregulated 
(in “upregulated” mode) or downregulated (in “downreg-
ulated” mode) and 0 otherwise. In “mixed” mode, genes 
are scored using −log10(FDR) if downregulated and 
−log10(FDR) if upregulated. Mathematically, we repre-
sent these functions as:

Using the “foldchange” method of raw scoring, genes 
are scored using log2(FC) if they are upregulated (in 
“upregulated” mode) and 0 otherwise or −log2(FC) if 
downregulated (in “downregulated” mode) and 0 other-
wise. In “mixed” mode, genes are scored as log2(FC) if 
upregulated or  -log2(FC)  if  downregulated and 0 other-
wise. Mathematically, we represent these functions as:

Next, we subdivide each chromosome arm into a series 
of equally spaced, equal-width genomic bins (or slid-
ing windows). The width of and step-size between these 
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windows are inputted by the user as two run-time param-
eters, with DEGEF using a default window width of 500 kb 
and a default step-size of 20 kb. (See Supplementary Text 
Sect. 9.6 and Supplementary Fig. S4 for an overview of how 
varying window size and raw scoring methodology affects 
DEGEF’s outputs). DEGEF computes an enrichment score 
(ES) for each window as the sum of the raw scores for all 
genes in that window:

DEGEF then assesses the statistical significance of each 
computed ES. Under the “count” method of raw scoring, 
each gene’s probability of upregulation or downregula-
tion is modeled as an independent Bernoulli trial, with 
success probability estimated by the observed frequency 
of upregulation/downregulation of all genes across the 
genome. Thus, the null distribution for the sum of multi-
ple such independent and identically distributed variables 
is the binomial distribution B(n, p), where n is the num-
ber of genes in the genomic window and p is the empiric 
probability of upregulation/downregulation of any gene 
in the genome. The p-value is computed as the survival 
function of this distribution’s normal approximation:

Under the “significance” and “fold change” methods of 
raw scoring, the null distribution is constructed empiri-
cally using bootstrapping [38] with replacement (i.e., ran-
domly sampling and summing collections of n raw scores, 
where n is the number of genes in the present genomic 
window), if n was less than a user-specified threshold t 
(default t = 30). The total number of bootstraps x used 
to build each null distribution is defined by the user 
(default x = 6400). For computational convenience when 
assessing windows with n ≥ t, we instead use the Central 
Limit Theorem (CLT) to approximate the distribution of 
enrichment scores from the mean (μ) and standard devi-
ation (σ) of the observed raw scores across the genome 
(see Supplementary Text Sect.  9.7 and Supplementary 
Fig. S5 for further details including characterization of 
the accuracy of this approximation). The p-value is then 
computed as the survival function of either the empiri-
cally constructed, bootstrapped null distribution (if n < t) 
or the CLT-approximated gaussian distribution (if n ≥ t):

Correction for multiple hypothesis testing is performed 
using the Benjamini–Hochberg procedure to decrease 
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the FDR by controlling for the fact that small p-values 
sometimes occur by chance. Finally, DEGEF identifies all 
contiguous genomic windows exceeding a user-specified 
FDR threshold (default FDR = 0.05). Each set of contigu-
ous windows that fall beneath this threshold defines a 
distinct DEG enrichment cluster.

Of note, DEGEF’s outputs are dependent upon the 
choice of multiple user-defined parameters (e.g., win-
dow size, step size, scoring metric, etc.), which allows 
for versatility in cluster-calling. For example, using larger 
window sizes (e.g., 2.5 Mb) increases statistical power, as 
more genes are present in each window; however, using 
larger window sizes reduces the resolution of each clus-
ter, as each cluster cannot be narrower than the width of 
a single window. Conversely, using smaller window sizes 
(e.g., 100 kb) increases resolution but at the cost of sta-
tistical power to detect enrichment due to fewer genes 
being within each window. Moreover, many of the clus-
ters identified by DEGEF in our analyses remained con-
served even when using different run-time parameters. It 
is possible that DEGEF’s run-time parameters will require 
adjustment depending on the number and distribution of 
DEGs to optimize the algorithm’s performance. We have 
retained the user-defined nature of these parameters to 
allow for heuristic selection based on the nature of the 
dataset being analyzed.
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