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Abstract 

Background Plants respond to stress through highly tuned regulatory networks. While prior works identified master 
regulators of iron deficiency responses in A. thaliana from whole-root data, identifying regulators that act at the cel-
lular level is critical to a more comprehensive understanding of iron homeostasis. Within the root epidermis complex 
molecular mechanisms that facilitate iron reduction and uptake from the rhizosphere are known to be regulated 
by bHLH transcriptional regulators. However, many questions remain about the regulatory mechanisms that control 
these responses, and how they may integrate with developmental processes within the epidermis. Here, we use tran-
scriptional profiling to gain insight into root epidermis-specific regulatory processes.

Results Set comparisons of differentially expressed genes (DEGs) between whole root and epidermis transcript 
measurements identified differences in magnitude and timing of organ-level vs. epidermis-specific responses. 
Utilizing a unique sampling method combined with a mutual information metric across time-lagged and non-time-
lagged windows, we identified relationships between clusters of functionally relevant differentially expressed genes 
suggesting that developmental regulatory processes may act upstream of well-known Fe-specific responses. By 
integrating static data (DNA motif information) with time-series transcriptomic data and employing machine learning 
approaches, specifically logistic regression models with LASSO, we also identified putative motifs that served as crucial 
features for predicting differentially expressed genes. Twenty-eight transcription factors (TFs) known to bind to these 
motifs were not differentially expressed, indicating that these TFs may be regulated post-transcriptionally or post-
translationally. Notably, many of these TFs also play a role in root development and general stress response.

Conclusions This work uncovered key differences in -Fe response identified using whole root data vs. cell-specific 
root epidermal data. Machine learning approaches combined with additional static data identified putative regulators 
of -Fe response that would not have been identified solely through transcriptomic profiles and reveal how develop-
mental and general stress responses within the epidermis may act upstream of more specialized -Fe responses for Fe 
uptake.
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Background
Iron (Fe) plays a critical role in essential physiological 
and biochemical pathways in plants [1–3]. Consequently, 
iron deficiency (-Fe) results in reduced plant growth and 
nutritional quality [4, 5], while excess iron can be lethal 
due to the accumulation of reactive oxygen species [6]. 
Plants are the primary conduit by which Fe and other 
essential minerals are mined from soil for animal uptake 
[7]. However, while Fe is the fourth most abundant ele-
ment in soil, it is not easily utilized in its common form 
[8]. Thus, the challenge of engineering plants capable of 
maximizing iron uptake, while efficiently storing iron 
for consumption, plays an important role in addressing 
human and plant health issues.

Recent studies using the model plant Arabidopsis 
thaliana have led to the development of new and pre-
dictive mathematical models that describe regulatory 
processes involved in -Fe response in roots [9–14]. One 
of the most well-studied regulatory processes involved 
in -Fe response is Strategy I iron acquisition. During 
this response, the master regulator, basic helix-loop-
helix (bHLH) transcription factor FER-LIKE FE DEFI-
CIENCY INDUCED TRANSCRIPTION FACTOR (FIT) 
binds with bHLH heterodimers (bHLH100, bHLH101, 
bHLH38, and bHLH39), ETHYLENE INSENSITIVE3 
(EIN3), and ETHYLENE INSENSITIVE3-LIKE1 (EIL1) 
[9, 14, 15] to transcriptionally activate the H + -ATPase 
(AHA2), which acidifies the rhizosphere and increases 
the solubility of Fe(III) near the root epidermis. Following 
acidification, FERRIC REDUCTASE OXIDASE2 (FRO2), 
reduces Fe(III) to Fe(II), and IRON REGULATED 
TRANSPORTER1 (IRT1), a membrane-localized metal 
ion transporter, transports iron across the plasma mem-
brane [9, 16–20]. Upon iron uptake, genes such as YSL-
Like and FRD3, which encode transporters of Fe chelates 
nicotianamine and citrate, respectively, are expressed to 
facilitate long-distance transport of Fe throughout the 
vasculature [21, 22].

High-throughput transcriptomic temporal analy-
sis of Arabidopsis responses to iron deprivation has 
been critical in moving the field of iron homeostasis 
forward [9–11, 23, 24]. However, well-studied Strat-
egy I iron acquisition transcriptional regulators (FIT, 
bHLH100/101, bHLH38/39) and their subsequent targets 
(AHA2, FRO2, IRT1) [9, 14–19, 25] are not completely 
described from these analyses, as molecular processes 
controlling Strategy I iron acquisition primarily occur in 
the outer cell layer of the root, the epidermis [9]. While 
every cell contains the same genetic information, distinct 
cell processes arise largely due to differences in gene reg-
ulation, thus stress response varies between cells and cell 
types [11, 24, 26–30]. For example, 48% of salt-responsive 

genes are regulated in the cortex under high salinity, 
while 28% and 31% are regulated in the stele and epider-
mis, respectively [11, 24, 26, 27]. POPEYE (PYE), another 
iron-responsive transcription factor, exhibits opposing 
cell-type specific regulation to mediate iron bioavail-
ability [29]. Current iron-response networks typically 
represent gene regulatory relationships inferred from 
Arabidopsis whole root data and do not consider the cell-
specific nature of regulation. In light of the critical role of 
the epidermis in Fe uptake, here, we focused on this cell 
type as a model for identifying cell-specific regulators of 
-Fe response.

While clustering transcriptional data generates groups 
of genes with common transcriptional profiles [31–33], 
inferring relationships between genes from different clus-
ters remains challenging. Inter-cluster networks capture 
regulatory relationships where network nodes repre-
sent clusters of genes and edges represent relationships 
between clusters. Connections are typically inferred 
using cluster centroids or mean transcription profiles 
[10, 34]. Using cluster centroids may not be ideal as genes 
within the cluster may deviate from the mean cluster 
profile, potentially resulting in missed relationships or 
connections across clusters. A method that builds inter-
cluster relationships based on individual transcriptional 
profiles might reveal crucial transcriptional responses, 
particularly in cases with significant intra-cluster varia-
tions of transcriptional profiles.

TFs in inter-cluster networks derived from stress 
response transcriptional profiles represent potentially 
important regulators that are differentially expressed. 
When working with time-course data with a control at 
each time point, differential expression is defined by the 
induction or repression of transcript abundance under 
the experimental conditions (e.g., iron deprivation) with 
respect to the control at that time point. Potential regu-
lators that are not differentially regulated with respect 
to the control but have non-negligible transcriptional 
abundance would not be identified by this definition of 
differential expression, and thus would not be included 
in the set of genes used for downstream gene regulatory 
network inference. Transcription factors that fall into this 
category, however, may be differentially regulated outside 
of transcriptional mechanisms (e.g., post-transcriptional 
regulation), and still have the potential to differentially 
regulate genes that show up as differentially expressed. 
Prior work has shown that post-transcriptional regula-
tion plays a key role in stress response [35–37]. Methods 
that integrate transcriptional profiles with other static 
data sets (e.g., DNA motif information [38–40]) have the 
potential to identify stress regulators that would other-
wise be missed by traditional approaches.
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In this work, we analyzed root epidermal transcrip-
tomic data of plants exposed to -Fe for 36 h, taking sam-
ples at 6-h increments, and compared these profiles to 
existing whole root time course data. Set comparisons 
of differentially expressed genes allowed us to identify 
organ-level versus cell-specific responses and to parse out 
developmental genes from those induced or repressed by 
iron deficiency. We identified several TFs with no previ-
ously known role in -Fe response that were induced or 
repressed by -Fe. Utilizing a unique sampling method 
combined with a mutual information metric across time-
lagged and non-time-lagged windows, we inferred a 
cluster-based GRN that identified relationships between 
clusters of functionally relevant differentially expressed 
genes. This network suggested that developmental regu-
latory processes may act upstream of well-known Fe-spe-
cific responses. By integrating time-series transcriptome 
profiles with static DNA motif information and inter-
pretable machine learning models [41–43] (e.g., logistic 
regression with LASSO), we identified motifs that served 
as crucial features for predicting differentially expressed 
genes. Twenty-eight transcription factors (TFs) known 
to bind to these motifs were themselves not differentially 
expressed. This results in a putative list of TFs that may 
contribute to the differential expression of genes under 
-Fe but which are themselves potentially regulated out-
side of transcription and would otherwise be missed by 
traditional approaches. Overall, this work contributes to 
our overall understanding of -Fe response in epidermal 
cells and reveals how developmental and general stress 
responses within the epidermis may act upstream of 
more specialized -Fe responses for Fe uptake.

Results
Cell‑specific experimental data uncovers genes associated 
with ‑Fe response in the epidermis
Differences between genes expressed at the organ level 
and genes expressed specifically in the epidermis were 
first identified. Microarray data capturing expression 
activity at 7 time points (0, 3, 6, 12, 24, 48, and 72 h) and 
previously analyzed relative to the control sample at the 
0-h time point were used to capture root (organ)-level 
gene expression activity [24]. Epidermis transcriptome 
data were obtained by sequencing marker-assisted fluo-
rescence-activated cell sorted samples targeting root epi-
dermal cells under -Fe and + Fe (control) at 7 time points 
(0, 3, 6, 12, 18, 24, and 36  h) (see Methods). These two 
time-course datasets were compared based on three sets 
of differentially expressed genes: Set R[ed], which was 
composed of genes differentially expressed in the micro-
array data at any time point with respect to the 0-h + Fe 
(control) time point (Fig. 1A Set R[ed]); Set B[lue], which 

was composed of genes differentially expressed in the 
epidermis RNA-Seq data at any time point with respect 
to the 0-h + Fe (control) time point (Fig.  1A Set B[lue]); 
and Set G[reen], which was composed of genes differen-
tially expressed in epidermis RNA-Seq data at any time 
point with respect to the + Fe control at that time point 
(Fig. 1A Set G[reen]).

Set R (organ-level) contained 2,893 DEGs (Supple-
mentary Table  S01), while Set B (cell-specific) which 
also used a control at the 0-h time point only, uncovered 
1,950 DEGs (Fig. 1A Set B). A comparison of these two 
sets, which both used a 0-h control only, identified dif-
ferences that were not associated with having a control at 
all time points. We identified 2,739 DEGs (Set G) in the 
epidermis using + Fe controls at all time points (Supple-
mentary Table S02). Figure 1A compares the numbers of 
genes in each set. Comparing whole root and epidermal 
DEGs identified using only the 0-h + Fe control revealed 
467 common genes (intersection of red and blue sets in 
Fig. 1A), suggesting we missed approximately 50% of the 
epidermis-specific iron response DEGs when solely using 
whole root data.

Control samples at every time point identify iron response 
genes in the epidermis
Differential expression with respect to only the 0-h time 
point (control) identifies genes that change significantly 
at the time stress is applied, resulting in a set of genes 
that change as a result of stress and genes that change as 
a result of development. Differential expression analysis 
with respect to a control at every time point ensures that 
DEGs are associated with stress response, rather than 
development. We isolated the iron response from devel-
opmental effects by comparing the epidermis-specific 
DEGs identified using a 0-h + Fe control only (Set B) to 
those identified using an + Fe control at every time point 
(Set G; Fig. 1A).

We identified 1,709 iron-responsive genes that would 
have been missed had we identified DEGs solely with 
respect to the 0-h time point control using the whole root 
or epidermis data (Fig. 1A). While microarray and RNA-
Seq both measure transcript expression, microarray 
results are limited to genes with representative probes on 
the array, and produce relative measurements based on 
fluorescent activity [33, 44, 45]. RNA-Seq, on the other 
hand, identifies all transcripts in the sample within a 
detectable range using a reference genome and produces 
absolute transcript counts [45]. RNA-Seq’s ability to 
identify a broader group of genes with increased sensitiv-
ity means it can identify and quantify more genes than 
microarray data. This might account for the differences 
we observed with iron-responsive genes between the 
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microarray and RNA-Seq datasets. However, given the 
comparable number of genes identified using microarray 
or RNA-Seq, it seems likely that this effect is negligible.

Epidermal transcriptomic expression patterns reveal 
expression that differs from whole root patterns
A comparison of the profiles of the 467 genes that were 
differentially expressed in both the whole root and the 
epidermis transcript data (Fig.  1A) uncovered several 
differences (Figs.  1B and C). Figure  1B reveals differ-
ences across all 467 genes as a heatmap of clustered 
expression patterns for the epidermis vs. the whole root. 
Eight clusters were identified using hierarchical cluster-
ing of expression patterns from whole root and epider-
mis (Fig. 1B). Clusters 1, 3, 5, 6, 7, and 8 showed delayed 
expression in the whole root (48  h) compared to the 
epidermis (6 h) and in some cases, reversed directional-
ity (i.e., activated vs. repressed and vice versa). Cluster 
4 showed a delayed activation pattern (12 and 24  h vs. 

6 and 12  h in the epidermis) and an almost complete 
change in directionality: up-regulation in the whole root 
vs. down-regulation in the epidermis.

Thirty-eight known iron homeostasis genes exhibited 
earlier activation or repression in the epidermis, com-
pared to their expression in the whole roots (Fig.  1C, 
6 hours vs. 12 and 24 h in the whole root). IRT1, regu-
lated by FIT and considered the main iron transporter 
involved in iron uptake from the rhizosphere, [9, 16, 25] 
and MYB10, an -Fe-induced transcription factor [46], 
were upregulated in the epidermis at 6 h, whereas they 
did not appear upregulated in the whole root until 24 h. 
Two FIT interactors, bHLH39 and bHLH100, as well 
as OPT3 and COPT2, iron and copper transporters, 
respectively, were upregulated after 12 h of exposure to 
-Fe in the epidermis, but at 24 h in the whole root data-
set. FER1 and FER4, genes that bind iron to prevent 
oxidative stress [47], were repressed in the epidermis as 
early as 6 h but repressed at 24 h of -Fe in the whole root 

Fig. 1 -Fe whole root and epidermis specific transcriptional comparative analysis. A DEG counts found in 1) whole root data using control at 0 time 
point only (Set Red), 2) cell-specific epidermis data using control at 0 time point only (Set Blue), and 3) cell-specific epidermis data using controls 
at all 7 time points (Set Green). The first two show differentially expressed genes involved in stress response & development. The first captures 
average behavior over several cell types and the second shows epidermis only. The third shows differentially expressed genes associated with iron 
response in the epidermis. B Heatmap comparing DEG expression in whole root and epidermis using control at 0 time point only. Blue box shows 
genes with significantly different expression patterns. Blue indicates up-regulation, Red indicates down-regulation. C Heatmap of expression for 38 
known iron homeostasis DEGs in whole root and epidermis data using 0-time point control showing earlier activation in the epidermis vs. whole 
root. D DEG Gene counts at each time point identified using epidermis data using a control at each time point. The largest number of DEGs is seen 
at 24 h. The second largest is seen at 6 h. E List of genes that are differentially expressed at all 7 time points including 3 metal transporters and 3 
known regulators of -Fe. F Upset diagram comparing sets of differentially expressed (under -Fe in the epidermis) genes at each time point. G Upset 
diagram showing the subsets of differentially expressed (under -Fe in the epidermis) transcription factors at each time point
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dataset. Earlier induction or repression of known iron 
homeostasis genes in the epidermis compared to that 
in the whole root suggests that early epidermal activity 
is masked by collective activity in the whole root. These 
findings are supported by previous studies that charac-
terized cell-type specific transcriptional changes under 
salt and -Fe stress [11, 24, 26].

Epidermal expression patterns reveal response waves
We analyzed the 2,739 DEGs identified using the epi-
dermis data and a control at every time point (Set G) to 
assess overall epidermal expression dynamics. We found 
the most DEGs and differentially expressed TFs at 6 
(1,181 DEGs) and 24 h (1,824 DEGs) (Fig. 1D), while the 
18-h time point resulted in the lowest number of tran-
scriptional profile changes (88 DEGs) and the fewest TFs 
(4) (Fig. 1D). This suggests that these time points repre-
sent the initiation of transcriptional changes that induce 
a cascade of downstream responses. Twelve genes, listed 
in Fig.  1E, were differentially expressed at all sample 
time points, including four metal transporters and three 
known -Fe regulators. STOP2, previously identified as 
regulating several genes for aluminum stress and low pH 
tolerance, was differentially expressed in our data at 5 out 
of 6 time points [48]. Tsai and Schmidt (2020), investigat-
ing transcriptomic changes under optimal and high pH 
under -Fe, found that STOP2 was moderately induced 
under optimal pH, but highly repressed under high pH 
in iron-deficient conditions [49]. Since -Fe triggers the 
activity of epidermal proton pumps to acidify the rhizos-
phere and increase iron solubility [19], STOP2 likely plays 
an indirect role in iron response by regulating prevailing 
pH conditions. While STOP2 was previously identified 
as a minor isoform of STOP1, which controls pH and Al 
response [48], we did not find STOP1 to be substantially 
regulated in our datasets. Thus, STOP2 may play a more 
prominent role in controlling -Fe-induced pH changes at 
the rhizosphere-epidermal interface.

To characterize gene activity, we described each gene’s 
activity by the time points at which they were differen-
tially expressed (Fig. 1F). Focusing on activity patterns of 
TFs (Fig. 1G), we identified three waves of transcriptional 
responses: wave 1 (activity before 12  h) contained the 
largest number of TFs (94), wave 2 (activity between 12 
and 18 h) included 78 TFs and wave 3 (activity only after 
30 h), 9 TFs. This activity suggests an organized cascade 
of transcriptional stress response which is discrete from 
wave to wave.

Expression analysis and inter‑cluster GRN reveal 
epidermis‑specific regulators and response genes
Using the Dirichlet process Gaussian process mixture 
model (DPGP) clustering algorithm [50], we generated 

50 co-expression clusters using the max normalized 
gene expression of our 2,739 DEGs (Supplementary 
Table  S02). Two clusters, 25 and 26, were enriched 
for iron-related Gene Ontology (GO) terms (adjusted 
p-value of 0.05). Most genes and TFs in these two clus-
ters were previously known iron response genes. We 
did not find enriched GO terms in other clusters, prob-
ably due to smaller cluster sizes. However, we identified 
multiple cluster-specific TFs within the smaller clusters 
with known regulation adjacent or related to -Fe roles 
in development and stress response. Clusters 36 and 37 
contained GL2, TRY, RHD6, and LRL1, TFs related to 
root hair development, while Cluster 1 contained several 
TFs involved in ABA response. Expression patterns for 
the 50 clusters are provided in Supplemental Figure S1.

To identify new functional relationships, we inferred 
and examined inter-cluster relationships. Previous stud-
ies and our results indicate that genes with similar bio-
logical functions show similar expression patterns and 
are more likely to belong to the same cluster (intra-clus-
ter relationships). Likewise, it is logical to assume clusters 
containing regulator genes should have some causal rela-
tionship to clusters containing target genes (inter-cluster 
relationships). Previous works that developed cluster net-
works used cluster means or centroids to quantify cluster 
correlation [34, 51]. However, the range of transcriptional 
profiles within a cluster (intra-cluster variation) may 
result in the cluster centroid being a poor representation 
of all genes within the cluster (Fig. 2A) and result in the 
inability to infer informative causal inter-cluster relation-
ships. To address this, we implemented a sampling-based 
scheme that measured the strength of a cluster relation-
ship based on the distribution of Mutual Information 
(MI) [52] between individual genes belonging to clusters. 
This allowed us to incorporate gene-level expression pat-
terns while maintaining computational efficiency. MI is 
a well-known metric for quantifying causality between 
pairs of genes [53].

Using our sampling technique for each inter-cluster 
connection, we generated probability distribution func-
tions of MI scores (Fig.  2B). High MI scores indicate 
strong pairwise relationships between genes, which 
we expected to find in the tails of these distributions 
(higher MI values). We ranked all cluster connections 
using no time lag and a 6-h time lag to catch connec-
tions that would be missed using only a 0-time lag. We 
defined αij as the 90th percentile value of the MI score 
distribution calculated for genes in the ith and jth clus-
ters. Larger values of α indicated MI distributions with 
stronger connections in the top 10% of their MI val-
ues while smaller values of α indicated MI distribu-
tions with weaker connections in the top 10% of their 
MI values. We generated the distribution of αij for all 
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ij cluster pairs. We then identified a natural separation 
in this distribution (Fig.  2C) from which we could dis-
tinguish MI distributions with strong connections from 
distributions with weak connections. We identified a 
threshold of ɑ = 0.1775 as shown in Fig.  2C, which was 
the center value of an empty bin that created a natural 
separation between lower and higher values of ɑ. Exami-
nation of the distribution of Mutual Information values 
for connections that were accepted vs. rejected using 
this threshold of α (Fig. 2D) shows that while the mode 
of their distributions is similar, the accepted cluster con-
nections have a higher density in the tails.

We identified 33 potential interactions among 14 clus-
ters (Fig. 3) from the accepted connections. Connections 
uncovered between FIT and binding partners, bHLH100, 
bHLH101, and bHLH39 have been confirmed experimen-
tally in prior works [14, 54]. We used known TFs in the 
clusters to categorize biological functionality using exist-
ing literature and the TAIR database [55]. Our network 
included connections between Cluster 1, which contains 
FER1; Cluster 28, which contains FER3 and 4; and Clus-
ter 39, which contains NAC042 (JUB1) and AT3G20340. 
Sudre et  al. (2013) found 54 genes, including NAC042 
and AT3G20340, were significantly affected under 3 
conditions: atfer1-3–4 mutant vs. WT both under iron 
sufficiency, atfer1-3–4 under excess iron vs. WT, and 

atfer1-3–4 vs. WT both under excess iron [56]. These 
findings support our network’s biological relevance and 
provide future avenues of investigation on -Fe response 
in epidermal cells. Potential novel -Fe responsive genes 
identified also have other biological functions, e.g., root 
hair development (GL2, TRT, RHD6), ABA response 
(WRKY31, CTH/AtTZF1), and nitrate/phosphate 
response (WRKY42, HRS1, NAC42). Two clusters con-
taining TFs associated with root hair development, 1 and 
37, are connected to Cluster 39 which contains nitrate/
phosphate response TFs. Liu et  al. (2020) reviewed 
nitrate regulation associated with lateral root and root 
hair development and reported that both are gradually 
inhibited in a homogeneous nitrate environment [57]. 
These relationships suggest that iron deprivation triggers 
developmental and more general abiotic stress response 
within the epidermis that then induces downstream spe-
cialized processes for iron uptake activities.

Logistic regression models identify TFs associated 
with motifs important for predicting differential 
expression in epidermal data
In the previous section regulators of iron epidermal defi-
ciency response were identified from a pool of differen-
tially expressed genes. By integrating static data (DNA 
motif information) and our time-series transcriptomic 

Fig. 2 Computationally efficient mutual information sampling technique to infer gene regulatory network. A These examples show cases in which 
the mean is not a good representation of individual gene expression, B Example distribution of inter-cluster MI scores for 2 clusters, C Distribution 
of alpha values for all clusters D) MI scores for accepted vs. rejected connections for all clusters
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Fig. 3 Inter-cluster GRN. Inter-cluster GRN generated using DPGP clustering coupled with sampling-based scheme to measure the strength 
of a cluster relationship. Important TFs for each cluster are labeled. Dash lines indicate MI between gene pairs and solid arrows represent 
time-lagged MI

Fig. 4 Machine learning pipeline to identify motifs/TFs important for predicting differential expression
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data into interpretable machine-learning models, we 
uncovered regulators that influence genes that were dif-
ferentially expressed under -Fe, but which were not dif-
ferentially expressed themselves. In our pipeline (Fig. 4), 
we first identified known cis-elements enriched in the 
promoter region 1000  bp upstream of the transcription 
start site as in Schwarz et  al. (2020) using genes in the 
clusters previously generated using the DPGP algorithm 
[50, 58]. We removed cluster 50 from further analysis 
since no motifs were identified for that cluster.

We found 337 motifs enriched in our gene clusters 
(Supplementary Table S03) and generated features using 
the presence (0) or absence (1) of a motif in the promoter 
of each gene (see Methods). These features were input 
into a logistic regression (classification) model to identify 
motifs important for predicting differential expression. 
Given known class labels (e.g., differentially expressed, 
1, and non-differentially expressed, 0), classification 
models can identify predictors that are associated with 
a response [58–62]. While previous works have success-
fully used Random Forest and Support Vector Machines, 
logistic regression models with LASSO regularization 
provide highly interpretable results in addition to feature 
selection for this task [41–43, 63].

We hypothesized that motifs that increased the likeli-
hood of a gene being differentially expressed would be 
associated with stress response. We used the model coef-
ficients to identify important motifs. In logistic regres-
sion, coefficients represent how a predictor increases 
or decreases the log odds of the response relative to the 
positive (i.e., response = 1 or “differentially expressed”) 
class. Since coefficients are associated with changes in 
the log odds, we chose motifs for which ex > 1, where 
x is the coefficient [64]. Due to stochasticity introduced 
by LASSO regularization, we ran the algorithm 20 times 
and identified motifs that were consistent predictors 
across all runs. This uncovered 29 consistent motifs of 
interest (MOI; Supplemental Table  S04). By generating 
a model that included all differentially expressed genes, 
as opposed to one model per cluster, we were able to 
identify MOIs that were influential over multiple clus-
ters. We extracted TFs known to bind to the 29 consist-
ent MOIs (putative regulators, provided in Supplemental 
Table  S04) and the set of genes with the MOI in their 
promoter (putative targets, provided in Supplemental 
Table S05) using the motif-finding tool, AME [65], which 
identifies biologically verified TFs using the DAP-seq 
database [66].

Predictive models identify TFs that may be 
post‑transcriptionally regulated
To better characterize the function of the identified TFs, 
we explored their expression patterns and found that 

only one TF, ANAC070 (AT4G10350), was differentially 
expressed with respect to the control (+ Fe) at any time 
point. We performed GO analysis on these putative regu-
lators to determine their biological relevance and found 
that 6 putative regulators were associated with terms spe-
cific to root development, one with the epidermis, and 
two with hormone pathways (Supplemental Table  S04). 
All of these activities have been associated with iron 
stress response and root hair development, which is 
affected by -Fe [67, 68]. Next, we determined the extent 
to which putative targets of these TFs included known 
iron homeostasis genes. Thirteen of our 29 putative reg-
ulators had at least one known iron homeostasis gene 
in their putative target sets. Putative targets included 
known iron stress-responsive genes: BRUTUS(BTS), 
IRT1, and FRO2, as well as regulators (TFs) of the iron 
stress response including FIT, bHLH100, and bHLH101 
(Supplemental Table S05).

To assess the gene function of the putative targets for 
each of our TFs, we performed GO enrichment analy-
sis and identified 876 unique, statistically significant 
(adjusted p-value < 0.05) terms across all putative regu-
lators. Supplemental Figure S02 shows a subset of terms 
identified. A complete list of TFs, their GO terms, and 
FDR are included in supplemental data (Supplemental 
Table S06). The putative targets of six of our 29 consistent 
TFs produced no statistically significant terms.

Since changes in root hair development are a hallmark 
phenotype of iron deprivation and these changes occur 
in the epidermis [11, 24], we focused on statistically sig-
nificant terms from the GO analysis that included “iron”, 
“epidermis” and “root”. Targets for eleven of our TFs had 
terms associated with iron response and homeostasis, 
while 9 had terms associated with root morphogenesis, 
development, or regeneration, and 5 had terms associated 
with epidermis development and cell fate (Supplemen-
tal Tables S07, S08, and S09). This suggests the MOIs/
TFs we identified could be involved in iron response in 
the epidermis. Two of the MOIs/TFs with “root” in their 
GO terms and one with “epidermis” had no known iron 
homeostasis genes in their targets and could represent 
previously unidentified iron response genes.

Non‑differentially expressed regulators are associated 
with iron‑related pathways and activity
Many of the putative regulators we identified were 
expressed at some level (Supplemental Figure S03) and 
several have -Fe RPKM measurements with similar mag-
nitude to bHLH101, a FIT binding partner that is dif-
ferentially expressed under -Fe compared to + Fe control 
at every time point (Supplemental Figure S03). Thus, 
we suspect that these non-differentially expressed tran-
scription factors represent high-level regulators that 
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themselves are regulated post-transcriptionally, not 
unlike several other -Fe-responsive TFs [69, 70]. A review 
of the literature indicates that post-transcriptional regu-
lation is associated with four of our non-differentially 
expressed putative regulators, including the DOF fam-
ily of transcription factors [71]. CUC1 was found to be 
targeted by miR164, which provides evidence of post-
transcriptional regulation [72], and Huang et  al. (2018) 
determined that PIF7 activity is regulated by phospho-
rylation in shade-induced nuclear localization [73], while 
LHY1 has also been found to be post-transcriptionally 
regulated [74–77].

Post-transcriptional regulation is critical in abiotic 
stress response [35, 37, 78]. To explore whether the 
regulators we identified might be involved in iron defi-
ciency response in the epidermis, we performed an 
extensive literature review. We focused on the subset of 
13 putative regulators with known iron response genes 
in their targets and included three additional TFs with 
no known iron genes in their targets (CUC1, LHY1, 
and AT5G18090) to explore how these putative regula-
tors and their targets might be associated with -Fe. Ten 
of the 16 TFs we reviewed were associated with one or 
more activities implicated in -Fe response (Fig. 5A and B) 
[71–77, 79–94]. These TFs represent a small testable set 
of previously unidentified iron stress response regulators.

Six of the TFs are implicated with abiotic stress 
response including, PIF7 [90], DOF6 [71], CDF3 [79, 86], 
ATDOF5.8 [83, 91], LHY1 [88] and AT5G18090 [92]. 
Putative targets associated with some of these TFs include 
BTS, bHLH100/101, bHLH38, bHLH29, IRT1, FRO2, and 

ZIF1 (Fig. 5A). While a universal stress response pathway 
could explain this, research by Iyer-Pascuzzi et al. (2011) 
did not find evidence of one [27]. However, they and oth-
ers have found that regulators may respond to multiple 
stresses [24, 27, 86].

Four TFs are associated with the DELLA/gibberel-
lin pathway, which has been implicated in FIT regula-
tion [68]: bZIP16 [84], PIF7 [89], IDD2 [85], and LHY1 
[88]. Putative targets of these four TFs include BTS, 
FIT, bHLH100, bHLH38, and ZIF1. LHY1 has not 
previously been identified as an iron stress response 
regulator. However, Maurer et  al. (2014) found that 
LHY1 is more highly expressed under -Fe in a triple 
mutant background (bhlh39-1 bhlh100-1 bhlh101-1) 
[88]. Given that changes in LHY1 are associated with 
mutants of its putative targets a feedback mechanism 
may be involved.

Three TFs are associated with root expression or 
development: DOF6 [81], bHLH69/LRL2 [80], and 
AT5G18090 [92]. Root development and changes in root 
hair length are known phenotypes of -Fe [11, 95, 96]. 
Putative DOF6 targets include bHLH100/101, IRT1 and 
FRO2. DOF6 is associated with root radial pattern for-
mation according to TAIR and is expressed in all three 
developmental zones (meristematic, elongation, and 
differentiation), but is pericycle-specific [81]. bHLH69 
is involved in root hair formation and root epider-
mis development, and mutants show root hair defects 
[80].  AT5G18090 is induced in response to manganese 
deficiency, which is associated with stimulated root hair 
elongation [92]. Notably, there is evidence showing iron 

Fig. 5 Subset of putative regulators identified using logistic regression with LASSO. A Putative TFs investigated in literature review. Subset included 
13 TFs with known iron response genes in their putative targets and three additional TFs. References were identified for the topics listed in the table 
for 10 of the 16 TFs investigated. B) Venn diagram showing overlap between topics covered in the literature review for TFs listed in A 
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and manganese crosstalk via IRT1, an iron transporter 
that nonspecifically transports manganese under -Fe 
[25], increasing its levels in roots [11, 29].

Only one of our TFs, IDD2, is associated with epider-
mal root hair differentiation [85]. However, the rela-
tionship between this TF and the DELLA/gibberellin 
pathway makes it a prime TF for further investigation to 
determine its role in the -Fe response. While biological 
confirmation is required, this work uncovered connec-
tions between non-differentially expressed regulators 
and mechanisms associated with iron stress response and 
provides several avenues of future inquiry.

Discussion
Gene set comparisons between organ- and cell-level data 
using a 0-h + Fe control sample identified 1,483 genes 
associated with epidermal activity that would not have 
been found without cell-specific measurements (Fig. 1A). 
By including a + Fe control sample at every time point, an 
additional 1,709 genes were identified that would have 
been missed if only a 0-h control were used (Fig.  1A). 
These results highlight the need for cell-level data with 
controls at every time point, as well as the benefit of gene 
set comparisons across datasets. While a complete com-
parison between whole root and epidermis data was not 
feasible since microarray data does not contain the whole 
transcriptome, our comparative transcriptional analy-
sis shows evidence of early activation in the epidermis 
in response to -Fe along with complete transcriptional 
changes between the whole root (up-regulated) and the 
epidermis (down-regulated; Fig. 1B and C).

The cluster GRN (Fig.  3), developed using gene-level 
comparisons in a computationally efficient manner, iden-
tified relationships between transcription factors that 
mirror those found using whole root data, while also 

revealing novel putative regulators that act upstream of 
known -Fe response genes. In many cases, these early 
response regulators play a role in development and stress 
responses. A logistic regression with LASSO modeling 
approach uncovered regulators that may act upstream 
of known -Fe response processes, yet are not transcrip-
tionally regulated by -Fe. Plants rely on a highly tuned 
regulatory system for stress response due to their ses-
sile nature. Regulators revealed by our approach, such as 
CUC1, LHY1, and IDD2 may be post-transcriptionally 
controlled to fine-tune responses and enable quick tran-
sitions in response to Fe deprivation within the epidermis 
[36]. Notably, many of these putative upstream regula-
tors also play a role in development and general stress 
response [85, 88, 97].

We propose a potential connection between the high-
level putative regulators we identified, which are asso-
ciated with development and general stress response, 
and -Fe response in the epidermis. The root epidermis 
is highly sensitive to stress and readily exhibits devel-
opmental, physiological, and biochemical alterations 
in response to nutrient availability [93, 94]. One of the 
most well-studied responses to -Fe stress is the induc-
tion of the Strategy I response within the root epidermis. 
This response relies upon membrane localization and 
induction of the critical FRO2, IRT1, and AHA2 protein 
complex that induces rhizosphere acidification, ferric 
reduction, and Fe uptake into epidermal cells [98].

Our analysis revealed that several known developmen-
tal regulators, such as DOF6, bHLH69/LRL2, WRKY42, 
and RHD6, might directly or indirectly target FRO2 and 
IRT1, as well as their bHLH regulator, FIT, and FIT’s 
binding partners, bHLH100 and bHLH101, as well as 
other Fe homeostasis genes. Taken together our spati-
otemporal RNA-seq and modeling of epidermal-specific 

Fig. 6 Hypothesized root epidermal -Fe mechanism. Model depicting epidermal root development (blue box) and general stress responses (yellow 
box) epistatic to the known -Fe response. Dash grey arrows indicate direct or indirect connections identified by the DPGP clustering and Logistic 
regression with LASSO modeling algorithms on the -Fe spatiotemporal RNA-seq data. Solid black arrows indicate confirmed direct -Fe interactions. 
Genes in red are potentially post-transcriptionally regulated
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transcriptional responses reveal a mechanism whereby 
developmental and general stress responses are epi-
static or parallel to the early -Fe stress response within 
the root epidermis, which then later induce more spe-
cialized -Fe responses for Fe uptake (Fig.  6). Figure  6 
hypothesizes connections between transcription factors 
associated with development, general stress response, 
and -Fe response.

Conclusions
This work uncovered key differences in -Fe response 
identified using whole root data vs. cell-specific root 
epidermal data, and using a 0-h control vs. controls at 
every time point. Machine learning approaches, which 
employed interpretable models combined with additional 
static data, identified potential high-level regulators of 
-Fe response that would not have been identified solely 
through transcriptomic profiles. These regulators reveal 
how developmental and general stress responses within 
the epidermis may act upstream of more specialized -Fe 
responses for Fe uptake.

Methods
The Arabidopsis pWER::GFP epidermis marker line 
(WEREWOLF; AT5G14750: Lee & Schiefelbein, 1999) 
in Columbia (Col-0) accession was used to perform all 
experiments [99]. Seeds were surface sterilized using 70% 
ethanol for 2 min followed by 30% bleach and 0.02% Tri-
ton X-100 solution for 15  min. Seeds were rinsed three 
times with sterile water and stratified at 4  °C for 2 to 3 
d before being plated on nylon mesh (Genesee Scien-
tific Cat 57–103) on top of solidified media to facilitate 
transfer. Seeds were grown in a vertical position in a Per-
cival incubator with 16 h of daily illumination and 8 h of 
dark at 22 °C. Iron-sufficient (+ Fe) and deficient media is 
standard Murashige and Skoog media (Caisson Labs Cat 
MSP33-50LT) with 0.05% MES, 1% sucrose, 1% agar, and 
0.1  mM FeEDTA. Ferrozine (300  μM), an iron chelator, 
was added to make deficient media.

Seedlings were shifted from iron-sufficient media to 
sufficient and deficient media, on the  7th day of growth, 
equating to 0-h. After 7d transfer, an additional 6  h, 
12 h, 18 h, 24 h, 30 h, and 36 h of growth occurred. After 
which, roots were harvested for protoplasting followed by 
fluorescence-activated cell sorting [100]. Three replicates 
of the epidermis samples were collected and analyzed.

RNA was extracted using RNAeasy Plant RNA Purifica-
tion Kit (Qiagen Cat. 74,904). cDNA synthesis and ampli-
fication were performed using the SMARTer Low Input 
RNA Kit (TaKaRa Cat. 634,940) for sequencing. North 
Carolina State University Genomic Science Library facili-
ties sequenced the library using an Illumina HiSeq 2500 
sequencing machine, with 125 bp single-end reads.

Adapter contamination and low-quality reads were 
assessed using fastQC [101]. Adapter contents were 
trimmed, and low-quality reads discarded using fastq-
mcf [102]. Clean reads were mapped to The Arabidop-
sis Information Resource (TAIR)10 reference genome 
[55] using tophat2 [103–105]. More than 92% of reads 
were mapped to the reference genome for all the sam-
ples. From the mapped reads we obtained the read count 
(RPKM) for each gene using the RSubread package [106].

Differentially expressed genes (DEGs) were identi-
fied using edgeR [107] package, using glmQLFtest for 
DE analysis. DE genes were identified with respect to 
the 0-time point or with respect to the control using 
adjusted p-values [108]. A maximum false discovery 
rate (FDR) of 0.05 and minimum log fold change thresh-
old of 0.75 was applied for identifying differentially 
expressed genes.

To cluster gene expression trajectories, we used a Dir-
ichlet Process Gaussian Processed (DPGP)-based algo-
rithm [50]. DPGP can capture time course dependencies 
and is suitable for modeling time series data. Data was 
max normalized prior to clustering using the following 
equation

Where Ni
t  is normalized expression of gene i at sam-

pling time point t. T is the total number of time samples, 
and Ri

k is the RPKM gene expression value of gene i at 
time t.

Latin Hypercube Sampling (LHS) [109] was used to 
randomly sample TFs from each DPGP-generated cluster 
(with repetition). We calculated 0- and 6-h time lagged 
mutual information (MI) scores between pairs of ran-
domly sampled TFs from different clusters using [53]. 
Mutual information between the expression patterns of 
two genes (random variables) (G1,G2) is defined as

Where f (G1,G2) is the joint distribution, and f (G1) , 
f (G2) are marginal distributions of the random variables 
representing the gene expression patterns. We generated 
a distribution from the MI scores calculated for each pair 
of clusters. We ranked all possible cluster connections 
based on the 90th percentile (near the tail end) of the MI 
value and called this score ɑ. We calculated ɑ for all possi-
ble cluster connections, generated a distribution of ɑ and 
identified an appropriate threshold which was applied to 
identify accepted connections between clusters.

Promoter regions 1000 bp upstream [58] of the tran-
scription start site for genes in each of the 50 DPGP 
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t
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k
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)
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clusters were identified. We then used the Analysis of 
Motif Enrichment (AME)  algorithm [65] using default 
settings and the DAP-seq database [66] to identify 
enriched motifs. AME provided a list of motifs, TFs that 
bind to them, and the genes that contained the motif 
in their promoter (putative targets). We generated a 
binary feature for each gene by encoding presence (1) 
or absence (0) of the motif for each gene. We encoded 
an equal number of non-differentially expressed genes 
(absolute log2FC for all time points < 0.251). We chose 
a more restrictive threshold than Schwarz et al. (2020) 
(0.4), to provide us with enough negative samples while 
ensuring that expression was negligible [58]. We set 
class labels for differentially expressed to 1, and non-
differentially expressed to 0. These features and labels 
were used as input to Logistic Regression models with 
LASSO.

We performed logistic regression with LASSO using 
the R package glmnet. Important features were iden-
tified by using model coefficients for which (exp(x)) 
was > 1 where x was the model coefficient [64]. Since 
the use of LASSO can result in different coefficients 
from run to run, we generated 20 models and focused 
on motifs identified in all 20 runs. This allowed us to 
capture the variability of the algorithm and maintain 
the exploratory nature of the task.

GO terms associated with TFs that are known to bind 
to our motifs were identified using the TAIR database 
[55]. GO enrichment of putative targets was performed 
using the R library topGO [110].
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