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Abstract 

To explore the potential network markers and related signaling pathways of human B cells infected by COVID-19, we 
performed standardized integration and analysis of single-cell sequencing data to construct conditional cell-specific 
networks (CCSN) for each cell. Then the peripheral blood cells were clustered and annotated based on the conditional 
network degree matrix (CNDM) and gene expression matrix (GEM), respectively, and B cells were selected for further 
analysis. Besides, based on the CNDM of B cells, the hub genes and ‘dark’ genes (a gene has a significant difference 
between case and control samples not in a gene expression level but in a conditional network degree level) closely 
related to COVID-19 were revealed. Interestingly, some of the ‘dark’ genes and differential degree genes (DDGs) 
encoded key proteins in the JAK-STAT pathway, which had antiviral effects. The protein p21 encoded by the ‘dark’ 
gene CDKN1A was a key regulator for the COVID-19 infection-related signaling pathway. Elevated levels of proteins 
encoded by some DDGs were directly related to disease severity of patients with COVID-19. In short, the proteins 
encoded by ‘dark’ genes complement some missing links in COVID-19 and these signaling pathways played an impor-
tant role in the growth and activation of B cells.

Keywords Single-cell RNA sequencing, B cells, Conditional cell-specific network, Hub gene, ‘Dark’ genes, Pathway

†Ying Li and Liqin Han contributed equally to this paper as the first authors.

*Correspondence:
Peiluan Li
15038522015@163.com
Luonan Chen
lnchen@sibs.ac.cn
1 School of Mathematics and Statistics, Henan University of Science 
and Technology, Luoyang 471023, China
2 Longmen Laboratory, Luoyang 471003, Henan, China
3 Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong 
University School of Medicine, Shanghai 200032, China
4 College of Medical Technology and Engineering, Henan University 
of Science and Technology, Luoyang 471023, China
5 Key Laboratory of Systems Biology, Institute of Biochemistry and Cell 
Biology, Center for Excellence in Molecular Cell Science, Chinese 
Academy of Sciences, Shanghai 201100, China
6 Key Laboratory of Systems Health Science of Zhejiang Province, 
Hangzhou Institute for Advanced Study, University of Chinese Academy 
of Sciences, Hangzhou 310000, China
7 School of Life Science and Technology, ShanghaiTech University, 
Shanghai 201100, China

8 West China Biomedical Big Data Center, Med-X Center for Informatics, 
West China Hospital, Sichuan University, Chengdu 610041, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-023-09719-1&domain=pdf


Page 2 of 19Li et al. BMC Genomics          (2023) 24:619 

Background
Acute infection with severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) has rapidly caused the 
ongoing worldwide pandemic of coronavirus disease 
2019 (COVID-19). COVID-19 can present with a spec-
trum of illness, from asymptomatic, mild, moderate, to 
severe and death [1, 2]. Disease outcome is dictated by a 
combination of direct viral effects on patient tissues [3], 
protective antiviral immunity [4] and overexuberant anti-
viral or inflammatory immune responses driving tissue 
damage [5, 6]. However, it is unclear what causes mod-
erate to severe symptoms in some patients. How com-
munication between host compartments controls the 
disease progression. And whether enriched pathways are 
involved in antiviral immune responses or not.

Since the outbreak of COVID-19, the research related 
to SARS-CoV-2 based on single-cell sequencing has 
drawn more and more attention. Zhao et  al. [7] found 
that both SARS virus infection and the S protein of 
SARS virus could reduce the expression of ACE2 pro-
tein and lead to acute lung failure in vivo, revealing that 
the lower respiratory tract is the target organ attacked 
by SARS-COV-2 at the single-cell level. Ren et  al. [8] 
integrated and analyzed the single-cell data of COVID-
19 and found that the presence of SARS-CoV-2 RNA in 
various immune cell types, including neutrophils, mac-
rophages, plasma B cells, T cells, and NK cells. Reveal the 
mechanism of COVID-19 infection and the characteris-
tics of the body’s immune response in different disease 
stages. Cristinelli et  al. [9] found that the expression of 
host genes at the transcriptional level under virus infec-
tion was helpful for the discovery of virus infection-
related markers and the understanding of the mechanism 
of virus-host interaction. Zou et  al. [10] found that the 
SARS-CoV-2 first attacked the lungs, but it was clini-
cally found that the SARS-CoV-2 appeared in other 
organs, such as the heart and kidneys. Zhang et al. [11] 
constructed a gene co-expression network based on 
single-cell sequencing data of patients with COVID-19 
infection, and found a group of functional genes with 
similar expression patterns with EEF1A1 as the center, 
which was expected to be used as a marker for diagnosis 
and treatment of COVID-19 infection. Severe COVID-19 
patients have severe inflammatory response [12], innate 
immunity [13] and impaired adaptive immune response 
[14–16]. These studies deepen our understanding of the 
disease’s immunopathology.

The above-mentioned study mainly focused on the 
analyses of gene expression levels. In order to fur-
ther reveal some potential pathogenic mechanisms of 
COVID-19, we studied COVID-19 from the direct gene–
gene association levels. Dai et  al. [17] presented a new 
method to construct a cell-specific network (CSN) for 

each single cell from scRNA-seq data (i.e., one network 
for one cell), which transformed the data from ‘unstable’ 
gene expression form to ‘stable’ gene association form 
on a single-cell basis. Based on network degree matrix 
(NDM), CSN could be further applied to downstream 
single-cell analysis, and its effectiveness in terms of 
robustness and accuracy is validated on multiple scRNA-
seq datasets. In 2021, Li et  al. [18] proposed CCSN to 
identify direct associations between genes by filtering out 
indirect associations in the gene–gene network based on 
conditional independence, which overcame the disadvan-
tage that some genes that were not directly related might 
be wrongly judged as related in the CCSN.

In this study, we constructed a CCSN for each cell in 
the HRA000150 dataset, in which each gene was rep-
resented as a node in the network, and the correlation 
between genes was represented as an edge in the net-
work. CCSN can transform the original gene expression 
data of each cell to the direct and robust gene–gene asso-
ciation data (or network data) of the same cell. CCSN 
also offers an approach for identifying pivotal genes from 
a network viewpoint. Given that pivotal regulatory genes 
typically exert influence on the expression of numerous 
other genes, they tend to exhibit a greater number of 
connections to other genes within CCSNs. This results 
in a higher network degree for these pivotal genes. By 
quantifying the number of connections (known as the 
network degree) for each gene within each CCSN, we 
can identify the genes with the highest degrees in each 
cell or cell type. These highest-degree genes serve as rep-
resentative key genes when considering the network per-
spective. We converted CCSN to CNDM by calculating 
the network degree of each gene in the cell. CNDM can 
reduce dimensions while integrating high-dimensional 
single-cell network data. Moreover, the CNDM matrix 
could be further analyzed by most traditional scRNA-seq 
methods for dimension reduction and clustering analy-
sis. Then B cells were extracted for subsequent analysis. 
CNDM serves as a measure of the significance of each 
gene within the network and shares the same dimension 
as the gene expression matrix (GEM). The CCSN method 
can reduce noise and improve coverage. Each CCSN 
can be viewed as the transformation from less ‘reliable’ 
gene expression to more ‘reliable’ gene–gene associa-
tions in a cell. In addition, CCSNs found hub genes in 
different stages of COVID-19 from a network viewpoint, 
even ‘dark’ genes, which had no significantly differential 
changes in terms of gene expression, and thus couldn’t 
be found by traditional differential analyses. But they 
had significant differential changes in terms of network 
degree, therefore may also play an important role in the 
network regulation. We validated ‘dark’ genes at protein 
level and performed prognostic analysis of ‘dark’ genes, 
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which showed that ‘dark’ genes play an important role in 
the progress of COVID-19. ‘Dark’ genes were enriched 
in some pathways, and some proteins encoded by ‘dark’ 
genes were involved in a series of signaling pathway, 
which revealed the relevant roles of ‘dark’ genes in SARS-
CoV-2 infection and COVID-19 treatment. Our find-
ings might be helpful for understanding and controlling 
COVID-19.

Methods
Data pre‑processing
We downloaded the raw single-cell peripheral blood 
sequencing data from the Genome Sequence Archive 
of the Beijing Institute of Genomics (BIG) Data Center 
(http:// bigd. big. ac. cn/ gsa- human, accession number: 
HRA000150). The raw scRNA-seq FASTQ files of PBMCs 
from 13 patients and 5 healthy controls. The 13 patients 
with COVID-19 were classified into three clinical con-
ditions: moderate (n = 7), severe (n = 4) and convales-
cent (conv; n = 6, of whom 4 were paired with moderate 
cases). The downloaded reads were then processed indi-
vidually by using the Cell Ranger (v.4.0.0, 10xgenomics, 
https:// www. 10xge nomics. com/) to count pipeline with 
the GRCh38 human reference genome to generate GEM. 
The subsequent analyses were performed by R (v.4.1.0) 
scripts with the Seurat (v.3.2.2) package. Briefly, GEMs 
filtered by the Cell Ranger were further filtered based 
on three metrics step by step: the total UMI counts, 
number of detected genes and proportion of mitochon-
drial gene counts per cell [19]. We separately integrated 
healthy, moderate, severe, and recovery stage samples 
to obtain the initial GEMs. This study also included 
171 patients with COVID-19 and 25 healthy individu-
als from 37 centers / laboratories, with samples (n = 284) 
collected (http:// bigd. big. ac. cn/ gsa- human, accession 
number: HRA001149). Samples of COVID-19 were fur-
ther categorized into groups of moderate convalescence 
(n = 89), moderate progression (n = 33), severe conva-
lescence (n = 51) and severe progression (n = 83). And 
CITE-seq of 7 COVID-19 patients and 5 healthy controls 
(https:// www. ncbi. nlm. nih. gov/ geo/, accession num-
ber: GSE155673), of which 7 COVID-19 patients were 4 
severe stage and 3 mild stage. The logarithm log(1+ x) 
was applied to normalize the initial GEMs with M rows/
genes and N  columns/cells [20, 21].

Construction of CCSN
From dynamical viewpoint, the network of a cell could 
more reliably characterize the biological system or state 
of the cell. Li et  al. proposed to construct CCSNs for 
each cell based on probability theory [18], which could 
measure the direct associations between genes by elimi-
nating the indirect associations. Each CCSN could be 

viewed as the transformation from less ‘reliable’ gene 
expression to more ‘reliable’ gene–gene associations in 
a cell and the problem of dropout events in scRNA-seq 
data were somewhat alleviated by increasing gene–gene 
associations.

Due to the large number of cell samples in the single-
cell sequencing data, the dataset obtained after preproc-
essing the original data contained four stages, including 
12,537 cells in the healthy, 16,297 cells in the moderate, 
14,900 cells in the severe and 10,346 cells in convales-
cent. For the data preprocessing, we first calculated the 
average expression level of each gene, and took the top 
5000 genes for subsequent analysis to ease the calcula-
tion pressure and reduce the low expression level. CCSNs 
were constructed for 5000 different stages of gene expres-
sion profiling data. A general overview of the study is 
visualized in the following flow diagram to illustrate our 
analysis process is shown in Fig. 1.

Enrichment analysis of DGs
To explore the differential genes of B cells under SARS-
COV-2 infection, dimension reduction and clustering 
analysis were performed on CNDM derived from CCSN, 
and B cells were extracted for subsequent analysis. The 
healthy controls were selected for comparative analysis 
with moderate, severe and convalescent, respectively, and 
DDGs of three stages were obtained. The common differ-
ential genes of these three stages were used as DDGs of B 
cells, and subsequent analysis was based on DDGs. The 
screening criteria for DDGs were adjusted p-value < 0.05 
and average fold change |avg_log2FC|> 0.25. Similarly, 
the differential expression genes (DEGs) of B cells in 
GEM were also found, and the common genes of DDGs 
and DEGs were collectively referred to as differential 
genes (DGs). To determine the biological functions of 
DGs, we used Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway enrich-
ment analysis to find the important biological functions 
of the DGs and the processes related to the development 
of COVID-19 that the DGs participated in. To enhance 
the robustness of the results, we integrated three data-
sets, HRA000150, HRA001149 and GSE155673, into 
the analysis. We used the integrated data for differen-
tial expression analysis (logfc.threshold = 0.15) to obtain 
DEGs and then performed enrichment analysis.

Network analysis of CCSN
CCSN provides a new way to build gene–gene inter-
action networks in each cell and find hub genes from a 
network perspective. By counting the number of edges 
connected by each gene (i.e., the conditional network 
degree) in each CCSN, we selected the gene with the 
highest degree in B cells of severe stage as the hub gene 

http://bigd.big.ac.cn/gsa-human
https://www.10xgenomics.com/
http://bigd.big.ac.cn/gsa-human
https://www.ncbi.nlm.nih.gov/geo/
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from the network perspective. And the CNDM derived 
from CCSNs could be further used in dimension reduc-
tion and clustering analysis by many existing methods. 
We use PCA [22] and t-SNE [23], which represent linear 
and nonlinear methods, respectively, to perform dimen-
sion reduction on public scRNA-seq datasets with known 
cell types. We used Seurat package to cluster scRNA-seq 
data and visualize the clustering results with UMAP.

‘Dark’ genes revealed by CNDM
In the field of biomedicine, DEGs play an important role 
in finding new biomarkers, key regulators and drug tar-
gets, and some non-DEGs may also be involved in impor-
tant biological processes and should not be ignored. If a 
gene has a significant difference between case and con-
trol samples not in a gene expression level but in a condi-
tional network degree level, we called this gene as ‘dark’ 
gene. By CNDM, we were able to reveal the ‘dark’ genes, 
which were of great importance in the network regula-
tion, and they could not be found by traditional differen-
tial analyses [18].

Downstream analysis of ‘dark’ genes
Downstream analysis of ‘dark’ genes mainly included 
prognostic analysis, protein level validation, enrich-
ment analysis, cell–cell communication analysis and 
pathway analysis. Through the validation at protein 
level and prognostic analysis, the biological functions 

of ‘dark’ genes were proved to be related to COVID-19. 
Cell–cell communication analysis the B cells were per-
formed. We found that some ‘dark’ genes were present 
in the most interacting receptors, and these ‘dark’ genes 
were further clustered by expression level. And the ‘dark’ 
genes were further validated by the enrichment analysis, 
and pathway analysis, which showed that ‘dark’ genes 
were involved in biological processes associated with 
COVID-19.

Results
Construct of CCSN and obtain CNDM from CCSN
To overcome the problem of overestimation of the related 
indirect effects between genes in each cell, Li et al. pro-
posed the c-CSN method, which could construct a CCSN 
for each cell [18]. The CCSN could identify direct asso-
ciations between a pair of genes in a cell by eliminating 
indirect associations between genes by selecting a small 
number of conditional genes.

The statistical dependency index ρk
xy|z defined in Sup-

plementary Note 1. If ρk
xy|z  is greater than zero, there is 

an edge between x and y in the cell k , otherwise, there 
is no edge. In this way, we construct a CCSN for each 
cell, where edge between two gene x and y is decided 
by the dependency index ρk

xy|z . Then we obtain gene–
gene interaction network. Through the corresponding 
formula transformation, we get CNDM. The matrix has 
the same dimension with the GEM. CNDM can reflect 

Fig. 1 The schematic illustration of the research analysis. (i)The samples of the four stages were integrated, and a series of quality controls were 
carried out to obtain the GEMs. (ii)Construct CCSNs based on gene expression data at different stages. (iii) Display of cell clustering results of GEM 
and CCSN at different stages. (iv) B cells were selected for further analysis. Based on CCSN and GEM, common genes with significant differences 
between different stages of COVID-19 were found and downstream analyses were performed. (v) Demonstrate network dynamics at different 
stages. (vi) Find ‘dark’ genes with no significant differences at the gene expression level but significant differences at the network degree level. (vii) 
Perform downstream analysis of ‘dark’ genes
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the gene–gene direct association in terms of interac-
tion degrees. Moreover, after normalization, this CNDM 
matrix could be further analyzed by most traditional 
scRNA-seq methods for dimension reduction and clus-
tering analysis. The input and output settings of CCSN 
method are listed in Supplementary Note 1. The detailed 
description of algorithm for constructing CCSN is pro-
vided in Supplementary Note 1.

Distribution of B cells in peripheral blood cells and cell 
counts
The CCSN reflected not the level of gene expression, 
but the degree of association of each gene in the net-
work, and the CNDM had the same dimension with the 
GEM. When performing cell type clustering analysis, we 
only needed to replace the original GEM with CNDM. 
Then we could use any traditional scRNA-seq algorithm 
for cell clustering and dimensionality reduction, which 
opened up a new way for us to analyze scRNA-seq data 
from the network level.

The B cells of the immune system in COVID-19 
patients were fully fighting the SARS-CoV-2 virus. The 
key characteristics of B cells were effective at neutraliz-
ing, or inactivating, the SARS-CoV-2 virus and related 
coronaviruses [24]. In order to better study B cells, we 
performed cell clustering and dimensionality reduction 
based on GEM and CNDM, respectively (Supplemen-
tary Fig. 1A), and annotated B cells according to the con-
ditional network degree levels of the canonical marker 
CD79A (Fig. 2C and Supplementary Fig. 1B). Other cell 
types were also annotated based on the conditional net-
work degree levels of canonical markers (Supplemen-
tary Fig.  1B, C). Figure  2A and B show the distribution 
of B cells in the whole peripheral blood cells of severe 
COVID-19 patients. Meanwhile, it can be seen from 
the figure that the B cell distribution obtained from cell 
clustering based on CNDM is more concentrated, prob-
ably because the CCSN method performs better than 
the conventional methods (Fig. 2A, B). We performed B 
cell counts based on GEM, and the percentage of cells 
increased from 5.77% in healthy individuals to 12.50% 
in severe cases as shown in Fig. 2D. We performed B cell 
counts based on CNDM, and the percentage of B cells 
increased from 5.26% in healthy individuals to 12.28% in 
severe cases as shown in Fig. 2E. So the percentage of B 
cells among all population in severe COVID-19 cases was 
found to be significantly enhanced (Fig. 2D, E). Besides, 
we also performed cell counts on monocytes, NK cells 
and T cells (Supplementary Fig. 1D). The results showed 
that the percentage of B cells changed more significantly 
compared to the percentages of other cell types. Simul-
taneously, the percentage of B cells was also reported to 
be high in COVID-19 patients and increased with disease 

severity [25]. To ensure that the findings were not driven 
by outlier cells within a single sample, monocytes, NK, 
T and B cells were counted at the sample level by GEM 
(Fig.  2F). Meanwhile, we counted B cells at the sample 
level, and B cell counts changed slightly from healthy to 
moderate stage, rose sharply to severe stage, and finally 
decreased and maintained a stable during the convales-
cence stage. This conclusion is in consistent with what we 
found at the individual cell level (Fig. 2G). Therefore, we 
selected B cells for subsequent analysis.

GO enrichment analysis of differential genes
Through the FindMarkers function, 307 common 
DDGs were found in B cells of four different stages 
based on CNDM, and 32 common DEGs were found 
in B cells of four different stages based on GEM. 
Next, we obtained 20 DGs, which are the common 
genes of DDGs and DEGs (Fig.  3A, Supplementary 
Table S1). Then we performed GO and KEGG enrich-
ment analysis on DGs (Supplementary Table S2). 
Because of the significant differences in both gene 
expression level and conditional network degree 
level, these 20 DGs might have important biologi-
cal significance in COVID-19. As shown in Table  1, 
some DGs were enriched into the biological processes 
of immunity or defense against the SARS-COV-2, 
e.g. ‘response to type I interferon’ (GO:0034340), 
‘defense response to virus’ (GO:0051607), ‘innate 
immune response’ (GO:0045087), ‘positive regulation 
of interleukin-10 production’ (GO:0032733), ‘apop-
totic process’ (GO:0006915), ‘response to interferon-
alpha’ (GO:0035455), ‘response to interferon-beta’ 
(GO:0035456) and others in Gene ontology (Fig. 3B-E). 
Meanwhile, as shown in Table 2, these DGs are involved 
in some KEGG pathway, e.g. ‘protein export’ (hsă0) and 
‘Coronavirus disease—COVID-19’ (hsa05171). Type I 
interferons (IFN-I), mainly represented by IFN-α and β, 
are a group of cytokines with an important function in 
antiviral responses and have played a complex role in 
COVID-19. The antiviral effects of interferons include 
inhibition of viral replication, protein synthesis, matu-
ration, and release. Some studies showed that in mod-
erate cases, IFN-I levels and interferon responses were 
elevated. While other studies noted that in severe cases, 
IFN-I levels and interferon responses were elevated. In 
the study of the severity of COVID-19, some research-
ers summarized the correlation between plasma type 
I interferon levels and the severity of COVID-19 [26]. 
To ensure that the results do not only rely on a single 
study with a limited sample size, further improving the 
robustness and generalizability of the results, we inte-
grated the three datasets. Then the differential expres-
sion analysis of the integrated gene expression data 
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yielded 29 DEGs (Fig. 3F and Supplementary Table S6). 
Next, we performed an enrichment analysis on these 
differential genes. As shown in Fig.  3G. Some DEGs 
were enriched into the biological processes of immu-
nity or defense against the SARS-COV-2, e.g. ‘response 
to interferon-beta’(GO:0035456), ‘integral component 
of membrane’(GO:0016021), ‘defense response to viru
s’(GO:0051607),‘extracellular exosome’(GO:0070062), 

‘leukocyte cell–cell adhesion’ (GO:0007159). Similar 
to other coronaviruses, SARS-CoV-2 utilized the host 
cell’s secretory apparatus to generate viral proteins, 
which constituted the emerging viral particles. These 
proteins, namely spike (S), envelope (E), and membrane 
(M) proteins, were the transmembrane proteins that 
were most prominently exposed to the host’s immune 
system [27]. We found that the biological processes 
enriched in DEGs obtained from the integrated data 

Fig. 2 Distribution of B cells in peripheral blood cells and cell counts. A UMAP projection of the GEM of the dataset HRA000150. UMAP projection 
representing B cells in pink color and the rest of the cells in grey color. B UMAP projection of the CNDM of the dataset HRA000150. C Ridge diagram 
annotates B cells according to the conditional network degree levels of the canonical marker CD79A. D Bar plot representing the percentage 
of B cells among all cell types of each condition based on GEM. E Bar plot representing the percentage of B cells among all cell types of each 
condition based on CNDM. F Bar graphs showing the percentage of monocyte, NK cells, T cells, and B cells in each sample. G Bar plot representing 
the percentage of B cells among all cell types of each sample based on GEM
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Fig. 3 Gene enrichment analyses of the DGs. A Venn diagram showing the overlapping DDGs among differential degree genes in B cells of four 
different stages based on CNDM, the overlapping DEGs among differential expression genes in B cells of four different stages based on GEM, 
and the overlapping DGs among DDGs and DEGs. B Bar plot of enriched GO terms for DGs. GO terms are labeled with name and ID and are 
sorted by the number of genes enriched in the GO terms. the color indicates the p-value. C Dot plot of enriched GO terms. D The GO chord plot 
shows the 13 DGs and the 11 enriched GO terms. E Radar chart of enriched GO terms. F Venn diagram showing the overlap between differentially 
expressed genes in B cells at four different stages based on the integrated GEM. G Bar plot of enriched GO terms for integrated DEGs. GO terms are 
labeled with name and ID and are sorted by the number of genes enriched in the GO terms. the color indicates the p-value
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were mostly similar to those enriched in this study, 
indicating the robustness and scalability of the results.

CCSN reveals network structure and dynamics 
on a single‑cell basis
According to the above research, the CCSN method can 
identify more differential genes, so the CCSN method 
has more advantages than the traditional gene expression 
method. We selected 10 genes from the DDGs of B cells. 
Figure 4A illustrates the partial CCSNs of the 10 DDGs. 
We could see the network topology changes dynami-
cally at different stages. The associations between these 
genes were strongest in healthy controls. When infected 
with SARS-COV-2, the associations between these genes 
weakened in the moderate and became more weaker in 
the severe, and then gradually strengthened again in the 
convalescent. From Fig.  4A, we could see the associa-
tion between FTH1 and other genes was the strongest in 
all four stages. The conditional network degree levels of 
FTH1 in the four stages were shown in Fig.  4B. Hence, 
FTH1 might play an important role in these four stages 
from network perspective. Therefore, FTH1 might be a 

hub gene due to the drastic network rewiring during the 
COVID-19 development.

The expression levels of these DDGs involved in the 
development of COVID-19 were different in the four 
stages. It could be seen that the expression levels of 
FTH1, RPS2, ARHGDIB and DUSP1 were significantly 
down-regulated during infection with SARS-COV-2 
and up-regulated during the convalescent (Fig.  4C). 
These findings suggested that these genes encode pro-
teins, which might be involved in viral interactions with 
the host and host immune responses and could reflect 
the severity of the disease. FTH1 was a hub gene in the 
network, and encoded the heavy subunit of ferritin-the 
major intracellular iron storage protein in prokaryotes 
and eukaryotes. Excess iron or iron repletion favors 
growth of many viruses [28]. Many of the important 
SARS-CoV-2 regulatory and functional proteins use iron 
[29]. Excess iron can also induce fibrin polymerization 
[30, 31] and induce a pro-coagulant state [32]. Previous 
literature reported occurrence of coagulopathy among 
severe COVID-19 patients [33, 34]. Kaushal et  al. [35] 
found higher ferritin levels were found in COVID-19 
patients [SMD -0.889 (95% C.I. -1.201, -0.577), I2 = 85%] 
compared to controls (COVID-19 negative), and higher 
ferritin levels were also found in severe COVID-19 
patients compared to moderate COVID-19 patients 
[SMD 0.882 (0.738, 1.026), I2 = 85%]. Simultaneously, 
high serum ferritin level was associated with more severe 
disease and negative/poor outcome in COVID-19. There-
fore, serum ferritin level could serve as an important 
predictive biomarker in COVID-19 management and in 
triage. And ferritin was a known inflammatory biomarker 
in COVID-19. Thus, FTH1 was a potential network 
marker in COVID-19.

Next, we further studied the expression of FTH1 at dif-
ferent stages of B cells. The expression of FTH1 was high-
est in healthy controls, lowest in severe, and increased 
again during convalescent. Although the expression level 
of FTH1 in the convalescent did not return to the healthy 
level in time, its expression level was also significantly 
higher than that in moderate and severe. Therefore, 
FTH1 may be a potential network marker for SARS-
COV-2 infection, which needed to be further studied in 
the future.

Analysis of 32 common HLA alleles at four loci 
revealed a significant association between HLA-
DRB1*09:01 and severe COVID-19, which indicate 
a potential role for HLA in predisposition to severe 
COVID-19 [36]. Different alleles of HLA-DPA1 are 
associated with the severity of covid-19. For example, 
HLA-DPA1*01:03 is associated with improved clinical 
outcomes of covid-19 [37], while HLA-DPA1*02:02 is 
associated with reduced antibody response after covid-19 

Table 1 GO enrichment analysis of DGs in four different stages 
based on GEM and CNDM

Gene Ontology Consortium
enriched biological process enriched p value

type I interferon signaling pathway (GO:0060337) 5.56601E-09

defense response to virus (GO:0051607) 1.93858E-06

response to virus (GO:0009615) 4.1375E-06

protein targeting to ER (GO:0045047) 8.25505E-05

apoptotic process (GO:0006915) 0.002218377

response to type I interferon (GO:0034340) 0.009778615

response to interferon-beta (GO:0035456) 0.010751479

response to interferon-alpha (GO:0035455) 0.010751479

negative regulation of type I interferon-mediated 
signaling pathway (GO:0060339)

0.019466596

innate immune response (GO:0045087) 0.020208104

positive regulation of interleukin-10 production 
(GO:0032733)

0.039519859

Table 2 KEGG pathway analysis of DGs in four different stages 
based on GEM and CNDM

KEGG
enriched biological process enriched p 

value

Protein export(hsă0) 0.000498876

Coronavirus disease—COVID-19 (hsa05171) 0.044506896
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vaccination [38]. HLA-DPB1*04:01 is associated with an 
increased risk of covid-19 double pneumonia [39], while 
HLA-DPB1*04:02 is associated with improved clinical 
outcomes of covid-19 [40]. HLA-DRB1*13:02 is associ-
ated with an increased risk of covid-19 symptoms, while 
HLA-DRB1*15:01 is associated with an enhanced T-cell 
response after covid-19 vaccination [41]. Notably, the 
mitogen-activated protein kinase (MAPK) pathway (i.e., 
FOS, JUN, JUNB, and DUSP1) was greatly suppressed 
in all recovered patients compared with that in the HCs, 
which suggested that inhibition of the MAPK signaling 
pathway is a recovery sign of COVID-19 patient [42]. The 
expression level of DUSP1 is particularly downregulated 
in the nasopharyngeal swabs and lung tissues of COVID-
19 patients. This downregulation of DUSP1 could be the 
mechanism regulating the enhanced activation of MAPK 
pathway as well as the reported steroid resistance in 
SARS-CoV-2 infection [43]. The RPS2 gene is the gene 
that encodes the 40S ribosomal protein S2 [44]. SARS-
CoV-2 nonstructural protein 1 (Nsp1), also known as 
host shutdown factor, can suppress host innate immune 
function. It has been recently found to bind to the 40S 

subunit of the human ribosomal complex and insert its 
C-terminal domain into the mRNA channel, thereby 
interfering with mRNA binding and impede the transla-
tion process of proteins [45, 46].

To better demonstrate the validity and generalizability 
of our results, we validated our findings on the COVID-
19 dataset GSE155673. For details, see the Supplemen-
tary Note 4.

‘Dark’ genes analyses
If a gene had a significant difference between case and 
control samples not in a gene expression level but in a 
conditional network degree level, we called this gene 
‘dark’ gene [17]. Downstream analysis of ‘dark’ genes 
mainly included prognostic analysis (Supplementary 
Note 5), protein level validation, enrichment analysis, 
cell–cell communication analysis and pathway analysis.

‘Dark’ genes revealed by CNDM
In the field of bioinformatics, DEGs played an impor-
tant role in finding new biomarkers, however some non-
DEGs might also be involved in the biological process of 

Fig. 4 Illustration of network analyses of HAR000150 dataset based on CCSN method. A CCSNs of B cells with the 10 DDGs that were selected. 
The edge between two genes means the direct dependency of genes. B The conditional network degree level of the FTH1 at four conditions. 
Conditions are shown in different colors. All differences with P < 0.05 are indicated. **P < 0.01; ***P < 0.001; using student’s test. C Heatmap 
of mean expression values of 4 DDGs in B cells under COVID-19 infection. Rows represent four different stages of B cells, columns represent genes, 
and different colors represent the expression values of different genes at different stages
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disease. DEGs were obtained using traditional differential 
analysis methods, and we could also find DDGs at the 
network level based on CCSN methods. If a gene had a 
significant difference between case and control samples 
not in a gene expression level but in a conditional net-
work degree level, we called this gene ‘dark’ gene [17]. 
These genes had no significantly differential changes in 
terms of gene expression, and thus could not be found 
by traditional differential analyses. We found a total of 
287 ‘dark’ genes (Supplementary Table S1 and Fig.  2). 
Next we validated our findings on the COVID-19 data-
set GSE155673. For details, see the Supplementary Note 
4 and Supplementary Table S4.

Here we show the expression of some ’dark’ genes in all 
’dark’ genes based on the gene expression level and the 
conditional network degree level, respectively. Figure 5A 
shows that there were not significant differences at gene 
expression levels for the ‘dark’ genes JAK1, DUSP1, 
CDKN1A, but there are significant differences at network 
degree levels (Fig. 5B).

JAK1 is an important gene in the JAK/STAT signal-
ing pathway, which is one of the critical cellular signal-
ing pathways involved in the inflammatory response 
[47]. In COVID-19 infection, an increase in the severity 
of the disease may be associated with an inflammatory 
state. Overwhelming inflammatory reactions contribute 
to respiratory distress in patients with COVID-19 [48]. 
Some literature suggests the treatment of patients with 
COVID-19 can be performed by JAK1/2 inhibitors [49].

The pathology of SARS-COV-2 is partly driven by 
a storm of cytokines, most of which are regulated by 
MAPK and NF-kB signaling pathways. The protein 
encoded by the ‘dark’ gene DUSP1 is a dual-specificity 
phosphatase 1 (DUSP1). DUSP1 exerts its anti-inflam-
matory effects through the dephosphorylation of p38 
MAPKs, then reduces the pathway and downregulates 
the production of TNF-α, IL-1β, and IL-1A. DUSP1 
inhibits MAPK signaling and pro-inflammatory cytokine 
production. So targeting DUSP1 to modulate MAPK and 
NF-κB pathways could constitute an attractive approach 
for the suppression of exaggerated inflammatory 
responses during COVID-19 infection [50].

The ‘dark’ gene CDKN1A is one of the targets associated 
with cell proliferation and cell cycle, and is also the promis-
ing target on which berberine may act to regulate immune 
responses, inflammatory processes, and cell activities 
against COVID-19 and SARS infection [51]. Expression of 
the senescence markers CDKN1A is significantly increased 
in epithelial ciliated and club cells from patients with severe 
COVID-19 compared with those with moderate disease 
and with healthy control subjects, suggesting that lung cell 
senescence induction coincided with virus detection [52].

Therefore, some ‘dark’ genes had been found to be 
associated with COVID-19 and some other diseases of 
the lungs, and inflammation, which indicated these ‘dark’ 
genes play an important role in the complications caused 
by COVID-19.

‘Dark’ genes validated at protein level
We used the proteomics data to show that some ‘dark’ 
genes were significantly expressed at the protein level and 
could also play functional roles during the development 
process of COVID-19. The proteomic data was obtained 
from lung tissue studies from patients with COVID-19, 
and the bronchoalveolar lavage fluid (BALF) from five 
COVID-19 patients and four non-COVID-19 patients 
[53, 54]. The corresponding results showed that a quan-
titative proteomic approach combined with bioinformat-
ics analysis was carried out to detect proteomic changes 
in the SARS-CoV-2-infected human lung tissues. A total 
of 38 proteins [53] were identified to be differentially 
expressed (BH adjusted p < 0.05 and log2COVID-19/
Control > 1 or < -1). Among them, 9 proteins were up-
regulated (avg_log2FC > 0) and 29 proteins were down-
regulated (avg_log2FC < 0) in response to SARS-CoV-2 
infection. Based on a quantitative proteomic strategy to 
investigate the alterations of BALF proteome in COVID-
19 patients compared with the non-COVID-19 controls, 
a total of 66 proteins corresponding to the ‘dark’ genes 
overlapped across all the patients were successfully quan-
tified. 29 proteins corresponding to the ‘dark’ genes were 
differentially expressed (fold change > 2, P < 0.05), among 
which 28 proteins were down-regulated, and one protein 
were up-regulated [54]. Proteomic data obtained from 
the based lung tissue and BALF studies of COVID-19 
patients demonstrates that some ‘dark’ genes were closely 
related to the development of COVID-19. Details of the 
proteins corresponding to the ‘dark’ genes were provided 
in Supplementary Table S3.

In addition, by significance test with hypergeometric 
distribution for the results of COVID-19, the probabil-
ity of 67 proteins with high confidence at the differen-
tial expression level among 287 ‘dark’ genes (obtain from 
5000 genes) was 1.77e − 24 . The results of hypergeomet-
ric test showed that the protein level of ‘dark’ genes is sig-
nificantly higher than that of other genes. Therefore, the 
‘dark’ genes might play an important role in the develop-
ment of COVID-19 from the perspective of protein level.

‘Dark’ genes GO enrichment analysis
As shown in Table 3, some ‘dark’ genes were enriched 
into the biological processes associated with COVID-
19 (Supplementary Table S2), e.g. ‘positive regu-
lation of fibroblast proliferation’ (GO:0048146), 
‘regulation of interleukin-10 secretion’ (GO:2,001,179), 
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‘protein glycosylation’ (GO:0006486), ‘immune 
response’ (GO:0006955), ‘RNA binding’ (GO:0003723) 
and others in Gene ontology (Fig. 5C-E). Table 4 shows 
some ‘dark’ genes are enriched in the KEGG signal-
ing pathway, e.g. ‘Apoptosis’ (hsa04210), ‘Antigen 

processing and presentation’ (hsa04612), ‘RNA deg-
radation’ (hsa03018) and others. At the core of tissue 
remodeling in COVID-19 infected alveolar tissue may 
be fibroblasts. Fibroblasts in the lung interstitium are 
the common cells, producing extracellular matrix and 

Fig. 5 The differences of gene expression level and network degree level of some ‘dark’ genes in four different stages, and the validation 
and analysis of ‘dark’ genes. A Differences of the average gene expression value (left) and average network degree value (right) of JAK1, DUSP1 
and CDKN1A at different stages. B The conditional network degree level of the JAK1, CDKN1A and DUSP1 at four conditions. Conditions are shown 
in different colors. All differences with P < 0.05 are indicated. **P < 0.01; ***P < 0.001; using student’s test. C Bar plot of enriched GO terms. D Dot plot 
of enriched GO terms. E The GO chord plot shows the 54 ‘dark’ genes and the 9 enriched GO terms
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active during the injury [55]. COVID-19 virus may 
also infect the fibroblasts, which may cause prolifera-
tion of fibroblasts and extracellular matrix over pro-
duction [56]. A unique feature of the cytokine storm 
in COVID-19 is the dramatic elevation of interleukin 
10 (IL-10), which is regarded as a negative feedback 
mechanism to suppress inflammation. Dramatic early 
proinflammatory IL-10 elevation may play a pathologi-
cal role in COVID-19 severity [57]. The SARS-CoV-2 
uses its highly glycosylated spike (S) glycoproteins to 
bind to the cell surface receptor angiotensin-convert-
ing enzyme 2 (ACE2) glycoprotein and facilitate host 
cell entry [58]. SARS-CoV-2 is an RNA virus whose 
success as a pathogen relies on its abilities to repur-
pose host RNA-binding proteins (RBPs) and to evade 
antiviral RBPs [59]. These results suggested that some 
‘dark’ genes were involved in the immune response to 
SARS-COV-2.

Cell–cell communication analysis
Cell–cell communication analysis was performed by 
using CellPhoneDB (www. cellp honedb. org), which is a 
publicly available repository of curated receptors and 
ligands and their interactions. Single-cell transcriptome 

data of cells annotates as Monocyte, NK cells, T cells, 
platelets, GMP and B cells were input into CellPhoneDB 
for cell–cell interaction analysis. Enriched receptor-
ligand interactions between two cell types were derived 
based on the expression of a receptor by one cell type and 
the expression of the corresponding ligand by another 
cell type [60]. The B cells of the immune system in 
COVID-19 patients were fully fighting the SARS-CoV-2 
virus. The key characteristics of B cells were effective at 
neutralizing, or inactivating, the SARS-CoV-2 virus and 
related coronaviruses [24]. So we focused on the role 
of B cells in COVID-19 and conducted the interaction 
between B cells and other cell types. Enriched ligand-
receptor interactions between two cell states are obtained 
by utilizing a receptor expressed by one cell state and a 
ligand expressed by another cell state. We calculate the 
percentage of cells expressing each gene and the mean 
expression level for genes within the cluster. Expres-
sion levels of ligands and receptors in each cell state 
are taken into consideration, and empirical shuffling is 
employed to identify ligand-receptor pairs that exhibit 
notable specificity towards a particular cell state. We 
selected the receptor ligand and the genes common in 
our data as the genes in our analysis. Figure 6A showed 
the number of communication frequencies between the 
B cell and other cell types, namely interactions. Especially 
in the severe stage, the interaction between B cells and 
other cell types was significantly weakened. The main 
reason might be that the B cells enhanced the COVID-
19 severity by aggravating inflammation, thus resulting in 
a dysregulated of immune response to SARS-CoV-2 [25, 
61]. We therefore reasoned that the severe stage was an 
important stage for B cells to function. Simultaneously, 
given that B cells in the severe stage might be involved 
in the regulation of a variety of immune cell types [62], 
we would investigate the potential interactions between 
B cells and other cell types in severe stage. Interestingly, 
the interaction between B cells and Monocyte was the 
most obvious. In respiratory infections, monocytes in the 
lungs developed into macrophages that fight viruses and 
bacteria. However, a certain type of macrophages might 
also promote severe inflammation and infection. The 

Table 3 GO enrichment analysis of ‘dark’ genes

Gene Ontology Consortium
enriched biological process enriched p 

value

positive regulation of fibroblast proliferation 
(GO:0048146)

0.048722947

regulation of interleukin-10 secretion (GO:2,001,179) 0.044871716

cellular response to glucocorticoid stimulus 
(GO:0071385)

0.036463359

polysaccharide assembly with MHC class II protein 
complex (GO:0002506)

0.030141888

protein glycosylation (GO:0006486) 0.02902154

immune response (GO:0006955) 0.012340031

response to cytokine (GO:0034097) 0.007946145

RNA binding (GO:0003723) 0.002965349

unfolded protein binding (GO:0051082) 0.001168546

Table 4 KEGG pathway analysis of ‘dark’ genes

KEGG
enriched biological process enriched p value

Antigen processing and presentation(hsa04612) 1.58E-06

Influenza A(hsa05164) 1.64703E-05

RNA degradation(hsa03018) 0.000636635

Apoptosis(hsa04210) 0.013345032

Measles(hsa05162) 0.044979984

http://www.cellphonedb.org
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Fig. 6 Differential interactions among B cells and other cell types in different stages. A The connectivity map shows the strength of interactions 
between B cells and other cell types in colored shells. The numbers represent the frequency of communication. Different colored circles represent 
different cell types. B The B_cells-centric molecular interactions of peripheral immune cells in severe-stage COVID-19 patient. P-values are 
represented by the size of the circle, and the ruler is shown on the right side of the graph. The color represents the average expression level of these 
two genes in the two cell clusters, and the darker the color, the higher the expression. The size of the bubble represents the -log10 value of the P 
value, and the larger the bubble, the more significant it is
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most interacting pairing of B cells with other cell types 
was CD74_MIF (Fig.  6B), which played an important 
role in the process of inflammatory diseases. We found 
that MIF was DEG and CD74 was both DDG and ‘dark’ 
gene, which indicated that the combination of DEGs 
and DDGs could be better used to study COVID-19 in 
depth. MIF was a truly pleiotropic inflammatory cytokine 
that was expressed by a variety of cells, and was a criti-
cal upstream mediator of innate immunity [63]. CD74 
was the main receptor for MIF. CD74 was the invariant 
chain of the MHC class II and played an important role 
in antigen presentation. MIF and CD74 plays an impor-
tant role in the recovery of tissue injury and acute lung 
injury [63]. During acute injury such as viral infection, 
type I cells release MIF. Extracellular MIF binds to CD74 
on adjacent type II epithelial cells, activating Akt and 
ERK pathways, resulting in cell proliferation and differ-
entiation to restore the alveolar barrier [64]. In COVID-
19 infection, the inflammatory response is one of the key 
factors in disease progression and severity. The interac-
tion between CD74 and MIF may be involved in regulat-
ing the inflammatory response in COVID-19 patients, 
affecting the activation of immune cells and the release 
of inflammatory mediators. The combination of MIF 
and CD74 could also inhibit cell apoptosis, promote cell 
proliferation and alveolar epithelial cell repair, and at the 
same time play a role in reducing lung inflammation and 
acute lung injury. MIF and CD74 were emerging attrac-
tive targets for immune therapy [63]. Therefore, MIF and 
CD74 might become targets for COVID-19 treatment. 
Thus the requires further clinical validation to confirm 
our inferences. We also performed cell–cell communi-
cation analysis between B cells and other cell types and 
studied B_cells-centric molecular interactions of periph-
eral immune cells in healthy, convalescence and mod-
erate COVID-19 patients, and details were shown in 
Supplementary Note 6.

The underlying signaling mechanisms revealed by ‘dark’ 
genes
The ‘dark’ genes JAK1 and OAS2 encoded the proteins 
JAK and 2’-5’OAS (2’-5’-Oligoadenylate synthetase) in 
the JAK-STAT signaling pathway in the Coronavirus dis-
ease—COVID-19 [65–67], respectively. The interferon-
α/β receptor IFNAR, co-encoded by the DDGs IFNAR1 
and IFNAR2, activated the JAK-STAT signaling path-
way, which led to activation of the JAK kinase encoded 
by the ‘dark’ gene JAK1, followed by phosphorylation of 
STAT1 and STAT2 proteins. Phosphorylated STATs dis-
sociated from the receptor heterodimer and bound to 
IRF9 (Interferon Regulatory Factor-9), a member of the 
IRF family, and transported it to the nucleus, where it 
directly bound to DNA and activated the protein MxA 

(myxovirus-resistance A), 2’-5’ OAS and PKR (Protein 
kinase R) (Fig. 7A).

To resist SARS-CoV-2, the protein 2’-5’OAS regulates 
the RNaseL pathway, the protein PKR activates both 
exerted antiviral functions, and they were all associated 
with viral escape [68]. Since the protein MxA encoded by 
DDGs Mx1 and Mx2 had antiviral activity, MxA might 
also be activated by SARS-CoV-2 to exert antiviral func-
tions. See Supplementary Note 7 for specific details on 
their antiviral function.

By consulting the literature, we found that several drugs 
(Ruxolitinib, Baricitinib, Tofacitinib and Upadacitinib) 
could inhibit the activity of JAK and block the signaling 
of multiple interleukins, thus reducing inflammatory cas-
cade, knocking down the hyper inflammation, decreasing 
the lung impairment and restoring the PaO2/FiO2 ratio 
in COVID-19 patients [69, 70].

To further clarify the pathway associations of ‘dark’ 
genes and their differential genes in B cells, in this study, 
we focused on the analysis of the KEGG pathway on 
the JAK-STAT signaling pathway and PI3K-AKT signal-
ing pathway that were most relevant to the progression 
of COVID-19 (Fig.  7A, B). The protein p21 encoded by 
the ‘dark’ gene CDKN1A was involved in the JAK-STAT 
signaling pathway and the PI3K-AKT signaling pathway, 
which was a key regulator in common with these two 
pathways.Thus, p21 played an important regulatory role 
in the transmission mechanism of COVID-19. The up-
regulation of p21 expression could inhibit the cell cycle, 
and the down-regulation of p21 expression promoted 
the process of cell cycle. Meanwhile, elevated expression 
levels of proteins encoded by some DDGs are directly 
correlated with the severity of COVID-19 patients. See 
Supplementary Note 7 for details on how these two path-
ways function.

The proteins encoded by the ‘dark’ genes TRADD, FOS 
and DDGs RELB, JUN, IKBKG are involved in the MAPK 
signaling pathway, which is a potential signaling pathway 
for the spread and development of COVID-19(Fig.  7C). 
For details, see Supplementary Note 7.

B cell growth and proliferation were tightly regulated 
by signaling through the B cell receptor (BCR) and by 
other membrane bound receptors responding to different 
cytokines [71]. BCR guided and controlled every stage of 
B cell life. Upon BCR antigen binding, this resulted in the 
activation of NF-kB, PI3K and MAPK signaling pathways 
[72]. The PI3K signaling pathway had been shown to play 
a crucial role in B cell activation, differentiation and sur-
vival [71], while PI3K signaling was a major regulator of 
B-cell metabolism and redox signaling [72]. PI3K signal-
ing and MAPK signaling were initiated downstream of 
the BCR and affect B cell growth and activation. B cells 
were activated after encountering SARS-COV-2, and part 
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of them becomes highly efficient and short-lived plasma 
cells, which secreted antibodies to clear SARS-COV-2. 
The other part became long-lived memory cells, with a 
secondary response occurring to immediately eliminate 
the re-invading SARS-COV-2. SARS-CoV-2 infection 
could alter the BCR signaling through inhibiting the early 
activation of naive and memory B cells, thus leading to 
immunodeficiency in the recovered patients.

Discussion
With the development of single-cell sequencing tech-
nology, new algorithms have provided an unprec-
edented opportunity to identify gene associations/
networks at the single-cell resolution level [18]. Li 
et  al. presented a new method to construct a CCSN 
for each single cell from scRNA-seq data (i.e. one 

network for one cell). Each CCSN could be viewed as 
the transformation from less ‘reliable’ gene expression 
to more ‘reliable’ gene–gene associations in a cell. By 
applying the CCSN method to the single-cell dataset 
HRA000150 of COVID-19, we found that the associa-
tions between some genes were strong in the healthy 
controls, but significantly weakened in the diseased 
phase, especially in the severe, and then strengthened 
again in the convalescent. These results suggested 
that the drastic network rearrangement process might 
occur at the severe, further illustrating the possibility 
that the severe may be a key stage in these networks, 
and network markers in severe cells could be used as 
a representative indicator of potential infection and 
treatment prognosis of COVID-19. We visualized the 
CCSNs at different stages, and then ranked 10 DDGs 

Fig. 7 Potential mechanisms revealed by the functional analysis of ‘dark’ genes, DDGs and DEGs. A Regulation of related ‘dark’ genes, DEGs 
and DDGs in the JAK-STAT signaling pathway. B Regulation of related ‘dark’ genes, DEGs and DDGs in the PI3K-AKT signaling pathway. C Regulation 
of related ‘dark’ genes, DEGs and DDGs in the MAPK signaling pathway
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according to the degree of association of genes at each 
stage. The most associated gene in the CCSN is FTH1. 
The hub gene FTH1 encoded the heavy subunit of fer-
ritin. Ferritin was a known inflammatory biomarker 
in COVID-19, and serum ferritin levels could serve 
as an important predictive biomarker in the man-
agement and triage of COVID-19. Hence the FTH1 
might be a potential network marker for COVID-19, 
which needed to be further studied in future. Next, 
we performed GO and KEGG enrichment analysis on 
DGs, which verified the important role of the DDGs 
obtained based on CNDM related to COVID-19. 
To enhance the robustness of the research findings, 
we integrated three datasets, namely HRA000150, 
HRA001149, and GSE155673, into the analysis. The 
integrated data was subjected to differential expres-
sion analysis to obtain DEGs, followed by enrichment 
analysis. We compared our study with other published 
studies with details in the Supplementary Table S5.

Some ‘dark’ genes were related to COVID-19. Prog-
nostic analysis and protein level validation of ‘dark’ 
genes revealed that ‘dark’ genes had important biologi-
cal significance and played an important functional role 
in the progression of COVID-19. Besides, by cell–cell 
communication between B cells and other cell types, 
we found B cells play a crucial part in the severe stage, 
while the receptor ligand that B cells interact most with 
other cell types was CD74_MIF, of which CD74 was a 
‘dark’ gene. MIF and CD74 were emerging as attractive 
candidates for immunotherapy force targets.

In order to reveal the functional underlying mecha-
nisms of ‘dark’ genes, DDGs and DEGs, this study 
focused the KEGG pathway analysis on three path-
ways closely related to COVID-19: JAK/STAT signal-
ing pathway, PI3-ATK signaling pathway and MAPK 
signaling pathway. Interestingly, MAPK signaling path-
way was a potential signaling pathway for the spread 
and development of COVID-19. The proteins encoded 
by these ‘dark’ genes complement some of the missing 
links in Coronavirus disease—COVID-19. These results 
also showed that the combination of CNDM and GEM 
methods was helpful to discover new signaling pathway 
involved factors or biomarkers.

There are also some limitations of this study, which 
are detailed below. Firstly, the relatively small sam-
ple size was the limitation of study. Therefore, future 
studies with longitudinal samples from more patients 
with COVID-19 would lead to a better understanding 
of the pathogenic mechanism of COVID-19. Secondly, 
the therapeutic targets of COVID-19 we obtained are 
almost potential, so our study is a preliminary conclu-
sion. Further clinical validation is therefore required to 
confirm our inferences. Finally, the samples collected 

from PBMC and BALF represent different cell popula-
tions and microenvironments, which limited the gener-
alizability of the findings to the study.

Conclusions
In this study, CCSN was constructed for each cell, and 
B cells were extracted for subsequent analysis. From 
a network perspective, single-cell association analy-
sis not only laid the foundation for future characteri-
zation of the complex, dynamic immune responses to 
SARS-CoV-2 infection, but also helped to find potential 
network markers and signaling pathways for COVID-
19, providing substantial value to further clarify the 
involvement of B cells in COVID-19.
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