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Abstract
Background Elucidating genome-wide structural variants including copy number variations (CNVs) have gained 
increased significance in recent times owing to their contribution to genetic diversity and association with important 
pathophysiological states. The present study aimed to elucidate the high-resolution CNV map of six different global 
buffalo breeds using whole genome resequencing data at two coverages (10X and 30X). Post-quality control, the 
sequence reads were aligned to the latest draft release of the Bubaline genome. The genome-wide CNVs were 
elucidated using a read-depth approach in CNVnator with different bin sizes. Adjacent CNVs were concatenated into 
copy number variation regions (CNVRs) in different breeds and their genomic coverage was elucidated.

Results Overall, the average size of CNVR was lower at 30X coverage, providing finer details. Most of the CNVRs were 
either deletion or duplication type while the occurrence of mixed events was lesser in number on a comparative basis 
in all breeds. The average CNVR size was lower at 30X coverage (0.201 Mb) as compared to 10X (0.013 Mb) with the 
finest variants in Banni buffaloes. The maximum number of CNVs was observed in Murrah (2627) and Pandharpuri 
(25,688) at 10X and 30X coverages, respectively. Whereas the minimum number of CNVs were scored in Surti at both 
coverages (2092 and 17,373). On the other hand, the highest and lowest number of CNVRs were scored in Jaffarabadi 
(833 and 10,179 events) and Surti (783 and 7553 events) at both coverages. Deletion events overnumbered 
duplications in all breeds at both coverages. Gene profiling of common overlapped genes and longest CNVRs 
provided important insights into the evolutionary history of these breeds and indicate the genomic regions under 
selection in respective breeds.
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Background
Livestock contributes significantly to the national gross 
domestic product (GDP) of developing countries, includ-
ing India. India is home to a large inventory of multiple 
farm animal species including more than 300  million 
bovines i.e., cattle and buffaloes. Buffaloes contribute 
significantly to the national GDP of India and its milk 
production and farmers’ profitability. It ensures the nutri-
tional security of the masses in developing countries. 
More than half of the global bubaline population is reared 
in India with two main subspecies, riverine (Bubalus bub-
alis bubalis) and the swamp (Bubalus bubalis carabanen-
sis). The two sub-species of buffaloes are characterized by 
distinct morphology and karyotype characteristics [1, 2]. 
Globally, the buffalo population represents 208  million 
heads [3]. India is the hotspot for buffalo biodiversity, 
mirrored by 20 recognized buffalo breeds [4]. Various 
Indian buffalo breeds, with improved genetic merit and 
performance vis-à-vis economic traits, have reached 
transboundary distribution across various global nations. 
Murrah, widely known as ‘Black gold’, is a transbound-
ary milch breed of buffaloes accounting for 42.8% of the 
total Indian buffalo population. It has high milk produc-
tion potential and distribution across multiple nations. 
Bhadawari buffaloes produce milk with high-fat content, 
which can range up to 13%. Jaffarabadi is one of the best 
milking riverine breeds, well known for its higher milk fat 
content and heavy body suitable for draught purposes. 
Banni buffaloes, believed to have evolved by the efforts 
of the local ‘Maldhari’ community of Gujarat, possess a 
unique gene pool that allows it to thrive in harsh climatic 
conditions. On the other hand, Surti and Pandharpuri are 
medium-sized breeds that can be distinguished by their 
sickle and sword-shaped horns, respectively. Multiple 
populations of these buffalo breeds have been imported 
by different global nations for improvement of their ani-
mal genetic resource (AnGR) base [5].

Buffaloes have evolved through more than 5000 years 
of domestication, leading to the adoption of morpho-
physiological, and adaptive features useful in harsh 
tropical and humid environments. Buffaloes are ideally 
considered the future animals of choice to meet the ever-
growing animal protein demand [6]. Buffaloes contribute 
around 45% to India’s total milk production. Buffalo milk 
is nutritionally rich with high-fat content and essential 
minerals and is thus recommended to produce cheese, 
yogurt, and cream. Besides the meat (carabeef ), they also 

provide horns and hides, though their maximum export 
potential is still untapped.

Globally, numerous studies have focused on the genetic 
analyses of economic traits and genetic diversity in buffa-
loes [7, 8]. Various molecular markers, especially micro-
satellites and single nucleotide polymorphism (SNP) have 
gained increased penetrance into modern animal breed-
ing programs wherein different structural and functional 
genetic variants are used to select animals for improved 
performance in future generations [9]. Previously, 
researchers utilized microsatellite markers to analyze 
the divergence time between swamp and river buffalo 
and succeeded in confirming their distinct genetic ori-
gins [10]. However, the introduction of genome assem-
blies and SNP chips has facilitated studies at the genome 
level, enabling the detection of QTLs associated with 
performance traits and variant detection [11, 12]. The 
successful release of the first haplotype-phased reference 
genome assembly, NDDB_SH_1, for the riverine buffalo 
has been a significant milestone in buffalo genomics. 
Along with the emergence of second and third-genera-
tion sequencing platforms, whole genome resequencing 
(WGS) has become more accessible, allowing for the dis-
covery of genetic variants (structural and functional) and 
molecular markers with higher accuracy. It is coupled 
with increased and easy accessibility to bioinformatics 
and statistical programs that are useful to analyze the 
WGS data in livestock species.

Copy number variations, as structural variants, have 
gained significance with respect to their inheritance 
and association with multiple traits of economic inter-
est and pathophysiological states. Copy number vari-
ants are unbalanced structural variants, conventionally 
defined as the fragments of the genome with sizes rang-
ing from a few kilobases to 5 megabases [13]. CNVs are 
distinct from SNPs and Indels and occupy larger genomic 
spaces than other variants. In humans, 4.8–9.5% of the 
genome consists of CNVs, unlike the contribution from 
SNPs, which comes to only around 0.1% [14]. Conse-
quently, they alter the gene dosage and genomic regula-
tion, or cause position effects [15], resulting in drastic 
changes in gene expression. Different approaches have 
been used to elucidate the copy number variations at the 
genome-wide level in livestock. Initially, lower-resolution 
comparative genomic hybridization arrays were used, 
but PCR-based methods improved the resolution dur-
ing subsequent times. Currently, array genotyping data 
and whole genome/exome/amplicon sequencing data are 

Conclusion The present study is the first of its kind to elucidate the high-resolution CNV map in major buffalo 
populations using a read-depth approach on whole genome resequencing data. The results revealed important 
insights into the divergence of major global buffalo breeds along the evolutionary timescale.
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routinely studied while using various algorithms includ-
ing PennCNV [16], CNVnator [17], CNVcaller [18], 
cn.MOPS [19] and others.

Various studies have reported the elucidation of copy 
number variations at a genome-wide scale in farm animal 
species including cattle [20], buffaloes [21], equine [22], 
pigs [23], yak [24], and chicken [25]. Furthermore, the 
association of CNVs with traits of economic interest has 
also been reported in livestock populations [9, 26, 27]. 
Keeping in view the aforementioned points, the present 
was undertaken to elucidate the CNV maps in six breeds 
of Indian riverine buffaloes using WGS data at two cov-
erages. Breed-differentiated CNVs were detected, and 
genes overlapping the CNVs were also identified.

Results and discussion
Descriptive statistics
The latest advancements in whole genome resequenc-
ing enable the accurate detection of both common and 
rare CNVs. It enables the identification of smaller and 
naive (previously unknown ones) genetic variants down 
to the level of individual base pairs. The whole genome 
resequencing approach presents many benefits for the 
elucidation of structural variants including CNVs. The 
read depth-based methods are recommended for Illu-
mina NGS data [15] as they do not require the refer-
ence sample and express the exact CNV counts rather 
than their positions. This method is adopted in CNVna-
tor, which uses a mean shift-based (MSB) approach for 
accurate variant calling [28], better sensitivity and a low 
false-discovery rate [17]. In this study, WGS data on 
multiple buffalo breeds were used to elucidate the CNV 
and CNVR maps using a read-depth-based approach in 
CNVnator. Bin sizes of 1000 and 100 were found to be 
optimal to assess the CNVs in different buffalo breeds 
at 10X and 30X coverages, respectively. The read-depth 
approach in CNVnator is based on binning read-depth 
signals which are dependent on sequencing coverage and 
read length [29]. Therefore, an integrated run of all the 
samples could not be attempted in this study. However, 
instead of merging the twin coverage datasets, an oppor-
tunity was explored to present the CNV maps at both 
these coverages and report CNV/ CNVR maps in these 
global buffalo breeds with separate downstream pro-
cessing. Post-filtering, 14,368 CNVs (8924 deletions and 
5444 duplications) were scored at 10X coverage cover-
ing six global buffalo breeds. The maximum number of 
CNVs was observed in Murrah (2627) while Surti scored 
the minimum number (2092). Yang et al. [30] found 
21,152 CNV regions in a whole genome dataset of 20 buf-
falo breeds comprising 141 buffaloes using LUMPY and 
CNVnator. Strillacci et al. [31] elucidated the CNV profile 
of Iranian river buffaloes using 90K genotyping array data 
and reported lesser number of structural variants (9550 

CNVs, representing 1.97% of the buffalo genome) with 
a loss-gain ratio of more than one. The inconsistency in 
CNV counts within the same species is attributable to 
differences in CNV detection algorithms; sample size; the 
evolutionary history of the population/ breed; and data 
used for calling the structural variants. Additionally, the 
elucidation of structural variants including CNVs from 
NGS data is greatly influenced by other factors such as 
read length, sequence coverage, GC bias and mappabil-
ity of next-generation sequencing platforms [32]. The 
number and distribution of CNVs were elucidated at two 
coverages at whole genome level i.e., 10X and 30X. The 
breed-wise descriptive statistics of CNVs have been illus-
trated in Fig. 1(a) and Fig. 1(b).

On the other hand, 1,27,222 CNVs were obtained 
across all the breeds at 30X coverage. Similar estimates 
have been reported in previous studies using WGS data 
in other species including 1,82,823 CNVs in cattle [33], 
2,08,649 CNVs in goats [34] and 1,64,733 CNVs in mink 
[35]. Interestingly, the maximum number of total CNVs 
was found in Pandharpuri (25,688); however, a minimum 
number of CNVs were scored in Surti (17,373), consistent 
with the results at lower (10X) coverage. The differences 
in the number of CNVs explain the genetic variabil-
ity between the species or breeds, especially in terms of 
their evolutionary history, effective population size and 
other similar attributes [36]. In terms of overlapping (at 
least 1 bp overlap) and unique (no overlap) occurrences 
of CNVs within and across breeds (Table 1), Pandharpuri 
had the maximum number with 43,788 hits (10X versus 
30X comparison), while Murrah had the highest count 
for unique with 335 hits (10X versus 30X comparison).

The proportion of CNV types was also estimated 
besides the assessment of the CNV counts. In each of the 
breeds assessed at both the coverages, deletion events 
overnumbered the duplications, as depicted in Fig.  1(a) 
and Fig. 1(b). The finding was concurrent with previous 
NGS studies reported in cattle [33] and buffaloes [30]. 
Moreover, the deletion events were abundantly reported 
from aCGH arrays due to ascertainment bias, pinpoint-
ing that deletions are effectively captured by them as 
compared to the other analytical methods [37]. In addi-
tion, Turner et al. [38] have reported that non-allelic 
homologous recombination (NAHR), which is one of the 
potential mechanisms of CNV generation, is more likely 
to result in deletions as compared to duplications. How-
ever, an opposite trend has also been reported in horse 
populations with duplications exceeding the deletion 
events [22, 39].

In this study, the percentage of loss and gain events 
were estimated separately for all six breeds, among which 
Pandharpuri scored the maximum percentage of dele-
tions at both coverages (65.25% and 69.46% at 10X and 
30X, respectively). On the other hand, Surti showed the 



Page 4 of 14Ahmad et al. BMC Genomics          (2023) 24:616 

Table 1 Summary of overlapping and unique hits of CNVs within and across breeds at twin coverages
Breeds Banni Bhadawari Pandharpuri Murrah Surti Jaffarabadi
Banni 25,562

(197)
10,850
(218)

9359
(229)

11,194
(181)

8790
(201)

10,759
(190)

Bhadawari 68,628
(4784)

29,981
(54)

10,673
(237)

12,649
(153)

9504
(227)

11,931
(214)

Pandharpuri 68,410
(5131)

80,000
(2901)

43,788
(38)

11,045
(142)

8242
(181)

10,503
(146)

Murrah 62,108
(4923)

65,799
(3508)

65,412
(8260)

23,800
(335)

9924
(214)

12,361
(181)

Surti 60,696
(5481)

64,399
(3925)

63,822
(8942)

58,103
(3153)

19,964
(217)

9432
(179)

Jaffarabadi 73,238
(3388)

78,012
(2402)

90,399
(3495)

67,950
(2421)

67,009
(1887)

36,096
(44)

Diagonal elements refer to overlap between 10X and 30X of the same breed. The upper triangle represents the overlap between two breeds at 10X coverage. The 
lower triangle indicates overlap between two breeds at 30X coverage. The italicized values in parenthesis represent the unique hits with no overlap across specific 
comparisons. 

Fig. 1 (a): CNV distribution of six buffalo breeds using a read-depth based approach on whole genome resequencing data at 10X coverage. (b). CNV 
distribution of six buffalo breeds using a read-depth based approach on whole genome resequencing data at 30X coverage
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highest percentage of duplications (41.87%) at 10X while 
Banni scored the highest proportion estimate (33.82%) 
at 30X coverage. The breeds under study showed a loss/
gain ratio ranging from 1.39 to 1.88 at lower sequencing 
coverage. When the coverage was increased to 30X, the 
ratio varied from 1.96 to 2.27, with Pandharpuri having 
the highest ratio at both the coverages. Similar estimates 
have been reported by Strillacci et al. [31] in Iranian buf-
faloes, where the Mazandarani breed had the highest 
ratio of 1.32. However, in the polled yak, Jia et al. [24] 
reported a very high ratio of loss to gain events (15.56:1) 
using Bovine HD bead chip genotyping data for CNV 
detection. The differences in loss and gain events inferred 
that there was a net loss of genetic material in all the 
breeds being studied.

The disparity in CNV length is also evident from differ-
ent studies. Considering the 10X coverage, the size varied 
from 5 kb to a maximum of 4.9 Mb. Whereas the mini-
mum length of CNVs in the present study was 1.1 kb for 

30X, which was close to the cut-off set for filtering. This 
also indicated that at higher coverage, the breakpoint res-
olution is more, yielding comparatively smaller segments 
with higher accuracy [40, 41]. The largest CNV length 
that was documented exceeded those found in cattle: 
28 kb [42] and 129.9 kb [43]. Nonetheless, other research-
ers have reported maximum sizes in the Mb range in 
chicken, horses, and buffaloes that were in line with the 
above findings. For instance, in chicken, the maximum 
size was 4.3 Mb [44], it was 4.55 Mb in horses [22], and 
the longest CNV of 3.48  Mb size has been reported in 
buffaloes [31].

Detection of CNVRs
The CNVR diversity among buffalo breeds, as elucidated 
in the present study, has been presented in Fig. 2(a) and 
Fig.  2(b). At 10X coverage, the total number of CNVRs 
across all the breeds was 4878 with estimates rang-
ing from 783 (Surti) to 833 (Jaffarabadi). A systematic 

Fig. 2 (a): The distribution pattern of CNVRs across six buffalo breeds on the concatenation of overlapping CNVs at 10X coverage. (b): The distribution 
pattern of CNVRs across six buffalo breeds on the concatenation of overlapping CNVs at 30X coverage
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investigation of CNVs by Liu et al. [21] identified only 
1344 CNVRs in 14 water buffaloes using the read depth-
based approach.

In the present study, a total of 55,002 CNVRs were 
recorded across all breeds at 30X coverage. The high-
est number of CNVRs was scored in Jaffarabadi (10,179) 
while the estimate was lowest in Surti (7553). Kumar et 
al. [45] found that despite the proximity of their breed-
ing tracts, Jaffarabadi and Surti exhibit genetic distinct-
ness, which may be indicated by their different CNVR 
count. Prior studies have also suggested that variation in 
CNVRs might have facilitated rapid adaptation during 
the domestication process and expansion of the popula-
tion [46].

The CNVRs, elucidated in the present study, were clas-
sified into three categories; deletion, duplication and 
mixed (containing both deletions and duplications). A 
total of 3182, 1551, and 145 CNVRs with deletion, dupli-
cation and mixed events were scored at 10X coverage. 
On breed-wise examination, Pandharpuri (554) and Jaf-
farabadi (552) showed to have the most deletion-based 
CNVRs at 10X coverage. On the other hand, Bhadawari 
showed the highest number of duplications (270), while 
Banni obtained the highest count in mixed events (31). 
In another study, Zhang et al. [47] studied the nature of 
CNVRs in water buffaloes (n = 106), and recorded similar 
counts, with 2245 loss, 1289 gain, and 200 mixed events 
out of total 3734 CNV regions. It equated to only 0.88% 
of the reference genome assembly of Mediterranean riv-
erine buffalo (UOA_WB_1).

The number of CNVRs within each type increased 
almost 10 times when the coverage was changed from 
10X to 30X (3182 versus 39,144 deletion types, 1551 ver-
sus 14,558 duplication types, and 145 versus 1300 mixed 
types at 10X and 30X, respectively). Among different 
breeds, the maximum number of deletions, and duplica-
tions were observed in Jaffarabadi (7281) and Pandhar-
puri (3076), respectively. The latter also had the highest 

score for mixed-type CNVRs. Intriguingly, Surti exhib-
ited the least counts for all three CNVR types. The aver-
age loss-gain ratio observed across all the breeds was 2.06 
at 10X (varying from 1.86 to 2.41). On the other hand, 
the ratio was found to be higher at 30X (2.74), ranging 
between 2.15 and 3.25.

The unique and overlapping CNVRs were analyzed 
for all the breeds, and the data have been summarised in 
Table  2. Jaffarabadi had the highest number of overlap-
ping hits on within-breed 10X versus 30X comparison, 
while Surti showed the lowest estimate. Importantly, 
the highest number of overlapping CNVRs were shared 
between Jaffarabadi and Pandharpuri, which might be 
indicative of possible genetic relatedness. In concurrence 
with the above findings, Kumar et al. [45] reported that 
Jaffarabadi and Pandharpuri belonged to the same lin-
eage of buffalo breeds. Besides, the greatest fraction of 
overlapping CNVRs were documented for Bhadawari 
with 31.6% similarity between the coverages. In terms of 
unique hits, Murrah scored the highest (n = 114), while 
Pandharpuri (n = 31) showed the lowest hits.

Table 3 presents additional information on the average 
size of CNVRs, genomic coverage and the perfect overlap 
in CNVRs (%) at two levels of sequencing coverage. The 

Table 2 Summary of overlapping and unique hits of CNVRs within and across breeds at twin coverages
Breeds Banni Bhadawari Pandharpuri Murrah Surti Jaffarabadi
Banni 2400

(91)
809
(171)

821
(181)

809
(152)

798
(165)

840
(151)

Bhadawari 7345
(3404)

2832
(39)

805
(163)

829
(121)

784
(167)

813
(153)

Pandharpuri 7281
(3516)

8005
(2187)

2922
(31)

829
(122)

793
(146)

841
(121)

Murrah 7306
(3422)

6920
(2803)

6893
(3946)

2148
(114)

793
(178)

838
(157)

Surti 6872
(3805)

6560
(3090)

6454
(4293)

6540
(2503)

1942
(100)

815
(149)

Jaffarabadi 8241
(2674)

8417
(1858)

8536
(2800)

7240
(1970)

6940
(1474)

3206
(37)

Diagonal elements refer to overlap between 10X and 30X of the same breed. The upper triangle represents the overlap between two breeds at 10X coverage. The 
lower triangle indicates overlap between two breeds at 30X coverage. The italicized values in parenthesis represent the unique hits with no overlap across specific 
comparisons.

Table 3 Descriptive statistics revealing the average length and 
genomic coverage of CNVRs across different breeds
Breeds Average length of 

CNVRs (bp)
Genomic 
Coverage (%)

Perfect 
match 
10X_30X 
(%)

10X 30X 10X 30X

Banni 194877.20 6031.94 5.78 2.18 23.97

Bhadawari 203572.37 18790.23 5.96 6.08 31.60

Pandharpuri 201723.91 24411.12 5.88 8.79 29.31

Murrah 202088.91 6721.18 6.00 2.02 25.79

Surti 209642.68 7081.54 5.93 1.93 25.71

Jaffarabadi 197439.58 17838.28 5.94 6.53 31.50

Average 201557.44 13479.05 5.92 4.59 27.98
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average length of CNVRs indicated that longer segments 
(~ 0.2 Mb) were detected at 10X while a wide variation in 
size (6 kb − 24.4 kb) was noted at 30X. Furthermore, the 
proportion of CNVR size with respect to the reference 
genome (2.77Gb) suggested that Murrah (6.00% at 10X) 
and Pandharpuri (8.79% at 30X) made the most signifi-
cant contributions in the genomic overlap of structural 
variants among the assessed breeds, reflecting their dif-
ferential representation in the reference assembly. It is 
noteworthy that the genome coverage from other CNV 
studies in cattle (6%) and yak (5.7–6%) also falls within 
the same range [48–50]. Recently, Yang et al. [30] iden-
tified 21,152 CNVRs, representing 1.99% of the bubaline 
autosome length using multiple algorithms. Additionally, 
a couple of studies have discussed the chromosomal dis-
tribution of CNVRs including sex chromosomes, X and 
Y [51].

Remarkably, a higher level of sequence coverage or 
deeper sequencing was found to be beneficial for the pre-
cise detection of CNVs in buffaloes. This is in line with 
the previous research showing that greater sequencing 
coverage being linked to better sensitivity in CNV detec-
tion [52]. Prior studies have also suggested that cover-
age of 4X may be sufficient for detecting CNVs using 
the read depth method [53]. The average size of CNVRs 
scored in different breeds at 10X and 30X coverages was 
0.201 Mb and 0.013 Mb, respectively. Table 4 depicts the 
distribution and relations of CNVRs in relation to gene 
density in different buffalo breeds across autosomes at 
twin coverages. Chr_13 was found to be gene-poor (in 
terms of density) but with the highest number of CNVRs 
(63–85 CNVRs at 10X coverage and 717–812 CNVRs at 
30X coverage) in different breeds. Most of the clustering 
of CNVRs was evident in telomeric and sub-telomeric 
regions across different autosomes in most breeds. The 
least number of CNVRs were present on the smallest 
autosome (Chr_23) at both sequencing coverages, except 
Banni (10X) and Pandharpuri (30X).

Overall, the distribution of CNVRs at both the cover-
ages was uneven, which was expected given the func-
tionality of corresponding genes or regulatory genetic 
elements. Figure 3 represents the distribution of CNVRs 
on different chromosomes of the bubaline genome in 
relation to the gene density, using ideograms, across dif-
ferent breeds at 10X coverage.

Gene profiling
The longest CNVRs of each breed at both the coverages 
were evaluated, and the genes harbored on the top five 
CNVRs were shortlisted. The longest CNVR in Banni 
was located on autosome 16 at 10X, spanning 0.573 Mb. 
It harboured several genes such as SRGAP2, IKBKE, 
RASSF5, ELF2D, DYRK3, MAPKAPK, IL-10, IL-19, IL-20 
and IL-24. Interestingly, some of the genes overlapped 

with those observed in other breeds as well. For exam-
ple, the ZEB2 was shared among all the breeds, which is 
known to play a crucial role in the transforming growth 
factors β-signaling pathway, and its effects on growth, 
weight traits, and horn ontogenesis in cattle [54, 55]. IL-
10 gene is responsible for maintaining body homeosta-
sis by resolving acute inflammation [56]. IKBKE, on the 
other hand, has been reported to regulate the maternal 
immune response during conceptus implantation in cat-
tle [57]. Similarly, Oliveira et al. [58] reported the regu-
latory role of SDC1 gene in controlling the milk yield in 
Ayrshire cattle. In addition, the largest CNVRs of Bha-
dawari encompassed different genes such as KHDRBS2, 
DYNC2I1, and VIPR2. Among these genes, KHDRBS2 
has been associated with reproductive traits in goats 
and Brahman cows, as well as adaptability in Colombian 
cattle [59]. In Jaffarabadi, the longest CNVR (0.573 Mb) 
was present on chromosome 16. The unique genes that 
showed overlap with the largest (top five) CNV regions 
were LDAH, GDF7, HS1BP3, U4, OSR1, and 7SK. Studies 
have shown that LDAH promotes triglyceride production 
[60] while GDF7 plays a role in seminal growth and neu-
ronal development [61]. In Surti, the longest CNVRs har-
boured genes like DYNC2I2, VIPR3, COA1, STK17A, and 
HECW1, with COA1 being implicated in mitochondrial 
translation thereby contributing to fitness and longev-
ity. In mammals, the genomic region of COA1 is recog-
nized as a prominent evolutionary breakpoint area in 
which a combined deletion of STK17A and COA1 genes 
was studied in rodents [62]. The largest CNVR in this 
breed was found on chromosome 2, which spanned a size 
of 0.668  Mb. Furthermore, SFMBT2 gene was observed 
in Murrah, with the longest CNVR on chromosome 2 
similar to Surti, covering a size of 1.17 Mb. This gene is 
important for trophoblast maintenance, placental devel-
opment, and regulation of chondrocyte proliferation 
[63]. Finally, in Pandharpuri, the greatest CNVR spanned 
0.729  Mb of buffalo genome with genomic coordinates 
spreading across chromosome 2. PARD3 gene was iden-
tified in one of the top CNVRs, which is involved in cell 
growth and division as well as the formation of tight 
junctions in epithelial cells [64].

On the other hand, at 30X coverage, Banni showed 
the largest CNVR on chromosome 3, with a length of 
0.337  Mb. The region contained several genes, includ-
ing TMEM45A, ZBTB12, EHMT2, SLC44A4, NEU1, 
SNORD52, SNORD48, and two heat shock proteins 
namely HSPA1A and HSPA1L, which are involved in 
normal cell growth and survival, as well as protecting 
cytotoxic conditions [65]. HSPA1A and HSPA1L genes 
are reported to have sequence similarity arising from 
the duplication of genes offering thermotolerance at the 
cellular level [66]. Similarly, Bhadawari and Surti also 
showed large CNV regions on the same chromosome, 
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with comparatively smaller sizes of around 0.285 Mb for 
both breeds. In Bhadawari, the genes such as TRAPPC3, 
COL8A2, ADPRS, TEKT2, and genes of the Argonaute 
family (AGO1, 3 and 4) showed overlap with CNVRs. The 

eukaryotic AGO proteins are active mediators in RNA 
silencing and other cellular processes [67]. For Surti, 
the genes exactly overlapped with that of the Bhadawari 
breed. Among the reported genes, Collagen VIII (COL8) 

Fig. 3 The ideograms depicting the distribution of CNVRs in different bubaline breeds at 10X WGS coverage
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is reported to play a major role in vascular integrity [68]. 
Jaffarabadi carried the longest CNVR on chromosome 
14, which was the smallest one among all the breeds 
(0.246  Mb) contributing only 0.0089% of the genomic 
size. RGS7 gene was observed in Jaffarabadi, belonging 
to the G-protein signaling family, that are significant in 
regulating a wide range of neuronal processes, such as 
vision, and nociception in mammalian species [69]. This 
gene was also identified as a candidate for milk produc-
tion in Holstein cattle [70]. Considering the top five 
CNVRs of Murrah, the following genes were identified: 
COA1, STK17A, RGS7, DYNC2I1, VIPR2, and HECW1. 
Among these, STK17A gene is significantly involved in 
apoptosis, which has functions in immune response and 
disease resistance [71]. In contrast, VIPR2 gene encodes 
a receptor that responds to vasoactive intestinal pep-
tide (VIP), which helps with smooth muscle relaxation 
and the secretion of exocrine and endocrine glands. 
Mahoney et al. [72] also found that interfering with VIP 
production leads to a delay and reduction in the lutein-
izing hormone (LH) surge. Another gene, HECW1, is 
highly active in nerve cells and participates in the regula-
tion of protein homeostasis, which has implications for 
both longevity and conditions related to ageing [73]. In 
sheep, studies have also reported this gene to be involved 
in variation with regard to the number of lambs born and 
have identified it as a target of selection in the Luzhong 
mutton sheep breed [74, 75]. Strikingly, the longest 
CNVR among all the breeds was present on chromo-
some 5 in Pandharpuri (0.475  Mb), covering 0.0171% 
of the genome. Consequently, this region showed over-
lap with multiple genes, including olfactory receptor 
genes (OR10J5, OR10J1, OR10J4, and OR10J3), KANSL2, 
SNORA2C, LALBA, CRP, APCS, TUBA1B, LMBR1L, 
DHH, RHEBL1, and KMT2D. Zhou et al. [76] described 
the potential role of olfactory genes in yak for the percep-
tion of chemical stimuli, which is very crucial for repro-
duction, acquiring basic needs such as food and mate, 
high altitude adaptation, and ultimately the survival of 
the animal. Another gene, Tubulin alpha 1b (TUBA1B) 

is an important component in the formation of the cyto-
skeleton, which is involved in immune cell infiltration, 
cell movement and within-cell transport [77]. Addition-
ally, LALBA gene polymorphisms have been shown to 
influence milk production traits and somatic cell count in 
Polish Holstein-Friesian cows [78]. Interestingly, many of 
the genes identified at 30X in different breeds were simi-
lar to those scored at 10X coverage.

The genes overlapping the CNVs provided useful 
insights into the evolutionary history of these breeds. 
The genes present in all six populations were elucidated 
in DAVID. These genes were involved in the significant 
enrichment of pathways including oxidative phosphory-
lation, thermogenesis and pentose phosphate pathway. 
Significant enrichment was also noticed for biological 
processes like mitochondrial electron transport, regu-
lation of presynapse assembly and actin filament orga-
nization. Similarly, cellular components including the 
respiratory chain, mitochondrial respiratory chain com-
plex I and mitochondrial inner membrane were mainly 
involved while molecular functions like NADH dehydro-
genase activity and metal ion binding were significantly 
enriched. The network of hub genes as identified using 
STRING-DB has been presented in supplementary Fig. 1.

Conclusions
The present study provides new insights into the genetic 
variations among six important buffalo breeds. The find-
ings from the present study elaborate on the evolution-
ary differences of six global buffalo breeds in terms of 
structural variants i.e., CNVs and CNVRs. Interestingly, 
a higher level of sequence coverage or deeper sequenc-
ing was found to be beneficial for the precise detection of 
CNVs in buffaloes with finer details. The genomic cover-
age of CNVs and CNVRs in these buffalo breeds varied 
amongst themselves. The highest genomic coverage of 
CNVRs was found for Murrah (6.00%) and Pandharpuri 
(8.79%) breeds. The results offered potential candidate 
genes linked to performance differences that could be 
used for selective breeding in the future. The CNV and 
CNVR maps for different buffalo breeds may be use-
ful for the association of these structural variants with 
important (re)production and adaptability traits.

Methods
Sampling and whole genome resequencing data
The present study was undertaken on whole genome 
resequencing data on 75 buffaloes (Bubalus bubalis) 
representing six distinct breeds, with 12 animals each 
from Murrah, Surti, and Banni and 13 animals each from 
Bhadawari, Jaffarabadi, and Pandharpuri populations 
(Table  5). These breeds have been imported by differ-
ent nations courtesy their high genetic merit and proven 
performance with respect to economic traits and have 

Table 5 Sample size and details of buffalo breeds used for the 
elucidation of copy number variations using whole genome 
resequencing data
Breeds Major breed-

ing tract
Sample size
10X coverage 30X coverage Total

Murrah Haryana 6 6 12

Bhadawari Uttar Pradesh 
and Madhya 
Pradesh

6 7 13

Jaffarabadi Gujarat 6 7 13

Pandarpuri Maharashtra 6 7 13

Surti Gujarat 6 6 12

Banni Gujarat 6 6 12

Total 36 39 75
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been integrated into the breeding policy for improve-
ment of buffaloes in these countries [5]. The sequenc-
ing data was retrieved from an online database and was 
based on an earlier publication report [79]. The samples 
were obtained from breeding tracts of respective buf-
falo breeds (as given in Table  5) and sequenced using 
two different platforms as described by Dutta et al. [79]. 
Briefly, paired-end sequencing data were generated at 
two sequencing centres using different coverages and 
sequence read lengths. One set of samples was sequenced 
using NEBNext Ultra DNA Library Prep Kit (library 
preparation) and Illumina HiSeq 2500 sequencing plat-
form at SciGenom Labs (India) at 10X coverage with a 
read length of 250 bp. Whereas, the rest of the samples 
were sequenced using Illumina TruSeq Nano DNA 
Library Prep Kit (library preparation) and Illumina HiSeq 
X sequencing platform at Edinburgh Genomics (United 
Kingdom) at 30X coverage with a read length of 150 bp. 
The average sequencing coverage for samples at two cen-
tres (SciGenom Labs, India, and Edinburgh Genomics, 
United Kingdom) was 8X and 37X, respectively. In nut-
shell, whole genome resequencing was retrieved on these 
animals across two different coverages: 10X for six ani-
mals from each breed and 30X for the rest, as indicated 
in Table 5.

The quality of the sequence reads was assessed with 
FastQC v0.12.1 [80] and poor-quality reads and adapters 
were removed via TrimGalore v0.6.5 [81] using default 
parameters. After trimming and reassessing the read 
quality, the Burrows-Wheeler aligner v0.7.12 [82] was 
used to index the genome NDDB_SH_1 of water buf-
faloes (release date: September 2021), which has a total 
sequence length of 2,622,460,639  bp [83]. The sequence 
reads, after quality control were mapped against the 
genome index using BWA-MEM algorithm with default 
settings [82].

Post-alignment processing
Following alignment to the genome assembly, the indi-
vidual sequence alignment map (SAM) files were con-
verted into a more efficient binary alignment map format 
(BAM) using SAMtools v1.17 [84]. The output files were 
validated by Picard tools v2.25.1 [85] build under GATK 
v4.0.2.0 and sorted in concordance with genomic coordi-
nates. Subsequently, the SM read tags were added to the 
mapped reads. Furthermore, the PCR duplicates in BAM 
files were marked for removal using the ‘MarkDuplicates’ 
function of Picard tools. This effectively minimizes the 
PCR amplification bias by clipping on 5′ read ends.

CNV detection, filtering and concatenation
CNV detection and analysis were undertaken using read-
depth-based software CNVnator v.0.4.1 [17]. The core 
principle behind CNVnator involves dividing the genome 

into non-overlapping bins set by the user and calculat-
ing the RD signal by counting the mapped reads within 
each bin. Following this, CNVnator performs statistical 
significance tests for CNV predictions [17]. In the pres-
ent study, copy number histograms were generated from 
PCR duplicate-free Picard-BAM files for partitioning the 
CNV calls and for downstream statistical analysis. Sub-
sequently, the optimal bin size for read depth analysis 
was chosen as the multiple of 100s in all the samples by 
considering the read depth, read length, distribution, and 
quality. The optimal bin size was selected based on the 
ratio of the read depth and its variance; fitting the recom-
mended ratio between 4 and 5. Correction for GC waves 
was done within CNVnator, which is necessary to elimi-
nate the GC bias resulting from reduced depth coverage 
at GC-rich regions [86, 87]. Subsequently, the CNV vari-
ants were individually called using the ‘call’ command in 
CNVnator.

After CNV detection, the quality control and post-
pruning were done based on p-value, zero mapping 
quality (q0), and CNV size. The study considered the 
following parameters for filtering of CNVs: p-value cal-
culated by t-test statistics < 0.01, variants with mapping 
quality < 0.5, and the size of CNVs < 1 kb and > 5 Mb, as 
suggested by previous studies [88]. The q0 filter (frac-
tion of mapped reads with zero quality) of 0.5 was used 
in the present study that was indicative of the degree of 
certainty that a read comes from the location to which it 
is aligned.

A customized Python script was used to concatenate 
the overlapping CNVs (with minimum of one bp over-
lap) into copy number variation regions (CNVRs). The 
merged CNVRs were marked as deletion, duplication, 
or mixed depending on whether the events in proximal 
CNVs were all deletion, all duplication, or a mix of dele-
tion and duplication. The whole analysis was done using 
the high-performance computing facility of Indiana Uni-
versity and Purdue University, Indianapolis (IUPUI), 
USA (now Indiana University Indianapolis).

The impact of sequence coverage on CNV detection 
was also investigated in study animals with two levels of 
sequence coverage (10X and 30X). Changes in the CNV 
count were attributable to the changes in sequencing 
coverage and read length. RIdeogram package [89] was 
used to plot the distribution of CNVRs in relation to the 
gene density. Briefly, the gene density parameters were 
elucidated from gff file corresponding to the genome 
assembly used in the study using a window of 1 Mb. The 
chromosomal coordinates were retrieved from assem-
bly metadata. RIdeogram package was used to plot the 
CNVR data overlaid by the gene density parameters.
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Unique and overlapping CNVs and CNVRs
The chromosomal coordinates of structural variants from 
different populations were used in BEDTools v2.26.0 
[90] to elucidate the common (with the same chromo-
somal coordinates), overlapping (with at least one bp 
overlap) and unique CNVs and CNVRs. Furthermore, 
the genomic coverage of CNVRs against the reference 
genome assembly was elucidated in each population.

Gene profiling
The information on genes and genetic variants overlap-
ping CNVRs in different breeds was extracted by min-
ing data corresponding to their genomic coordinates 
from the genome annotation file (gtf file, corresponding 
to the NDDB_SH_1 genome assembly) using BEDTools 
program. The common genes found to overlap CNVRs in 
all six populations were used for profiling and functional 
annotation in Database for Annotation, Visualization and 
Integrated Discovery (DAVID). Furthermore, the longest 
CNVRs in terms of chromosomal coordinates in each 
breed were identified and overlapping genes were eluci-
dated in Ensembl. The information on the functioning 
of these genes was retrieved by mining the information 
from PubMed and other relevant databases. Addition-
ally, the common genes that showed overlap with CNVRs 
were processed in STRING-DB for identification of hub 
genes that are involved in various pathways in buffaloes.
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