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Abstract 

Cell annotation is a crucial methodological component to interpreting single cell and spatial omics data. These 
approaches were developed for single cell analysis but are often biased, manually curated and yet unproven in spatial 
omics. Here we apply a stemness model for assessing oncogenic states to single cell and spatial omic cancer datasets. 
This one-class logistic regression machine learning algorithm is used to extract transcriptomic features from non-
transformed stem cells to identify dedifferentiated cell states in tumors. We found this method identifies single cell 
states in metastatic tumor cell populations without the requirement of cell annotation. This machine learning model 
identified stem-like cell populations not identified in single cell or spatial transcriptomic analysis using existing 
methods. For the first time, we demonstrate the application of a ML tool across five emerging spatial transcriptomic 
and proteomic technologies to identify oncogenic stem-like cell types in the tumor microenvironment.
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Introduction
Traditional bulk RNA sequencing provides an average 
gene expression profile of a population of cells, which 
may obscure differences among individual cells [1]. In 
contrast, single-cell RNA sequencing (scRNAseq) has 
emerged as a powerful method for understanding cel-
lular heterogeneity and allows the measurement of gene 
expression profiles in individual cells, providing a high-
resolution view of transcriptional variability within a 
population [2]. Advances in scRNAseq technology and 
computational analysis methods have enabled the iden-
tification of rare cell populations, the discovery of novel 
cell types, and the characterization of cell state transi-
tions during development, disease progression, and treat-
ment response [3]. Despite the demonstrated utility of 
scRNAseq in aiding discoveries, it has limitations for bio-
logical interpretations. scRNAseq data analysis is based 
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on proper cell type annotation. Cell type annotation is 
used to represent cells as clusters based on their gene 
expression profiles using unsupervised learning methods 
[4–6]. These cell clusters are then annotated using cluster 
profiles aided by marker gene information. These anno-
tation methods are based on taking previously annotated 
scRNAseq databases as reference (efforts such as the 
Human Cell Atlas has been instrumental in aiding this) 
or using marker genes themselves to annotate cell clus-
ters e.g. CD4 cell clusters are annotated as immune cells, 
and GFAP positive cells are glial clusters. However, there 
are many different subtypes of cell identities for each of 
these cell types that extend beyond the traditional cell 
phenotyping annotations. The informatic tools and tech-
niques used to identify different cell types, map cellular 
interactions, and investigate gene expression patterns [7] 
are heavily biased and limited to inference for the fea-
tures/gene expression annotations used in the reference 
datasets [8, 9]. These cell annotations may not reflect the 
biology seen in the dataset to which it is being applied 
to. Since each single cell dataset has heterogeneity in 
the sample processing, sample type and biological treat-
ments, it is difficult to use these methods to match across 
reference cell annotations or dynamic gene expression 
profiles. Some methods are developed using the anno-
tated cells from the same dataset to infer the cell types 
of the remaining but these models require unstructured 
parameters e.g. number of clusters or are dependent on 
cell number input requirements [6].

These problems are further exemplified in the spatial 
omics field. An explosion of technologies has emerged in 
spatial omics which are revolutionizing our understand-
ing of complex tissues by providing detailed information 
on the cellular organization and functioning within intact 
heterogeneous environments [10]. Spatial omics allows 
researchers to simultaneously analyze multiple molecu-
lar features in the same tissue sample, often at a single 
cell level, to provide a comprehensive view of cellular 
interactions, gene expression, and cellular environment. 
A promising application of spatial omics is the integra-
tion of scRNAseq with spatial data to study the hetero-
geneity of intact tissue. The raw data from spatial omics 
techniques is often in the form of images or matrices 
that represent the gene expression across a tissue section 
[11]. The information captured from spatial omics data 
is typically processed to generate expression profiles for 
individual cells, which are then suitable for downstream 
analysis. The conversion of spatial omics data into single-
cell expression profiles is a critical step in the analysis of 
these data hence the same challenges for scRNAseq anal-
ysis exist and are further compounded by the laborious 
task of cell phenotyping. This is often done by manually 

assigning cell labels based on the gene marker annotation 
to the spatial data.

Many Machine Learning (ML) models have been devel-
oped to address this problem of large datasets and man-
ual curation. A growing number of deep learning-based 
methods have been applied to scRNAseq data analyses 
to enhance the accuracy and efficiency of the analysis 
and achieve superior performance [12]. These ML mod-
els harness the generalization of cell annotations and the 
robustness dataset integration. These algorithms can be 
used to analyze high-dimensional data and identify pat-
terns that may not be apparent with our present tools. In 
this study we harness ML algorithms to train and recog-
nize patterns in gene expression data with high accuracy 
at a much faster rate, hence reducing the time needed to 
analyze large single cell and spatial datasets to provide 
new insights into the biology of the tissue being studied.

Breast cancer cells that possess stem cell like proper-
ties (e.g. self renewal, rapid proliferation) are associated 
with chemotherapy and radiation resistance, disease 
recurrence and poorer outcomes [13, 14]. Annotat-
ing cell types in scRNAseq data is important for estab-
lishing breast cancer severity and progression based on 
their tumor microenvironments (TME) [15]. ML model 
generation from bulk tumor RNAseq datasets has been 
instrumental in identifying breast cancer stemness [16–
18] as the field explores various strategies to target breast 
cancer stem cells to improve treatment. We apply a bulk 
RNAseq ML model to single cell and sequencing based, 
probe based and protein based spatial omics datasets to 
identify the cell types asoociated with stemness in breast 
cancer. This study highlights the use of ML in single cell 
and spatial omic analysis to accelerate our understand-
ing of the complex relationships between stemness, gene 
expression and tissue morphology.

Methods
Data collection for reference sets
The scRNAseq data used for this work was accessed 
from the Gene ExpressionOmnibus database (GEO; 
GSE176078 and GSE161529) and ArrayExpress 
(E-MTAB-6524) [19–21]. We used GSE176078 (data-
set 1) which contains 26 samples of primary breast can-
cer, (11 ER + , 5 HER2 + , and 10 TNBC) with major and 
minor cell types previously annotated. Another cohort 
GSE161529 (dataset 2) within 32 samples of primary 
breast cancer (17 ER + , 6 HER2 + , 4 BRCA1 pre-neoblas-
tic, 4 TNBC, 4 TNBC/BRCA1, and 1 PR +) was used to 
validate our main findings of stemnessin breast cancer 
cells. We then used an induced pluripotent stem cells 
dataset (E-MTAB-6524) to validate our stemness model 
in scRNAseq data.
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Spatial transcriptomic datasets were retrieved from 
publicly available datasets from a previously published 
breast cancer study [19, 22] and the Vizgen website 
(MERSCOPE) [23]. The spatial proteomic datasets were 
generated by Akoya Biosciences and Nanostring Tech-
nologies. The Phenocycler Fusion dataset was run on 
a FFPE breast cancer sample from the biorepository at 
University of Miami Health Science Systems. This tumor 
underwent pathological review and sections were sent to 
Akoya Biosciences for processing. qpTIFF files were gen-
erated and rendered by the company. All files were pro-
cessed based on 10X Genomics and Akoya’s instructions 
(see below) and used as input for the stemness model. 
These datasets were processed in a similar format for 
gene counts as single cell data and used in the same for-
mat as scRNAseq for stemness prediction modeling. The 
CosMX proteomic dataset was generated and provided 
by Nanostring Technologies.

Single cell processing and analysis
Samples from both datasets were processed with the 
same settings using Seurat v4.0 for QC, filtering, nor-
malization, clustering and visualization. The filtering 
parameters were as follows: nFeature_RNA > 200 < 5000, 
percent.mt < 10; nCount_RNA > 200. The cells that have 
mitochondrial genes greater than 10% or have fewer 
than 200 detected genes were filtered out. A scale factor 
of 10,000 was used to normalize all the remaining cells. 
To correct for the batch effect between different sam-
ples, the reciprocal principal component analysis (RPCA) 
method in the Seurat package was applied to integrate 
the complete data set. The genes enriched in each cluster 
were identified using FindAllMarkers function in Seurat 
by applying a Wilcoxon Rank Sum test and then per-
forming multiple test corrections using the Bonferroni 
method. The multiple-test corrected P < 0.05 was used as 
a cut-off for significance. Samples were normalized using 
the following settings: normalization.method = "Log-
Normalize"; scale.factor = 10000 > . The remaining Seu-
rat parameters were default with the exception of: 
FindVariableFeatures:-selection.method = ’vst’, nfea-
tures = 3000; RunPCA-features = 3000 VariableFea-
tures; FindNeighbors- reduction = ’pca’, dims = 1:20 (20 
PCs); FindClusters: resolution 0.5; RunUMAP: reduc-
tion = ’pca’, dims = 1:20. For additional processing and 
graphical representation the following R packages were 
used in sc-type v1.0, dplyr v1.1.1, and ggplot2 v3.4.2.

Spatial data analysis
Visium dataset
Visium breast cancer data from 10X genomics was 
mapped and demultiplexed using SpaceRanger as per 
company default parameters. Processing included 

transforming to read counts, overlaying expression data 
with H&E tissue images and unsupervised clustering. 
Specifically, spots classified as artifact and spots with 
count = 0 were removed. Seurat version 5 was used to 
perform data normalization with the method SCT trans-
form [24], and data clustering using the Louvain algo-
rithm with multi-level refinement and resolution = 1. For 
the stemness prediction, we used the normalized expres-
sion matrix to calculate spearman correlation with the 
feature weights from the OCLR model matching genes 
and scaled to 0–1 format. We then transferred the scores 
to the Visium seurat object for visualization.

Xenium dataset
This dataset included RNA reads, images, and cell seg-
mentation were directly downloaded from 10X website 
and run using their recommended Explorer pipeline. 
Molecules with count = 0 were removed and the same 
analysis routine described previously for Visium data was 
employed. We then performed cell-type deconvolution 
using the RCTD method [25] to predict each cell point 
present in the xenium dataset using the major cell type 
annotations from the scRNAseq dataset.

Vizgen dataset
Output files from Vizgen dataset were processed as fol-
lows: Molecules with count = 0 were removed, SCT was 
used to transform and normalize the data, with a clip 
range of [-10,10]. For cell clustering, SCT filter was used 
at a lower resolution of 0.3.

PhenoCycler fusion dataset
QuPath v0.4 was used to process the 66-channel qpTIFF 
image generated from the PhenoCycler instrument. 
Briefly, we employed the StarDist (arXiv:1806.03535) 
algorithm for cell segmentation using the DAPI channel 
and exported the measurements as a text file. We selected 
measurements in cells and mean intensity of captured 
signal. The DAPI channel was removed for further analy-
sis. To create a Seurat object, we created a sparse matrix 
with each channel as rows and each segmented cell as 
columns, and a metadata matrix with centroid coordi-
nates for each cell. Centroids coordinates were used for 
visualization. In order to predict stemness score for each 
cell, we created a new model using 28 genes that inter-
sected the panel used in this assay and genes found in the 
bulk RNAseq data used to train the OCLR model and 
employed the same strategy to transfer the scores back to 
the Seurat object.

CosMX dataset
The Nanostring dataset was segmented and generated by 
Nanostring Technologies. The input file was provided as 
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a cell count matrix as per their published pipelines. Seu-
rat object was created using the same method used for 
the Phenocycler dataset.

Stemness prediction modeling
Building on existing methods from bulk RNAseq [16], 
we extended this iPS/ES model for utilization in single 
cell RNAseq data. The model parameters were based on 
the total content of 12 922 genes. The iPS dataset (20 
000 cells) [19–21] was used to validate the iPS/ES bulk 
model in single cell data. Similarly, this model was tested 
using two large published breast cancer datasets of 80 
000 and 180 000 cells respectively. These three datasets 
were combined as Seurat objects for normalization and 
extraction of their gene expression. The stemness model 
was applied to these single cell datasets using a spearman 
correlation value of both genes weights in the model and 
gene expression values on the datasets for each cell in the 
single cell matrix. We scaled all correlations within 0 to 1 
calling these scores to create the stemness index. These 
individual Seurat objects were used for the next stage of 
analysis where they were used as inputs into the Seurat 
clusterization pipeline.

Performance of single cell stemness model
To evaluate how dependable our stemness model is for 
single-cell data, we conducted a bootstrapping analysis to 
both high and low-quality samples, determined by their 
RNA features and counts, aiming to check the model’s 
consistency in various scenarios (Supp. Fig. 1). We then 
analyzed cell type annotations by comparing two data-
sets. From the first dataset, we took the most expressed 
cell type markers and matched them with cluster mark-
ers in the second dataset. Specifically, for the primary cell 
types referenced in the dataset 1 paper, we picked the top 
30 markers and looked for overlaps in the second dataset, 
focusing on markers with an average fold change >|0.5|. 
For cell types like Cancer Cycling, Cancer Basal, and T 
Cycling, which had the highest stemness scores in data-
set 1, we concentrated on the top 10 markers, again 
seeking overlaps in dataset 2 with a similar fold change 
criteria. To assist in this comparison, we employed the 
sc-type software to align cell types from dataset 1 with 
those in dataset 2. Additionally, we conducted a differen-
tial expression analysis to identify distinct marker genes 
across cell clusters using default parameters on the Seurat 
FindMarkers function (p-value < 0.05; FoldChange > 0.5). 
This comparison was specifically between the highest and 
lowest stemness cells (in the 25th vs. 75th percentiles) for 
the mentioned cell types across both datasets. Finally, for 
a broader biological context, we undertook GO pathway 
enrichment analysis using the clusterProfiler package, 
version 3.16.26 [26].

Data visualization
All plotting functions used in this study were included 
in Seurat v4,Seurat v5, ggplot2, RColorBrewer [27] and 
plotly [28] packages.

Results
A stemness index was calculated for every cell in two 
independent breast cancer scRNAseq datasets (dataset 
1 and dataset 2) by correlating the gene weight derived 
from the one-class model trained on bulk RNASeq iPSC/
ESC cell lines with the normalized gene expression from 
the scRNAseq datasets and scaling that metric to [0–1] 
format (Fig.  1). The stemness index was visualized in 
UMAP formats (Fig.  2A, B) and based on top 75% and 
bottom 25% of scoring stemness cells, we calculated that 
20,171 of 80,682 total cells in dataset 1 present a high 
stemness phenotype, compared to 45,079 of 180,315 of 
cells in dataset 2. In the opposite stemness spectrum, 
20,171 of cells in dataset 1 present a low stemness score, 
compared to 45,079 of cells in dataset 2. Both datasets 
were annotated using the same cell types. The propor-
tion of cells per clinical classification in dataset 1, were 
representative of ER + , HER2 + and Triple-Negative 
Breast Cancer (TNBC). These categories are also present 
in dataset 2, with the addition of BRCA1 pre-neoplastic, 
PR + and TNBC + BRCA1 cells (Fig.  2C). In evaluating 
the biological relevance of the stemness score, we uti-
lized our established model on an iPS scRNAseq data-
set, encompassing a total of 21,599 cells (Fig.  2D). This 
revealed a median stemness score of 0.724. For context, 
the stemness scores for datasets 1 and 2 were 0.394 and 
0.402, respectively (Fig.  2E). Further delineation of the 
datasets based on stemness profiles led to the identifica-
tion of three distinct cell types: Cycling T-Cells: In dataset 
1, there were 1,442 cells, representing 1.78% of the total. 
Meanwhile, dataset 2 contained 13,760 cells, or 7.63% of 
the total cells. Cancer Cycling Cells: Dataset 1 had 2,631 
cells (3.26%), while dataset 2 comprised 12,125 cells 
(6.72%). Cancer Basal Cells: These represented 2,877 cells 
(3.56%) in dataset 1 and a notable 20,156 cells (11.1%) in 
dataset 2. These classifications and their respective dis-
tributions can be visualized in Fig. 3A and B. In dataset 
1, we observe clusters where cancer cycling and cancer 
basal cells are clustered together. Cycling T-cells were 
associated mostly having higher stemness profiles than 
average in both datasets (Fig. 3A, C). In dataset 2, cycling 
T-cells were mostly clustered with cancer basal cells and 
more sparsely separated compared to dataset 1, but with 
a similar overall stemness index profile (Fig. 3B, C). We 
see this pattern in both breast cancer datasets.

From the selected cell types we conducted differen-
tial expression of gene (DEG) analysis on both datasets. 
We analyzed the DEGs between the selected cell types 
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in both datasets. The groups were separated based on 
their stemness scores, with one group having higher 
scores and the other having lower scores. To ensure equal 
group sizes, we retained the same number of cells in both 
groups. From dataset 1, cancer basal, cancer cycling and 
cycling T cells have 685, 393 and 230 DEGs respectively. 
From dataset 2, cancer basal, cancer cycling and cycling 
T cell had 525, 528 and 632 DEGs respectively. For can-
cer basal in dataset 1, we identified 336 genes highly 
expressed and presenting high stemness scores, among 
the top expressed genes with high stemness is LDHB 
(Fig. 4A), which has a known role in cancer cell prolifera-
tion [29]. For dataset 2, 311 highly expressed genes were 
identified differentiating top and bottom stemness cells. 
One of the genes with higher log2 Fold Change is CXCL1 
(Fig. 4B) and was shown in previous studies [30] to stim-
ulate invasion and migration in ER negative breast cancer 
cells. We found 104 genes in common in both datasets, 

30.9% and 33.4% of dataset 1 and dataset 2 respectively. 
We performed gene ontology (GO) enrichment analysis 
using these gene lists as input for both datasets. In data-
set 1, GO terms were enriched (n = 72) using the GO 
Biological Process ontologies. For dataset 2, that num-
ber was n = 91. The number of overlapped GO terms was 
n = 17 (Fig. 4C). To add another level of confidence that 
the results seen in dataset 1 and 2 were similar, we per-
formed a semantic similarity analysis [31], which takes 
the non-overlapping genes in both datasets as input 
and computes a similarity score based on the same gene 
ontology. To establish if the DEGs from dataset 1 and 2 
were similar beyond their pathway enrichment overlap, 
we conducted a gene similarity analysis. In this analy-
sis we took the dataset 1 DEGs and dataset 2 DEGs that 
define stemness to calculate the similarity index [31] to 
take into account confounding variables in our analysis 
(Supp. Fig.  3). Our results revealed that the similarity 

Fig. 1  Graphical abstract describing step-by-step how the OCLR algorithm is employed to predict a stemness score from scRNA ad Spatial Omics 
datasets
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scores between the high stemness gene lists were higher 
across datasets than the regular clusters.

To understand the biological and clinical relevance 
of these genes identified in the DEG analysis of high 
stemness scoring cells, we used breast cancer tumor 
gene expression (bulk RNAseq) and clinical informa-
tion from TCGA (The Cancer Genome Atlas, n = 902) 
[32]. To correlate gene expression with survival status, 
we performed a cox regression analysis for each gene 

with overall survival up to 60  months. We identified 
94 genes (27.9%) with a significant (p < 0.05) correla-
tion with poor survival in cancer basal cells for dataset 
1, and 70 genes (22.5%) for dataset 2. In cancer cycling 
cells, we found 51 genes (21.4% and 19.5%) correlat-
ing with poor survival in both datasets (Fig.  4C) and 
in cycling T-cells we found 37 genes (19.4%) that cor-
relates with poor survival in dataset 1 and 94 genes 
(21.5%) in dataset 2.

Fig. 2  Stemness model using single cell datasets. A UMAP plot of two independent single cell breast cancer datasets (i, ii). Gradient (blue to red) 
indicates low to high stemness. B Cell clustering of major cell types across each dataset. Colors denote the following cell types seen endothelial, 
cancer associated fibroblasts (CAFs) B cell, T cells, myeloid, normal epithelial, plasmablasts and cancer epithelial cells (from lightest to darkest blue) 
in dataset 1 (i) and dataset (ii). C Cell proportion of major cell type clusterings in each breast cancer histotype in both dataset 1 (i) and dataset 2 (ii). 
Colors align with cell type identification. D UMAP of iPS single cell dataset used for stemness model. Gradient (blue to red) indicates low to high 
stemness. E Stemness index distribution of single cell iPS (blue) compared to breast cancer cells in dataset 1(pink) and dataset 2(green)
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We sought to apply this single cell derived stemness 
model into spatial omics (transcriptomic and proteom-
ics) datasets. Breast cancer tumor samples profiled 

across five different spatial omics assays were analyzed: 
one spot based whole-transcriptomics sequencing assay; 
two high plex in  situ probe-based imaging platforms 

Fig. 3  A UMAP plots of stemness model from two breast cancer single cell datasets (i, ii) of the top (red) and bottom (blue) stemness cells. B 
Cancer basal (yellow), cancer cycling (black), and cycling t-cells (red) showing cell types overlapping most top stemness cells in both datasets (i, ii). 
C Stemness distribution in dataset 1 (i) and dataset 2 (ii) of breast cancer single cells with the highest stemness seen in cancer basal (yellow), cancer 
cycling (black) and cycling t-cells (red) compared to all other cells for both datasets (gray)



Page 8 of 12Dezem et al. BMC Genomics          (2023) 24:717 

and two high plex protein-based platforms. The spatial 
whole transcriptomics assay (Visium) used spatially bar-
coded RNAseq to generate high-resolution maps of gene 
expression patterns in intact tissue sections. We obtained 
17 distinct clusters from 4,665 spots and 47,774 features 
(Fig. 5A). We used 12,342 features overlapping with the 
original model to generate new weights to perform cor-
relation and generate stemness scores for each spot. The 
average stemness score of 0.52 for all spots across the 
whole sample. For spots demarcated by pathologist clas-
sification as invasive cancer, the ML model had the high-
est average of all classified spots presented of 0.55.

We next determined if the ML model was applica-
ble to RNA probe based assays that are not the entire 

transcriptome. Using a publicly available dataset, we 
obtained 27 clusters from 889,765 cells profiled from 
a breast cancer panel (280 genes) on a high plex in  situ 
imaging Xenium platform (Fig.  5B). We predicted 
stemness scores for each segmented cell as described in 
the methods section. The average stemness score was 
0.546. We used the scRNAseq dataset 1 to predict cell 
types based on 1) the cell type scoring using the biomark-
ers present in the antibody panel and 2) the correspond-
ing cell type previously annotated. We created a scoring 
approach to classify each cluster based on the expres-
sion of these markers and labeled by the highest scoring 
cell type. To interrogate the reliability and reproduc-
ibility of the ML stemness model across platform types, 

Fig. 4  Gene expression analysis of stemness model A) Volcano plots of top and bottom stemness cancer basal cells from dataset 1 (i) and dataset 
2 (ii) respectively. Gradient depicts negative logFC (blue) to positive logFC (red). Y axis represents the statistical significance and X axis the different 
percentage of cells expressing a given gene. Positive different percentage means that top stemness cells have more cells expressing that gene. B 
GO enrichment analysis of the top regulated genes in cancer basal top stemness cells for dataset 1 (red) and dataset 2 (blue). The number of DEG 
is plotted on the X axis and GO categories the genes are represented in are plotted on the y axis. C Survival analysis from TCGA breast cancer cohort 
of up regulated genes on top stemness cell type across datasets 1 and 2. Rows represent different gene lists according to dataset and cell type. 
Hazard ratio > 1 in blue, < 1 in red (p-value < 0.05)
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we tested this model in a publicly obtained dataset from 
another in situ probe based imaging platform. From the 
breast câncer sample using MERSCOPE technology, we 

obtained 18 clusters from 710,073 cells profiled with 500 
genes (Fig. 5C). We applied the same reference to score 
clusters and assign cell type annotation in another in situ 

Fig. 5  Spatial analysis of stemness model A) Each spot from the section placed on Visium barcoded array is represented with i) a cluster projection 
ii) stemness score pathology classification for each spot of the Visium sample and distribution plots of stemness score across classified regions. 
B Cluster projection, stemness score, cell type prediction for each segmented cell’s centroid location and distribution plot of stemness score 
per annotated cell types of Xenium sample. C Cluster projection, stemness score, cell type annotation for each segmented cell’s centroid location 
and distribution plot of stemness score per annotated cell types of the MERSCOPE sample. D Cell type annotation, stemness score for each 
segmented cell’s centroid and distribution plot of stemness score per annotated cell type of the PhenoCycler sample. E Cell type annotation, 
stemness score for each segmented cell’s centroid and distribution plot of stemness score per annotated cell type of the CosMX sample
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platform dataset (Xenium). The average stemness score 
was 0.474 for all cells, and the two highest scoring cell 
populations were in breast cancer cells and epithelial 
cells and the lowest cell population stemness score was in 
fibroblast cells (Fig. 5C).

The ML model showed robustness across three dis-
tinct spatial transcriptomics methodologies. We next 
tested its application to high plex proteomic based imag-
ing platforms. A breast cancer sample was analyzed 
using an immuno-oncology specific 45 plex antibody 
panel (Phenocycler Fusion Discovery panel) and 62 plex 
panel (CosMX). From the Phenocycler Fusion sample, 
1,040,049 cells were seen across 56 clusters. Based on 
marker correlation, we annotated 14 different cell types 
(e.g. cycling cancer cells), similarly seen in both the sin-
gle cell and spatial transcriptomic data. The average 
stemness score was 0.516 and the highest scoring cell 
populations were tumor cells (0.52), Tregs (0.604), pro-
liferating tumor cells (0.525) and helper T cells (0.603). 
Consistently, normal epithelial cells had the lowest score 
of all cell types, with an average of 0.246 (Fig.  5D). For 
the CosMx sample, 472,763 cells were identified across 
14 cell types, the average stemness score was 0.51 and 
the highest stemness scoring cell types were epithelial 
tumor (0.542) and endothelial (0.547) (Fig.  5E). Overall, 
the average stemness score for all different spatial omics 
assays were similar, and the cell types presenting a higher 
stemness profile were also similar.

Discussion
Our study demonstrates the utility of ML modeling for 
agnostic cell type annotation in both scRNAseq and spa-
tial omic data [33]. This ML model overcomes the com-
putational hurdles and challenges of analyzing millions 
of cells against hundreds of features [11]. An advantage 
to this ML model for scRNAseq and spatial omics anal-
ysis also include faster processing time than laborious 
manual cell phenotyping which is exponentially longer 
in spatial omics analysis. We demonstrate its robustness 
across a variety of spatial omics technologies including, 
sequencing based, RNA/in situ probe based and protein 
based platforms. Using our stemness scRNAseq and spa-
tial model approach to breast cancer, we identified cell 
types within existing cell clusters attributable to cancer 
stemness which were not previously described. This ML 
approach can identify scRNAseq features that are predic-
tive of clinical outcome, which can help in patient stratifi-
cation and personalized medicine.

Breast cancer tumor biology is concordant with the 
stemness predictions of the model [14, 34] such that 
cell types known to be involved in more aggressive dis-
ease have increased stemness (e.g. proliferating tumor 

cells). Similarly, cells that are responsible for effective 
immune response (e.g. helper T cells) are decreased 
in tumors with high stem. This method also addresses 
the problems of proper cell annotation such that cells 
regardless of their annotated cell identity can be prop-
erly identified based on their level of stemness. Nor-
mal epithelial cells without annotation were identified 
with no levels of stem, while proliferating tumor cells 
had high levels of stemness. This model can be more 
broadly applied to various diseases, treatment con-
ditions and genetic differences compared to existing 
manual cell curation methods.

The interaction of breast cancer cells with their envi-
ronment relies on communication between local cues, 
cancer cells, cancer stem cells, immune cells and stro-
mal cells within the tissue [13]. This TME has clearly 
been linked to prognosis, recurrence, treatment resist-
ance and outcome [13]. For example, breast cancer 
treatment targets the proliferative advantage breast 
cancer cells have compared to adjacent normal cells. 
Pathological diagnosis and treatment assessment is 
based on the subtype that the breast cancer tumor 
cells fall into based on 1) clinical staging, 2) histology, 
3) biomarker expression and 4) molecular profiling by 
gene expression [35–37]. This study demonstrates the 
TME in breast cancer based on a variety of spatial data 
and technologies is very consistent with pathological 
anatomical features in relation to stemness. We present 
for the first time a ML model that can predict stemness 
while preserving the spatial context of cell interactions 
within the tissue. This model highlights the importance 
of understanding where in the tumor, more aggres-
sive, stem-like cells are situated and the TME that sur-
rounds them. This model preserves single cell identities 
and can incorporate existing single cell data to inform 
which cell types are more stem-like, highlighting the 
adaptability to existing single cell datasets and the inte-
gration into emerging spatial omic datasets. This model 
is also agnostic to which single cell or spatial technol-
ogy is used to generate the input datasets.

Because the TME is a critical aspect of breast can-
cer management, this study lends to the importance 
of harnessing cell identities, composition and interac-
tions from single cell and spatial omics data to improve 
our understanding of clinical outcomes and treatment. 
The ease of use and speed of this model makes it highly 
attractive to generate stemness prediction and discover 
pathogenicity of the tumor when confronted with ana-
lyzing millions of cells at a time. Overall, ML-based 
methods can provide a powerful toolset for scRNAseq 
and spatial omics analysis, which can help accelerate 
our understanding of cancer stemness and its clinical 
relevance.
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Supplementary file 1: Supplemental Figure 1. (A) Stemness on boot‑
strapped high and poor quality breast cancer samples on dataset 1 (i,ii) 
and dataset 2 (iii,iv). Each figure represents one sample and the box plot 
indicates the stemness distribution of a subset of cells that grows in num‑
ber to the right untill the total cells for that given sample. (B) Rank barplot 
of number of cells by patient samples for dataset 1 (i) and dataset 2 (ii). 
Supplemental Figure 2. Gene expression analysis of stemness model. 
Volcano plots of top stemness A) cancer cycling cells from dataset 1 (i) 
and dataset 2 (ii) respectively. Gradient depicts negative logFC (blue) to 
positive logFC (red). Y axis represents the statistical significance and X axis 
the different percentage of cells expressing a given gene. Positive different 
percentage means that top stemnes cells have more cells expressing that 
gene. B) GO enrichment analysis of the top regulated genes in cancer 
cycling cells for dataset 1 (red) and dataset 2 (blue). The number of DEG is 
plotted on the X axis and GO categories the genes are represented in are 
plotted on the y axis. C) Volcano plots of top stemness cycling T cells from 
dataset 1 (i) and dataset 2 (ii) respectively. Gradient depicts negative logFC 
(blue) to positive logFC (red). D) GO enrichment analysis comparison from 
the number of up regulated genes in cycling t-cells dataset 1 (red) and 
dataset 2 (blue). E) Gene similarity score of upregulated genes from cancer 
basal high stemness cells vs cluster markers genes. On the left, dataset 1 
high stemness genes are compared to gene markers from dataset 2. On 
the right, dataset 2 high stemness genes are compared to gene markers 
from dataset 1. Gradient depicts less gene similarity (blue) to greater gene 
similarity (red). Supplemental Figure 3. (A) Heatmap of gene similarity 
analysis of cluster markers in dataset 1 compared to dataset 2 for cancer 
basal DEGs and (B) heatmap of gene similarity analysis of cluster markers 
in dataset 2 compared to dataset 1 for the same cell type. Supplemetal 
Figure 4. QC Metrics of Akoya PhenoCycler and Nanostring CosMx 
samples. A) Violin plot of fluorescence intensity signal (nCount_Akoya) 
showing the number of proteins detected per cell (nFeature_Akoya). B) 
Scatter plot of number of fluorescence intensity (x-axis).
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