
Wang and Adler  BMC Genomics          (2023) 24:625  
https://doi.org/10.1186/s12864-023-09724-4

RESEARCH

CRISPR/Cas9-based depletion of 16S 
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of single-cell RNA-sequencing in planarians
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Abstract 

Background Single‑cell RNA‑sequencing (scRNA‑seq) relies on PCR amplification to retrieve information from van‑
ishingly small amounts of starting material. To selectively enrich mRNA from abundant non‑polyadenylated tran‑
scripts, poly(A) selection is a key step during library preparation. However, some transcripts, such as mitochon‑
drial genes, can escape this elimination and overwhelm libraries. Often, these transcripts are removed in silico, 
but whether physical depletion improves detection of rare transcripts in single cells is unclear.

Results We find that a single 16S ribosomal RNA is widely enriched in planarian scRNA‑seq datasets, independent 
of the library preparation method. To deplete this transcript from scRNA‑seq libraries, we design 30 single‑guide 
RNAs spanning its length. To evaluate the effects of depletion, we perform a side‑by‑side comparison of the effects 
of eliminating the 16S transcript and find a substantial increase in the number of genes detected per cell, coupled 
with virtually complete loss of the 16S RNA. Moreover, we systematically determine that library complexity increases 
with a limited number of PCR cycles following CRISPR treatment. When compared to in silico depletion of 16S, physi‑
cally removing it reduces dropout rates, retrieves more clusters, and reveals more differentially expressed genes.

Conclusions Our results show that abundant transcripts reduce the retrieval of informative transcripts in scRNA‑seq 
and distort the analysis. Physical removal of these contaminants enables the detection of rare transcripts at lower 
sequencing depth, and also outperforms in silico depletion. Importantly, this method can be easily customized 
to deplete any abundant transcript from scRNA‑seq libraries.
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Background
Recent advances in single-cell transcriptomics (scRNA-
seq) have greatly facilitated the exploration of cell type 
complexity. By capturing and barcoding mRNA on a cell-
by-cell basis, scRNA-seq enables the identification of dif-
ferent cell types in a wide range of species. However, an 

important aspect of scRNA-seq is quality control in the 
analysis, which involves removing potential confound-
ing factors such as sequencing depth and the percentage 
of mitochondrial reads [1, 2]. While these factors can be 
normalized in silico, it is optimal to minimize unwanted 
transcripts during library preparation to improve effi-
ciency and more accurately probe cell complexity.

To maximize retrieval of protein-coding transcripts, 
most scRNA-seq methods capture mRNA by poly(A) 
enrichment [3, 4]. Ideally, poly(T) primers selectively 
bind to polyadenylated protein-coding transcripts to 
enable reverse transcription. This approach effectively 
eliminates ribosomal RNA, which comprises > 80% of 

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Genomics

*Correspondence:
Carolyn E. Adler
cea88@cornell.edu
1 Department of Molecular Medicine, Cornell University College 
of Veterinary Medicine, Ithaca, NY, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-023-09724-4&domain=pdf


Page 2 of 15Wang and Adler  BMC Genomics          (2023) 24:625 

total RNA. Despite its utility, poly(A) enrichment also 
prevents the capture of some informative RNA species, 
including histone mRNA, miRNA, and enhancer RNAs 
[5]. In addition, unwanted transcripts such as mito-
chondrial RNA leak out of damaged cells and are carried 
through into cDNA libraries [2]. These contaminants 
often appear as ambient RNA, a computational challenge 
for cell calling algorithms that can introduce bias into 
normalization [6, 7]. Due to these issues, poly(A) enrich-
ment can distort the global transcriptional landscape.

Alternative ribodepletion methods have recently been 
developed for single-cell transcriptomics. For exam-
ple, VASA-seq generates cDNA by hexamer primers 
with a T7 handle to enable subsequent RNA amplifica-
tion by in vitro transcription. Ribosomal RNAs will then 
be removed from amplified RNA by rDNA probes and 
RNAse-H-mediated digestion [8]. RamDA-seq uses spe-
cific hexamers that are not present in rRNA to exclude 
it from downstream steps [9, 10]. However, these meth-
ods require new chemistry and reagents, raising the entry 
barrier for in-house setup.

Depletion of Abundant Sequences by Hybridization 
(DASH) is a CRISPR/Cas9-based method to remove 
unwanted DNA sequences from any DNA library 
[11]. With the customized design of single guide RNA 
(sgRNA), Cas9 can precisely remove unwanted cDNA 
sequences, and further enhance the detection of rare 
transcripts. DASH has not only been shown to efficiently 
deplete unwanted sequences in 16S sequencing and bulk 
RNA-seq [12, 13] but has been adapted to single-cell 
transcriptome methods, including scCLEAN, Smart-seq-
total and MATQ-seq [14–17]. However, whether this 
depletion impacts library complexity or other metrics of 
sequencing quality has yet to be tested systematically.

Planarian mitochondrial 16S rRNA sequences are 
known to make up ~ 30% of bulk RNA-seq libraries gen-
erated by poly(A) enrichment [18]. In scRNA-seq experi-
ments, most studies remove 16S from the analysis, but to 
what extent 16S rRNA contaminates scRNA-seq remains 
elusive [19, 20]. Here, we reanalyzed published datasets 
and found that unique molecular identifiers (UMIs) map-
ping to 16S constitute approximately 5–74% of sequenc-
ing reads regardless of the single-cell library generation 
strategy. We adapted DASH, which leverages CRISPR 
to remove unwanted sequences, to the 10X Chromium 
protocol to deplete mitochondrial 16S cDNA from pla-
narian sequencing libraries [18]. We sequenced the same 
library with and without DASH treatment and carried 
out a side-by-side analysis to determine the impact of 
DASH treatment on overall scRNA-seq performance. We 
show that our protocol specifically depletes more than 
90% of 16S UMIs from both cells and ambient RNA. This 
depletion increases the number of genes and non-16S 

UMIs detected per cell which improves the downstream 
analysis. We conclude that DASH can enhance library 
complexity, boosting the information retrieved from 
scRNA-seq experiments, with significant economic ben-
efits. Importantly, this technique can be easily custom-
ized to deplete any abundant transcript after single-cell 
libraries are generated.

Results
Mitochondrial 16S transcript dominates reads in planarian 
scRNA‑seq datasets
Planarians were one of the first animal models to be 
profiled at the whole organismal level using scRNA-seq. 
Because several different sequencing strategies have been 
applied to planarians, we first asked which method has 
the highest library complexity and the least 16S rRNA 
contamination. Thus, we collected 13 datasets from 7 
studies using Drop-seq [19, 21], Smart-seq2 [22], Split-
Seq [23], Split-Seq with ACME fixation [24], and 10X 
Chromium [20, 25] (Fig.  1). All methods use poly(T) 
primers to capture transcripts except for Split-Seq, which 
uses a mixture of random hexamers and poly(T) primers. 
To standardize these comparisons across libraries, we 
used the same pipeline to pre-process the barcodes and 
UMI tagging, align the reads to the genome (including 
the mitogenome), and generate quality metrics using the 
same parameters [26, 27].

To assess the abundance and quality of these different 
sequencing strategies, we applied several metrics. First, 
we analyzed the percentage of UMIs that mapped to the 
16S transcript. Libraries made with 10X Chromium had 
the highest percentage of UMIs mapping to this tran-
script (61% and 74% on average) (Fig.  1A). By contrast, 
SplitSeq libraries were the lowest (ranging from 5 to 8%). 
DropSeq and ACME-based strategies ranged from 21 to 
52%. The prevalence of 16S was unique because another 
mitochondrial rRNA, 12S, was consistently low across all 
datasets (Fig. 1B). These findings showed that in various 
scRNA-seq methods, the single 16S transcript accounted 
for a significant fraction of UMIs. Although Split-Seq 
appears to have the lowest percentage of UMIs mapping 
to the 16S, these libraries also had the highest number 
of unmappable reads (Supplementary Table  1). Next, 
we examined library complexity by assessing the num-
ber of genes and UMIs per cell. While 10X Chromium 
retained the highest levels of 16S UMIs as compared to 
other tested library methodologies, it also yielded the 
greatest library complexity, as assessed by the genes and 
UMIs detected per cell (Fig. 1C, D). In conclusion, these 
results show that 16S contamination is a severe problem 
in scRNA-seq preparation for planarians.

Because all of the scRNAseq library strategies rely on 
poly(A) enrichment, we hypothesized that 16S may be 
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retained because of either polyadenylation or an internal 
polyA stretch [28, 29]. To distinguish between these two 
possibilities, we analyzed the coverage of reads across 
the 16S locus in one of our datasets using 10X Chro-
mium. We found that the reads from a 10X dataset were 
strongly skewed to the 3’ end (Supplementary Fig.  1A), 
similar to other protein-coding genes, suggesting poly-
adenylation of 16S (Supplementary Fig.  1B). We also 
identified poly(A) stretches close to the middle of the 16S 
sequence (Supplementary Fig.  1B). Although these data 
did not provide a clear reason for the high abundance of 
16S rRNA, we sought an alternative method to exclude 
16S rRNA for scRNA-seq preparation.

DASH effectively depletes 16S cDNA in scRNA‑seq libraries
Due to the widespread use of the 10X Chromium 
scRNA-seq platform, and because it yields the high-
est library complexity in planarians, we sought to opti-
mize the 10X protocol by selectively removing the 16S 

sequence. During single-cell RNAseq library preparation, 
reverse transcription occurs immediately after cell lysis, 
concomitant with barcoding, so any depletion must hap-
pen during or after this step [4]. Ribodepletion methods 
that remove unwanted RNA, such as RNAse-H medi-
ated digestion, are difficult to integrate with 10X scRNA-
seq because it is challenging to deplete RNA inside 
droplets before cDNA synthesis. Depletion of Abun-
dant Sequences by Hybridization (DASH) is a CRISPR/
Cas9-based  method that effectively depletes cDNA in a 
sequence-specific manner, making it a promising method 
to eliminate the 16S transcript after barcoding [11]. 
Therefore, we designed 30 non-overlapping single guide 
RNAs (sgRNAs) tiling the entire 16S transcript. To elimi-
nate this transcript, we reasoned that degrading 16S as 
early as possible after cDNA conversion would be opti-
mal to preserve the transcriptional repertoire. We inte-
grated DASH into the 10X Chromium workflow by only 
performing 10 PCR cycles after cDNA conversion, then 

Fig. 1 Planarian 16S rRNA is highly enriched in various scRNA‑seq platforms. A, B Violin plots show the percentage of 16S UMIs (A) and 12S UMIs 
(B) across different published scRNA‑seq datasets. C, D Violin plots show the number of genes (C) and UMIs (D) per cell. Note, SmartSeq2 does 
not implement UMI. The values graphed indicate total read counts for SmartSeq2. DropSeq.1–5: “head” datasets [19]; DropSeq.6:gfp(RNAi) [21]; 
SmartSeq2 [22]; SplitSeq.1–3: 0 days post‑amputation (dpa), 1dpa and 2dpa [23]; SplitSeq.ACME [24]; 10X.1: post‑pharyngeal wound fragments, 0 h 
[25]; 10X.2: X1 cells[20]
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incubating the cDNA with pooled sgRNAs complexed 
with Cas9. After CRISPR/Cas9 degradation, we further 
amplified cDNA with 10 additional PCR cycles, fol-
lowed by the standard end repairing and indexing steps 
(Fig. 2A).

To test whether DASH could deplete 16S sequences 
from cDNA libraries, we first generated three 10X 3’ 
scRNA-seq cDNA libraries from planarian stem cells. 
Next, we split the cDNA libraries and generated DASH-
treated (‘DASHed’) libraries for each biological replicate 
(Fig.  2B). By sequencing the same biological libraries 
before and after DASH treatment, we could benchmark 
the impact of DASH treatment at the single-cell level by 
analyzing shared cell barcodes (Fig. 2C).

To assess the efficiency of 16S depletion, we compared 
untreated and DASHed libraries on the Bioanalyzer. 
Fragment analysis showed a strong peak around 1334 bp 
in the untreated cDNA that was absent in the DASHed 
cDNA, while the rest of the profile remained comparable 
(Fig. 2D). Planarian 16S rRNA is predicted to be ~ 900 bp 
long [18, 30]. Even with the addition of 112 bp of prim-
ers from the 10X library (82 bp, poly(dT) primer + 30 bp, 
TSO primer), this does not account for the discrep-
ancy in length, raising the possibility that this peak may 
not represent the true 16S transcript. To verify that we 
depleted the 16S transcript, we compiled 3 scRNA-seq 
replicate libraries before and after DASH treatment into 
a pseudobulk plot. Indeed, differential expression analysis 
showed that the 16S rRNA was the only downregulated 
gene in DASHed datasets (Fig.  2E). This specific down-
regulation suggests that the highest peak in the untreated 
library may represent 16S cDNA and that it can be effi-
ciently depleted by DASH.

To further evaluate whether CRISPR treatment induces 
any off-target digestion, we performed bulk RNA-seq on 

samples from whole animals that were either untreated 
or DASHed. We sequenced three biological replicates 
each of unc-22(RNAi) and FoxA(RNAi) animals (Fig. 2F). 
The results indicate that 16S was the only downregulated 
gene in the DASHed datasets, suggesting that DASH 
treatment did not cause pervasive off-target effects.

Overrepresentation of 16S UMIs causes aberrant cell 
calling
Cell calling algorithms rely on the assumption that cells 
have significantly more UMIs than empty droplets and 
ambient RNA, so they can distinguish cells from non-
cells by total UMIs associated with each cell barcode [4]. 
We hypothesized that the high prevalence of 16S rRNA 
could potentially interfere with cell calling by inappro-
priately ‘calling’ cells that in reality are ambient RNA. 
To evaluate the effect of DASH treatment on cell call-
ing, we obtained lists of cell barcodes from untreated and 
DASHed libraries generated by Cell Ranger for each of 
the 3 biological replicates (Fig. 2C). The majority of cell 
barcodes were shared between untreated and DASHed 
datasets for each replicate (Supplementary Fig.  2A). 
Across all 3 replicates, the untreated datasets consist-
ently had more cell barcodes called by Cell Ranger as 
cells (ranging from 9 to 20% of the total) (Supplemen-
tary Fig.  2A). Of the barcodes that were unique to the 
untreated libraries, the vast majority (> 90%) mapped to 
16S UMIs (Supplementary Fig.  2B). Barcodes shared by 
both untreated and DASHed libraries had 58–60% of 
16S UMIs in untreated datasets, which is comparable to 
previously published datasets (Supplementary Fig.  2B; 
Fig. 1A). By contrast, the barcodes that were specific to 
the DASHed libraries had very low levels of 16S UMIs 
(< 0.2%), indicating that the depletion was thorough 
(Supplementary Fig. 2B). Together, these results suggest 

(See figure on next page.)
Fig. 2 Workflow and depletion of 16S sequence with DASH. A Schematic of DASH protocol. The orange box highlights the DASH‑specific steps, 
and all other steps are in the standard 10X protocol. Probes containing poly(T)VN, where V is any base except T, and N is any base, are used 
for poly(A) enrichment. cDNA is reverse‑transcribed in the 10X Chromium Controller and amplified by cDNA primers, Read1 and template switching 
oligo (TSO). After generation of cDNA, 16S is depleted by incubation with Cas9 and sgRNAs targeting the 16S sequence, followed by post‑CRISPR 
amplification with the same cDNA primers. The re‑amplified cDNA is then fragmented and indexed for subsequent sequencing. B Schematic 
of experimental design to benchmark the performance of DASH. Three biological replicates of stem cells (X1 cells) are sorted and processed 
for cDNA preparation. cDNA is then split into “untreated” and “DASHed” libraries. Sequencing reads are processed by CellRanger and then the cell 
barcodes recovered from both groups are used for downstream analysis. C Venn diagram of cell barcodes from untreated and DASHed libraries. 
The shared cell barcodes are used to assess library quality. D Fragment analysis of untreated cDNA (top) and DASHed cDNA (bottom). x‑axis shows 
fragment size in base pairs (bp), and y‑axis shows relative fluorescence units (RFU). Red peak marks the lower marker (1 bp) and blue peak marks 
the upper marker (6000 bp). E Volcano plot of differential expression analysis of DASHed versus untreated 10X scRNA‑seq datasets. Data includes 
3 biological replicates of scRNA‑seq libraries combined and analyzed as pseudobulk samples. x‑axis is the average log2 fold change across all 
cells. y‑axis is ‑log10 of adjusted p‑value of Wilcoxon Rank Sum test based on Bonferroni correction. The cutoff for significant genes is adjusted 
p‑value < 0.05 and absolute average  log2 fold change > 1. F Volcano plot of differential expression analysis of DASHed versus untreated bulk RNA‑seq 
datasets. Data includes 3 biological replicates of bulk RNA‑seq libraries for either untreated or DASHed. x‑axis is the average  log2 fold change 
across all cells. y‑axis is ‑log10 of adjusted p‑value of Wald test based on Benjamini–Hochberg correction. The cutoff for significant genes is adjusted 
p‑value < 0.05 and absolute average log2 fold change > 1
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that 16S comprises a significant proportion of total UMIs 
in both cell and ambient RNA and misleads the cell call-
ing process.

DASH depletes 16S rRNA and increases mRNA and gene 
recovery
In general, mitochondrial and ribosomal sequences are 
computationally removed from downstream analysis 
[19, 20]. Because depletion with DASH is so specific, it 
may achieve the same effect as this computational pro-
cessing step. Alternatively, the physical depletion of 16S 
at an early step in library generation could recover more 
sequencing information than computational removal. 
To assess the efficacy of 16S depletion on library com-
plexity, we normalized untreated and DASHed scRNA-
seq datasets to 100 million reads by downsampling 
and examined metrics of library quality. The 16S UMIs 
dropped from 60% to less than 0.2% in DASHed data-
sets, suggesting that the 16S cDNA was efficiently 
depleted (Fig. 3A). Moreover, the total number of genes 
detected per cell showed an increase ranging from 27 to 

40% (Fig. 3B), and the non-16S UMIs (mostly mapped 
to protein-coding transcripts) increased from 46 to 70% 
in DASHed datasets as compared to untreated libraries 
(Fig. 3C). These findings suggest that DASH treatment 
can enrich library complexity further than computa-
tional depletion alone (Fig. 3C, D).

To investigate whether the loss of complexity in 
the untreated library could be overcome by simply 
increasing sequencing reads, we performed a rarefac-
tion analysis. This analysis assesses library complexity 
by measuring how diversity increases with sequencing 
reads until it reaches saturation. We downsampled the 
datasets to 10, 50, and 100 million reads for replicates 
2 and 3, and 150 and 200 million reads for replicate 1, 
and examined the library quality metrics of shared cell 
barcodes. We found that the number of genes detected 
per cell and non-16S UMIs were consistently higher 
in DASHed libraries, even at the lowest read depths 
(Fig.  3D-E). These results indicate that the depletion 
of 16S rRNA consistently enhances library complexity 
given the same amount of reads, beyond what can be 
achieved by computational ribodepletion.

Fig. 3 DASH depletes 16S UMIs and enhances library complexity. A‑C, Boxplots show the percentage of 16S UMIs (A), numbers of genes (B) 
and non‑16S UMIs (C) per cell in three replicates before and after DASH treatment. The medians of the ratios in DASHed versus untreated are shown 
on the top. Each biological replicate (rep) is downsampled to 100 million reads. D‑E Rarefaction analysis of library complexity comparing untreated 
and DASHed libraries. Medians of genes (D) and non‑16S UMI per cell (E) are shown. Each dot represents a downsampled replicate with indicated 
total reads
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Post‑CRISPR amplification is necessary and improves 
library complexity
In scRNA-seq methods, the number of PCR cycles to 
amplify cDNA is adjusted based on the estimated cell 
numbers, tested empirically by the 10X manufacturer 
[4]. Over- or under-amplification leads to a decrease in 
library complexity. We asked if the post-CRISPR ampli-
fication is necessary and if so, what are the optimal PCR 
cycles that maximize library diversity without changing 
the overall fragment distribution. We sequenced repli-
cate 1 without any re-amplification (0 cycles), or with 
5, 10, and 15 PCR cycles of post-CRISPR amplification, 
and assessed library complexity by downsampling into 
the same total reads. cDNA amplified with 15 cycles was 
excluded from further sequencing because the cDNA 
trace changed drastically as compared to 5 and 10 cycles 
(Supplementary Fig. 3), suggesting that the composition 
of the library might have been altered by these additional 
PCR cycles. After sequencing, the number of UMIs and 
genes per cell increased with more PCR cycles (Fig. 4A-
B). Similarly, the rarefaction analysis also showed that 
library complexity was consistently higher in the 10-cycle 
condition (Fig.  4C-D). This finding suggests that post-
CRISPR amplification is necessary for improving library 
complexity, with an optimal cycle number of 10, at least 
for these samples.

Since the extra PCR steps were necessary for improv-
ing library complexity, we asked whether the extra PCR 
was biased to enrich certain transcripts or cells that are 
abundant in the library. Therefore, we compared the 
numbers of genes and UMIs in shared cells in untreated 
and DASHed libraries. The number of genes and non-
16S UMIs in each cell with and without DASH treat-
ment showed strong linear correlations, suggesting the 
relative UMI abundance across cells was maintained after 
DASH treatment  (R2 > 0.97) (Fig.  5A-B). Slopes greater 
than 1 in this analysis are indicative of a global increase 
in library complexity across cells. Moreover, we asked if 
these increases exist locally across different read depths. 
When we binned the cells into different groups based on 
the number of genes or UMIs, the levels of increase were 
consistent across different groups (Fig. 5C-D). Together, 
these findings show that DASH increases cell complexity 
in an unbiased manner.

Downstream single‑cell analysis improves after DASH
By reducing contamination and ambient transcripts, 
the goal of DASH depletion is to reduce background 
and improve detection of rare cell types or more poten-
tial marker genes. To assess the benefit of DASH treat-
ment as compared to the computational elimination of 
16S, we removed 16S UMIs computationally from all 

libraries, and then pooled the replicates from either 
untreated or DASHed libraries. We used the shared 
nearest neighbor (SNN) method in Seurat to cluster 
the cells in both datasets separately (Fig.  6A-B). Clus-
ters were annotated and aligned between two datasets 
based on previously described marker genes [19, 20] 
(Fig. 6C), except that cluster 13 could not be annotated 
due to the high percentage of 16S sequence (Fig.  6D). 
With only one exception, all other clusters were present 
in both groups (Fig.  7A-B). The unique cluster (C15) 
that appeared in the DASHed dataset represented cath-
epsin+ cells that were dispersed in the untreated dataset 
(Fig.  7A), suggesting that the clustering is more sensi-
tive due to the increased library complexity after DASH 
treatment.

Differential expression analysis in scRNA-seq often 
selects genes expressed in at least 10–25% of the cells 
within the cluster to obtain robust results [31]. The 
number of genes expressed in at least 25% of cells of 
DASHed datasets (3090 genes on average) was higher 
than untreated datasets (2101 genes on average) across 
clusters, except for cluster 13, which has the highest 
enrichment for 16S (Fig.  7C). To identify differentially 
expressed (DE) genes for each cluster, we used the Wil-
coxon Rank Sum test. Of the 17 clusters, 14 had more DE 
genes in DASHed than untreated datasets (Fig. 7D). We 
conclude that DASH treatment reduces the dropout rate 
of genes, enabling the clustering algorithm and differen-
tial expression analysis to perform better under the same 
parameters.

Discussion
Sparsity of reads in single-cell sequencing is a techni-
cal challenge that arises from flooding of transcripts of 
housekeeping genes and ambient RNA that may swamp 
out detection of biologically informative genes [7, 32]. 
In this study, we analyzed several different scRNA-seq 
methodologies used in planarians and show that the 
single transcript for the planarian 16S rRNA accounts 
for 20–80% of all reads. To eliminate this contaminant, 
we integrated a DASH depletion step into the protocol 
for scRNA-seq library generation and demonstrate that 
depletion of the 16S sequence benefits overall library 
complexity. Removing the 16S transcript early during 
library preparation enhances the discovery of mRNAs 
that differentiate potential cell types, which we showed by 
performing a parallel analysis of untreated and depleted 
libraries. In conclusion, by eliminating unwanted reads, 
our approach improves detection of gene expression and 
economizes sequencing yield. Our approach is also cus-
tomizable and can be adapted to any system where simi-
lar contamination is evident.
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An unusually high fraction of 16S ribosomal RNA 
in planarian datasets
The prevalence of mitochondrial UMIs has been widely 
used as quality control for identifying healthy cells in 
human and mouse datasets, where acceptable maxi-
mum levels range from 5–10% [33, 34]. In the planar-
ian S. mediterranea, mitochondrial 16S rRNA overflows 
RNA-seq experiments even after poly(A) enrichment 

[18]. Following poly(A) enrichment, 16S still makes up 
11–32% of total reads in bulk RNA-seq, and worsens in 
various single-cell methods, comprising 5–74% of total 
UMIs. While in most studies, the abundance of mito-
chondrial RNA is thought to arise from damaged cells, 
this is an unlikely source of 16S in planarians because 
most studies have used either fresh or FACS-purified 
live cells [18, 19, 21]. Ribosomal RNA transcribed in the 

Fig. 4 Post‑CRISPR amplification increases library complexity. A, B Boxplots showing the UMIs (A) and genes per cell (B) in libraries amplified with 
different numbers of PCR cycles post‑CRISPR. The medians are labeled in the 50th percentile in the box. C, D Rarefaction analysis of library 
complexity comparing the libraries amplified with different numbers of PCR cycles post‑CRISPR, showing the medians of genes (C) and non‑16S 
UMIs per cell (D). Each dot represents a downsampled replicate with indicated total reads
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nucleus is typically not polyadenylated, but reports have 
shown that both human and Drosophila mitochondrial 
16S and 12S rRNA do get polyadenylated [29, 35]. Our 
coverage plots show that sequencing reads skew toward 
the 3’ end of 16S transcript, a trend resembling that of 
protein-coding genes. Alternatively, 3 poly(A) stretches 
in the middle of the 16S sequence might also contribute 
to its abundance, but this is unlikely because if reverse 
transcription initiated internally, reads corresponding to 
the 5’ end would be enriched over the 3’ end. Moreover, 
we identified one AAU AAT  starting at position 808 and 
UUUUU starting at position 856 as potential upstream 
and downstream elements for poly-adenylation, respec-
tively. Thus, we speculate that the planarian 16S might 
have an exceptionally long poly(A) tail, leading to signifi-
cant capture in scRNA-seq, which remains to be tested 
experimentally. Overall, we capitalize on the overrepre-
sentation of 16S to investigate the impact of ribodeple-
tion on scRNA-seq.

Alternative strategies for depleting abundant transcripts 
in single‑cell RNA‑seq
Recent advances in the ribodepletion of scRNA-seq 
have been shown to improve library complexity, but 
most of them require using new set-ups or novel 

reagents [8, 10]. Our DASH-mediated approach is 
straightforward to implement and highly customizable 
to any system [11]. DASH has been shown to enhance 
library complexity in general but has been incorpo-
rated into single-cell methods in different ways [11, 
14, 16, 17]. A common workflow of single-cell tran-
scriptomes includes these steps in order: concomitant 
barcoding and reverse transcription, fragmentation 
of cDNA, and library indexing [3, 4]. Here, we digest 
the 16S rRNA before the fragmentation and index-
ing steps of the 10X Chromium protocol. To mini-
mize PCR bias and loss of rare transcripts, we used 
10 PCR cycles, 2 cycles fewer than recommended by 
10X Genomics, to amplify cDNA before CRISPR/Cas9 
digestion. After CRISPR digestion, we conduct a post-
CRISPR amplification to enrich cDNA diversity, result-
ing in less than 0.5% of total UMIs belonging to 16S. 
Although other single-cell total transcriptome methods 
include CRISPR/Cas9-mediated depletion strategies 
to remove ribosomal sequences, the depletion is not 
as complete as what we observe here (10% of reads for 
Smart-seq-total [14] and 34% for scDASH [16] mapped 
to the target genes). More recently, a technique called 
scCLEAN targets 255 housekeeping and ribosomal 
genes for removal during library preparation. Even after 

Fig. 5 DASH treatment boosts library complexity independent of read depth. A, B Comparison of genes per cell (A) and mRNA per cell (B) 
between untreated and DASHed libraries. Each dot represents a cell shared by untreated and DASHed libraries. Orange lines are the linear 
regression models. The slope (S) of the linear regression model and its R‑squared  (R2) value are indicated in the top left. C, D Boxplots show fold 
changes of DASHed vs. untreated in numbers of genes (C) and non‑16S UMIs per cell (D) across ranges
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Fig. 6 DASH treatment benefits clustering and differential expression analysis. A, B UMAP plots of untreated (A) and DASHed (B) samples. Each 
dot represents a single cell. Dots are color‑coded by clusters. C Dot plots of marker gene expression across annotated clusters. The size of the dots 
represents the percentages of cells within each cluster that express the marker gene. The color gradient represents the expression level. Red box 
shows the cluster unique to the DASHed dataset. D Violin plot showing the percentage of 16S UMIs in each cluster, where C13 has the highest (red 
box). Each dot represents a single cell
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depletion, reads mapping to these genes still constitute 
8% of the total reads [17]. The especially strong deple-
tion that we observe here may result from several fac-
tors: (1) the contaminant in planarians is just a single 

transcript, and therefore easier to target and remove, 
(2) we used 30 sgRNAs to target one gene, compared to 
other approaches that use fewer sgRNAs per gene, and 
(3) eliminating target genes as early as possible in the 
library preparation may be beneficial.

Fig. 7 DASH treatment benefits clustering and differential expression analysis. A, B UMAP plots of untreated (A) and DASHed (B) samples. Each 
dot represents a single cell. Cells belonging to cluster 15 (C15) in the DASHed sample are labeled in red. C Bar plot showing numbers of genes 
that are expressed in at least 25% of cells in the same cluster. Black box indicates the cluster that is unique to the DASHed dataset. D Bar plot shows 
numbers of differentially expressed (DE) genes across clusters, tested by Wilcoxon Rank Sum test and adjusted by Bonferroni correction. Black box 
indicates the cluster that is unique to the DASHed dataset
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Impact of ribodepletion by DASH
While other studies have shown the overall benefit 
of DASH on library quality, we performed a parallel 
analysis of the same library before and after depletion 
to show the impact of DASH at single-cell resolution. 
This analysis reveals two key benefits of depletion. 
First, our data demonstrate that not depleting the 16S 
transcript leads to aberrant cell calling. The extra cells 
in untreated libraries are highly enriched in 16S UMIs, 
indicating that ambient RNA can falsify the cell calling 
process [36]. Moreover, the distribution of transcripts 
during initial PCR steps required for library generation 
is distorted by their presence. Second, depletion of 16S 
does not appear to introduce bias in the analysis. We 
conclude this because the increase in library complex-
ity and fold change of genes increased uniformly across 
cells with different UMIs. Furthermore, clustering anal-
ysis showed overall agreement between untreated and 
DASH-treated datasets and improvement in detecting 
differentially expressed genes by reducing the drop-
out rates. These findings are important because most 
scRNA-seq normalization uses a “size factor”, which 
equalizes the cell read depth [37]. If the depletion hap-
pens disproportionately to the read depth across cells, 
normalization outcomes would be significantly altered 
by DASH.

In summary, we showcased the efficiency and robust-
ness of DASH in scRNA-seq by demonstrating ribode-
pletion of 16S in planarians. The customizability of 
DASH will benefit any model organisms that may suffer 
from contamination of ambient RNA, or overabundance 
of irrelevant transcripts in important scRNA-seq experi-
ments. The integration of DASH is a simple add-on to the 
current 10X protocol and therefore requires little exper-
tise in developing new single-cell protocols. In addition, 
because the depletion can be done at any time, our pro-
tocol offers significant flexibility for sequencing after 
library generation.

Limitations
The current protocol demonstrates that DASH can be 
successfully implemented for scRNA-seq of planarian 
stem cells using the 10X platform. Although we see no 
evidence of potential off-target effects of CRISPR diges-
tion, we have only validated this specificity using 30 sgR-
NAs to degrade a single transcript and have not tested 
how many are sufficient. Whether DASH treatment 
enhances library complexity in a more complex system, 
such as whole animals, remains to be examined. Addi-
tionally, the number of PCR cycles used to amplify cDNA 
before and after DASH treatment should be tailored for 
optimal results.

Conclusions
This study describes and benchmarks the ribodepletion 
of 16S rRNA by CRISPR-based treatment to improve 
scRNA-seq of planarians. Ribodepletion enhances the 
library complexity and performance of single-cell analy-
sis. This demonstrates the benefit of ribodepletion in the 
cDNA library over in silico removal of ribosomal RNA.

Methods
Library quality metrics for published datasets
Parallel-fastq-dump (0.6.7) was performed to retrieve 
fastq files from NCBI, and the SRA accession numbers 
were in Supplementary Table  1. All the preprocess-
ing and alignment in Fig.  1 use Drop-seq tools (2.3.0) 
except Smart-seq2 [3]. Smart-seq2 method does not 
have unique molecular modifiers (UMIs), so Smart-seq2 
dataset was processed differently [38]. Reads of Smart-
seq2 were aligned to a customized genome file contain-
ing both the chromosomal-level (Smed_chr_ref_v1) [27] 
and mitochondrial genomes of Schmidtea mediterranea 
(NCBI accession number: NC_022448.1) using STAR 
(2.7.10) [39]. Reads mapped to exon regions annotated 
by the SMESG gene model were extracted and segregated 
into a gene expression matrix. In other single-cell RNA-
seq libraries, reads were aligned to the same genome file 
described above using Drop-seq tools[3]. Cell barcodes 
and unique molecular identifiers (UMIs) were extracted 
and tagged to the reads in BAM format and further 
segregated into a gene expression matrix. To calculate 
library quality metrics, ‘CreateSeuratObject’ function of 
Seurat (4.3.0) in R(4.2.0) was used to import the count 
matrix from Drop-seq tools or Smart-seq2 pipeline, 
which calculates total UMI counts and the number of 
genes expressed associated with each cell barcode [31]. 
Further, custom R codes were used to extract 16S UMIs 
and non-16S UMIs (total UMIs—16S UMIs). The work-
flow was adapted from TAR-scRNA-seq and compiled in 
snakemake (7.18.2) [40].

Worm care
Schmidtea mediterranea asexual clonal line CIW4 was 
raised in a recirculating water system supplemented with 
water containing Montjuïc salts [41, 42]. Animals were 
fed with beef liver and cleaned once a week. Animals 
were transferred to static culture containing 50  µg/mL 
gentamicin for at least a week prior to use.

Cell sorting
For each biological replicate, 10 animals were dissoci-
ated into single-cell suspensions by dicing in CMFB 
buffer [calcium-magnesium-free solution with 1% BSA 
(400  mg/L  NaH2PO4, 800  mg/L NaCl, 1200  mg/L KCl, 
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800 mg/L  NaHCO3, 240 mg/L glucose, 1% BSA, 15 mM 
HEPES, pH7.3)] and nutating for 2  h at room tempera-
ture. Cells were centrifuged at 500  g for 5  min, resus-
pended, and filtered through a 30  µm cell strainer (BD 
Biosciences, 340,628) to remove debris. The concentra-
tion of filtered cells was calculated using a TC20 auto-
mated cell counter (Bio-Rad). After centrifugation, cell 
concentration was adjusted to 100,000 cells/mL with 
staining buffer [CMFB containing DRAQ5 (5  µM) and 
Calcein-AM (0.4 µM)] and nutated at room temperature 
for 5 min. X1 cells were gated for vital 4N cells  (DRAQ5+ 
Calcein-AM+) on a Sony MA900 Cell Sorter. 100,000 
cells were sorted and diluted to a concentration of 1000 
cells/µL for subsequent library preparation.

sgRNA design and in vitro transcription
The detailed protocol for DASH is in the Supplemen-
tary Information. The 16S ribosomal RNA sequence was 
retrieved from the mitochondrial genome of Schmidtea 
mediterranea (NCBI accession number: NC_022448.1) 
and uploaded to IDT’s Alt-R Custom Cas9 crRNA Design 
Tool. 30 non-overlapping seed regions were selected 
from the output of the Design Tool to ensure complete 
digestion of the entire 905  bp transcript. The primer 
sequences are listed in Supplementary Information. To 
synthesize T7-flanking templates for sgRNA, PCR reac-
tions were assembled following the Phusion High-Fidelity 
(NEB) protocol with final concentrations of primers: one 
of the sgRNA primers (0.2  µM), T7RevLong (0.2  µM), 
T7FwdAmp (1  µM), T7RevAmp (1  µM). PCR reactions 
were carried out as follows: 98 °C 30 s, repeating the steps 
of 98 °C for 10 s, 51 °C for 10 s, 72 °C for 10 s 30 times, 
and then 72 °C for 2 min. PCR products were run on aga-
rose gels to determine whether primers remained. If they 
did, the PCR products were gel purified. To synthesize 
sgRNA, the concentration of templates of each sgRNA 
was measured by nanodrop and pooled equivalently. 
In  vitro transcription reactions were assembled as fol-
lowed: sgRNA templates (4 µg), 10X transcription buffer 
[0.1 M  MgCl2, 0.4 M Tris (pH 8.0), 0.1 M DTT, 20 mM 
spermidine] (10µL), 25  mM rNTPs (Promega) (8µL), 
T7 polymerase (generated in-house) (2µL), TIPP (NEB) 
(2µL), rRNAsin (Promega) (1µL) and nuclease-free water 
(adjusting the total volume to 100 µL). In  vitro tran-
scription reactions were incubated at 37  °C overnight. 
The next day, 2 µL RQ1 DNase (Promega) was added to 
remove templates and incubated at 37 °C for 20 min. To 
precipitate the sgRNAs, 250 µL ice-cold 100% ethanol 
was added to each reaction and incubated at -20  °C for 
1  h. sgRNAs were pelleted by centrifugation at 4°C for 
2 min at 17,000 g, and the supernatant was removed. To 
wash, 250 µL 70% ice-cold ethanol was added, followed 

by centrifugation for 2  min at 17,000  g twice. The sgR-
NAs were resuspended in 10 µL nuclease-free water.

10X single‑cell library preparation and DASH
Sorted cells were counted and checked viability on a 
Countess 3 Automated Cell Counter (ThermoFisher) 
with Trypan blue (0.4%) staining. Sorted cells show-
ing > 85% viability were used for 10X single-cell library 
preparation. To aim for recovery of 5000 cells after 
sequencing, 8250 cells were loaded onto the 10X Genom-
ics Chromium Controller for subsequent library prepara-
tion using Chromium Next GEM Single Cell 3ʹ Reagent 
Kit v3.1. Samples were amplified with 10 PCR cycles with 
cDNA primers (R1 + TSO) after clean-up. For DASH, 29 
µL CRISPR master mix [NEBuffer 3.1 (3µL), 20 μM sgR-
NAs (1µL, final 0.66  μM), 1  µM Cas9 Nuclease (NEB, 
M0386S) (2µL, 66  nM), nuclease-free water (23 µL)] 
was mixed and pre-incubated at 37°C for 10 min. Then, 
1µL (1–10 ng/µL) of cDNA was added to the master mix 
and incubated at 37°C overnight. After CRISPR treat-
ment, the cDNA was cleaned up and eluted into 15 µL 
using AMPure beads (Beckman) following the manufac-
turer’s protocol. Then, the cDNA was diluted to 30 µL 
and amplified with cDNA primers (R1 + TSO) again with 
10 cycles unless otherwise specified in this study. After 
PCR amplification, the cDNA was processed as specified 
in the 10X Genomics protocol for enzymatic fragmenta-
tion and indexing. Three biological replicates were used 
in this study. Libraries were pooled and sequenced using 
the NextSeq 2000 platform (Illumina). To assess whether 
16S cDNA was removed, we ran individual samples on 
the Fragment Analyzer (Agilent).

Bulk RNA‑seq preparation and analysis
Bulk RNA-seq libraries were generated from either 
unc-22(RNAi) or FoxA(RNAi) animals 14  days after the 
last RNAi feeding. RNAi was conducted as previously 
described [43]. Three biological replicates were gener-
ated from 5 whole animals for each RNAi condition. 
RNA was isolated using Trizol, and cDNA was generated 
using NEBNext® Ultra™ II Directional RNA Library Prep 
Kit for Illumina®. For DASH treatment, 1 µL of cDNA 
was mixed with CRISPR master mix to deplete 16S. 
Untreated and DASHed cDNA were then end-prepped 
and ligated to adaptors for indexing PCR. All libraries 
were pooled together and sequenced by HiSeq X Ten 
sequencer (2 × 150  bp). For the analysis, the sequencing 
reads were mapped to aligned to the same genome file 
as described above using STAR (2.7.10) [39], and reads 
mapped to exon regions annotated by SMESG gene 
model were extracted and segregated into a gene expres-
sion matrix. DESeq2 (3.17) was used to conduct differen-
tial expression analysis in R(4.2.0) [44].
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Single‑cell analysis for untreated and DASHed libraries
Figure  2B demonstrates the analysis workflow. The 
untreated and DASHed libraries from three biological 
replicates were processed by Cell Ranger (6.1.2) [4]. The 
lists of cell barcodes were retrieved from both librar-
ies and split into “untreated-specific”, “shared” and 
“DASHed-specific” categories (Supplementary Fig.  3). 
The percentage of 16S UMIs was calculated for each 
category. For the rest of the analysis, only “shared” cells 
were used.

For rarefaction analysis, we downsampled the data-
sets into 10, 50, and 100 million reads for replicate pairs 
2 and 3, and 150 and 200 million reads for replicate 
pair 1. Downsampled datasets were processed indepen-
dently in CellRanger.

For clustering analysis, the shared cells were further 
selected if the cells had (1) more than 200 genes and (2) 
piwi-1 expression ≥ 2.5  [log10(UMI-per-10,000 + 1)] to 
remove cells with low complexity and non-stem cells. 
If a cell didn’t meet the criteria in the untreated dataset, 
the same cells would be also eliminated in the DASHed 
dataset. Subsequently, all three replicates of either 
untreated or DASHed libraries were pooled separately. 
The libraries were normalized and scaled in Seurat and 
then integrated by Harmony (0.1.1) [45]. The first fifty 
Harmony coordinates were used to calculate UMAP 
embedding. The clustering used the first twenty Har-
mony coordinates with a resolution of 0.5 for the 
FindClusters function, which applies shared near-
est neighbor (SNN) method, resulting in 16 clusters 
in untreated and 17 clusters in DASHed datasets [31]. 
The list of markers from Zeng et al. (2018) was used to 
manually annotate and align the clusters [20]. To detect 
differentially expressed genes, Wilcoxon Rank Sum 
adjusted by Bonferroni correction was used to com-
pare untreated and DASHed samples (Fig. 2E) or across 
clusters (Fig. 7C, D). Differentially expressed genes (1) 
had an adjusted p-value < 0.05, (2) were expressed by at 
least 25% of cells within the clusters and (3) log2 fold 
change > 0.25 compared to other clusters.
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