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proteins are commonly presented in almost all domains 
of life, including bacteria, fungi, insects, plants, animals, 
and human microbiomes [2, 3]. However, related func-
tional studies have been limited and even neglected, 
probably due to their small size and difficulty in detec-
tion due to low abundance and or special properties3. 

Background
Microproteins, also called small proteins, or mini-
proteins, are encoded by small open reading frames 
(smORFs). Microproteins generally refer to proteins 
composed of up to 50 and 100 amino acids in prokaryotes 
and eukaryotes, respectively [1, 2]. Genes encoding such 
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Abstract
Microproteins, prevalent across all kingdoms of life, play a crucial role in cell physiology and human health. 
Although global gene transcription is widely explored and abundantly available, our understanding of microprotein 
functions using transcriptome data is still limited. To mitigate this problem, we present a database, Mip-mining 
(https://weilab.sjtu.edu.cn/mipmining/), underpinned by high-quality RNA-sequencing data exclusively aimed at 
analyzing microprotein functions. The Mip-mining hosts 336 sets of high-quality transcriptome data from 8626 
samples and nine representative living organisms, including microorganisms, plants, animals, and humans, in 
our Mip-mining database. Our database specifically provides a focus on a range of diseases and environmental 
stress conditions, taking into account chemical, physical, biological, and diseases-related stresses. Comparatively, 
our platform enables customized analysis by inputting desired data sets with self-determined cutoff values. The 
practicality of Mip-mining is demonstrated by identifying essential microproteins in different species and revealing 
the importance of ATP15 in the acetic acid stress tolerance of budding yeast. We believe that Mip-mining will 
facilitate a greater understanding and application of microproteins in biotechnology. Moreover, it will be beneficial 
for designing therapeutic strategies under various biological conditions.
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Recently, studies on microproteins as ‘dark matter’ in 
proteomics have received increasing attention [4]. Vari-
ous studies have reported discovering and characterizing 
smORFs and microproteins in different living organisms, 
including microorganisms, plants, and humans [5–8]. It 
was has revealed that some microproteins are essential in 
cellular physiology, metabolism, development, cell signal-
ing, and disease occurrence in various living organisms 
[9–15]. With the increasingly accumulated data available 
on the existence and expression of microproteins in mul-
tiple organisms, it will be feasible to unveil the functions 
and working mechanisms of this family of proteins.

Among the known functions of microproteins, cel-
lular stress responses are of particular interest in vari-
ous fields, including biology, biotechnology, and medical 
science [2]. Cells are confronted by constant changes in 
their external environmental conditions. During growth 
and metabolism, cells may encounter harsh environ-
ments, e.g., low pH, oxidative stress, high temperature, 
and toxins. Studies on microbial stress tolerance have 
received significant attention due to their implications in 
cell metabolism, environmental toxicity, food preserva-
tion, and fermentation efficiency to produce biofuels and 
biochemicals [16–20]. For example, the development of 
stress-tolerant yeast strains benefits efficient fuel ethanol 
production [21]. For higher eukaryotes such as plants and 
humans, failure to combat stressful environments leads 
to developmental deficiency and or diseases [18–20]. 
Therefore, stress tolerance has been an important topic 
for the developmental process, breeding crops, and dis-
ease treatment.

It has been reported that many microproteins partici-
pate in stress response and tolerance [2]. The develop-
ment of efficient high-throughput gene manipulating 
methods, for example, CRISPR-based genome editing 
tools, has enabled rapid characterization of micropro-
tein gene functions [11]. In addition, synthetic biology 
approaches can be employed to design and manipulate 
microproteins for improved phenotypes. Therefore, it 
can be expected that studying microprotein functions 
in stress response and tolerance substantially impacts 
microbial biotechnological applications, agriculture, lon-
gevity, and human health [22].

So far, there have been multiple databases collecting 
multi-layered information on microproteins, for exam-
ple, the plant-related ones, namely, Arabidopsis thali-
ana-oriented microprotein database ARA-PEPs [23]; 
and plant-oriented microprotein database PsORF [24]; 
as well as SmProt [25, 26] which is based on eight model 
organisms (Escherichia coli, yeast, zebrafish, rat, mouse, 
fruit fly, Caenorhabditis elegans, and human) integrat-
ing multi-source microprotein data mainly in Ribosome 
profiling sequencing (Ribo-seq) data and mass spectrom-
etry data. In addition, OpenProt [27, 28] was developed 

for small protein mining based on eukaryotes; TISdb 
[29] for alternative translation initiation in mammalian 
cells, and SORFs.org [30, 31], a database of small ORFs 
using Ribo-seq data. However, there are several limita-
tions of the current databases: (1) The species covered 
by the databases mentioned above are limited in specific 
domains of life (mostly plants, microbes and or animals); 
(2) Most of these databases only provide search results 
and cannot perform personalized analysis [32–34]; 
(3) Transcriptomic data have been largely overlooked. 
Transcription regulation is critical for gene expression, 
and transcriptome data are abundantly available, which 
benefits exploring differential transcription of possible 
microprotein-encoding genes and their related genes 
for functional characterization [35]. (4) No database has 
been developed to explore microproteins involved in 
responses to environmental stress and diseases, which 
are critical to sustainable bioproduction and disease 
treatment.

To address the above limitations, we have developed a 
microprotein mining database called Mip-mining, and 
made a collection of 336 sets of RNA-seq data from spe-
cies ranging from Escherichia coli to humans. The data-
base presented here is designed explicitly for probing 
microprotein functions, which enables locating func-
tional microproteins under stress conditions in a partic-
ular species or various diseases, especially cancers. Our 
database benefits the exploration of microprotein func-
tions in stress response and disease occurrence, which 
are receiving increasing attention in various fields [36, 
37]. We also demonstrate the identification of essen-
tial microproteins in budding yeast, plants, and humans 
using Mip-mining.

Construction and content
Database content
A total of 336 sets of data were deposited in the current 
version of our database covering nine species, including 
A. thaliana, E. coli, Oryza sativa, Saccharomyces cerevi-
siae, C. elegans, Danio rerio, Drosophila melanogaster, 
Mus musculus, and Homo sapiens. Each set of the data 
contains specific information: the GSE Accession of the 
RNA-seq data in the GEO database, the stress type of 
the experiment, the sample number of the data, and the 
source of the RNA-seq data, including the GSE title with 
the corresponding link. Each data set has been manually 
checked and processed using a high-performance com-
puting platform through a standard RNA-seq analysis 
process. Redundant intermediate files are deleted to save 
the time of users and computer storage space.

Data collection and organization
To reveal the relationship between microprotein and its 
function, we chose to collect stress-related data by using 
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keywords such as “stress” and “response to” to search in 
the GEO database [38]. Human diseases such as “diabe-
tes” and “cancer” are also related to stress [39], so we also 
added these data. The data as a whole has been manually 
checked to ensure that it retains the original data and that 
it belongs to RNA-seq files. Additionally, the correspond-
ing literature was also checked to confirm whether the 
results were related to stress. For a dataset to be included 
in our database, the corresponding relevant dataset was 
selected to meet the following predefined inclusion cri-
teria: (1) The original SRA file is available; (2) a related 
study for related research has been published and can be 
tracked; and (3) enough relevant RNA-seq data is avail-
able to construct at least one comparison model. Finally, 
we categorized the data according to species and stress 
types. The number of stress types in the database is listed 
in Table 1.

Reference genome resources and reference microproteins
Each species’ reference genome and annotation files were 
downloaded from GENCODE [40], Ensembl [41], and the 
NCBI-Genome database. The downloaded files contain 
reference genome fasta data, index data during Hisat2 
[42] alignment, and general feature format (gtf ) data.

Reference microproteins were obtained by a two-step 
screening. First, all microproteins (≤ 100 AA) related to 
each species were downloaded from the UniProt data-
base (https://www.uniprot.org/). Importantly, consider-
ing that most microproteins are large protein fragments 
or recognizable subunits, we performed a second round 
of screening and obtained high-confidence reference 
microproteins.

Expression matrix retrieval
We used the standard RNA-seq procedure to process 
the selected high-quality transcriptomic data. Sratoolkit 
(https://github.com/ncbi/sra-tools/wiki) is a toolkit pro-
vided by NCBI for processing sequencing data from the 
SRA database (Sequence Read Archive database [43]), 
and we used its built-in plugins for data processing. 

The Prefetch (version 2.10.9) was used to download 
the data, and fasterq-dump (version 2.10.9) assisted 
in decompressing data. In terms of quality control, we 
used FastQC (version 0.11.9) (http://www.bioinformat-
ics.babraham.ac.uk/projects/fastqc) to check data qual-
ity, multiQC (version 1.9) [44] to integrate data quality 
files, and fastp (version 0.19.5) [45] to cut low-quality 
fragments to ensure the quality of each set of informa-
tion. Next, we aligned the sequencing files to the ref-
erence genome using Hisat2 (version 2.2.1) [42], and 
we employed StringTie (version 2.1.4) [46] to generate 
merged transcripts, before converting them to the format 
adapted for the downstream processing R package called 
ballgown (version 2.18.0) [47].

Differential expression and enrichment
We conducted statistical analyses in the R environ-
ment (Version 3.6.1, http://cran.r-project.org/). Sev-
eral R packages were used; for instance, the “ballgown” 
(version: 2.18.0) constructed the gene FPKM expres-
sion matrix; for principal component analysis, we used 
“factoextra”(version: 1.0.7) [48] and “FactoMineR” (ver-
sion: 2.4) [49] packages for data dimensionality reduc-
tion. The differentially expressed microproteins were 
screened using the “limma” package (version: 3.42.0) 
[50]. Downstream enrichment analysis, including GO, 
KEGG, and GSEA annotations, are performed through 
these packages: “enrichplot” (version:1.6.0) [51], and 
“clusterProfiler” (version:3.14.0) [52]. Visualization of 
analysis results is achieved by integrating the “ggplot2” 
package (version: 3.3.3) [53] with the “ggrepel” package 
(version:0.9.1) [54].

Back and front-end design
The Microproteins mining database provides a user-
friendly web interface that enables users to search and 
retrieve microprotein-stress function associations in the 
database (Fig. 1. and Fig. 2.). All data in the Microproteins 
mining database were stored and managed using MySQL 
(version 5.5). The web interfaces and services were built 
using Tomcat 8, JDK 1.8, and Bootstrap 3. Some exem-
plary use cases showing the utility of Mip-mining are 
available at https://weilab.sjtu.edu.cn/mipmining/help.

Utility and discussion
Architecture of Mip-mining
The schematic overview of the data acquisition and con-
struction of the Mip-mining database is shown in Fig. 3. 
Firstly, data are collected from the GEO database with 
keyword searching; after a standardized RNA-seq analy-
sis using Hisat2-stringTie-ballgown processing on HPC 
(High-Performance Computing) [55], the differential 
expression matrix is obtained. Then R packages are used 
for searching differentially expressed genes enrichment 

Table 1 Number of stress conditions per species
Species Biolog-

ical re-
sponse

Chemical 
treatment

Disease Multiple 
stresses

Phys-
ical 
stress

S. cerevisiae 4 37 0 3 6
O. sativa 2 3 0 0 14
E. coli 0 37 0 3 6
A. thaliana 0 6 0 0 22
M. musculus 3 29 0 0 6
H. sapiens 3 17 91 0 9
D. rerio 3 12 0 0 9
C. elegans 6 8 0 0 9
D. 
melanogaster

1 9 0 0 2

https://www.uniprot.org/
https://github.com/ncbi/sra-tools/wiki
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://cran.r-project.org/
https://weilab.sjtu.edu.cn/mipmining/help
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analysis and result visualization. All results can be down-
loaded locally.

The Mip-mining database benefits the establishment 
of the relationship between differential expression of 
microproteins and various conditions (including external 
environmental response and internal disease develop-
ment). It would help to mine the corresponding func-
tions of microproteins. Mip-mining provide three major 
functions: (i) Browse and search primary data through 
condition type, species, and GSE accession (Fig.  1. and 
Fig.  2.); (ii) Identification of differentially expressed 
microproteins and corresponding functional enrichment 
analysis (Fig. 4. and Fig. 5.); (iii) Result visualization, and 
download.

We next demonstrate the utility of Mip-mining in stud-
ies of microprotein functions in several species through 
the case studies below.

Case studies
Case study 1. Stress tolerance-related microproteins in 
budding yeast S. cerevisiae
Yeast is commonly used in industries for food produc-
tion, pharmaceutical research, chemical fermentation, 
and renewable energy production [56]. During biopro-
duction, yeast cells are subject to various stress condi-
tions. For example, biorefinery of lignocellulosic biomass 
using yeast is negatively affected by decreased growth 
and metabolism due to inhibitors in biomass hydrolysate 
[57]. Among the inhibitors, acetic acid is commonly pres-
ent and is highly toxic to yeast cells [58]. Improvement 
of acetic acid tolerance is thus desirable to develop yeast 
strains for efficient lignocellulosic biorefinery. In this 
regard, we used Mip-mining to analyze the expression 
of small proteins under acetic acid stress. We found that 
among the small proteins ranked in the GSE52160 data 

Fig. 1 User interface of the Mip-mining database. (A) Global search function and related information are provided on the home page. Mip-mining offers 
a platform to search by species, stress type, and GSE ID. (B) Browse specific species data from Mip-mining
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set analysis, three genes encoding microproteins showed 
significant changes (Table 2). As recorded in the Saccha-
romyces Genome Database (SGD) [59], the knockout of 
the microprotein gene PMP2 directly affected growth 
under acetic acid stress, which supports that our data-
base is functional in revealing microproteins with known 
roles. Furthermore, deleting ATP15 and SDH6 were 

reported to affect the growth of S. cerevisiae under low 
pH conditions and respiratory growth [60–62], respec-
tively. The changed transcription level by the Mip-min-
ing analysis indicates that ATP15 may be involved in 
acetic acid stress. To further examine whether ATP15 is 
involved in acetic acid stress response, we overexpressed 
this gene using a high copy number plasmid pJFE3.

Fig. 2 User interface of the Mip-mining database. (A) Select search methods on the all-species page. (B) Personalized analysis on the analysis page. This 
analysis needs uploading the corresponding phenotype file, setting analyzed parameters, and then clicking the submit button. Users can also click “How 
to submit” to check help information
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The construction of ATP15 expressional plasmids and strains
The ATP15 expression plasmid pJFE3 was constructed 
by introducing the ATP15 gene cloned from Saccharo-
myces cerevisiae S288C into the high copy plasmid pJFE3 
[63] between the sites of TEF1p and PGK1t. Then, the 
expression plasmid and the empty plasmid pJFE3 were 
transformed into the auxotroph S. cerevisiae BY4741 to 
produce the ATP15 expressional strain BY4741-pJFE3-
ATP15. The correctness of the expression plasmid and 
recombinant strain construction was verified by sequenc-
ing after PCR amplification. The primers used in PCR for 
construction and verification are listed in Table S1.

Allocation of medium
SC-Ura fluid nutrient medium: YNB(Yeast nitrogen base 
without amino acid with (NH4)2SO4)6.7 g/L, amino acid 
mixture without URA 0.77 g/L, and glucose 20 g/L. The 
prepared medium was sterilized by autoclave at 115℃ 
for 15 min. Acid stress medium is based on SC-Ura fluid 
nutrient medium, adding 1  M HCL to adjust the pH to 
2.3. Acetic acid stress medium is prepared based on SC-
Ura fluid nutrient medium, with the addition of 4.2 g/L 
acetic acid.

Strain inoculation and culture
The constructed overexpressed strain and control strain 
were reactivated by SC-Ura liquid medium two times, 

Fig. 3 Schematic overview of the data acquisition and construction of the Mip-mining database. Items with blue and background represent data sources 
and data processing, respectively, whereas those with a light green background indicate sample distribution and differential expression gene analysis 
results. In addition, items with an off-white background correspond to the browse and search methods. The content of the statistics, submit, and help 
pages are shown in light blue, while the purple section represents enrichment analysis results
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which were then added to SC-Ura fluid nutrient medium 
to obtain seed liquid. The activated strains were inocu-
lated into shake bottles with the initial OD600 of 0.03, 
cultured at 30 °C shaking at 150 rpm. The broth was sam-
pled at an appropriate time point to detect the growth 
under stress-free and stress conditions.

The results revealed that high-level expression of 
ATP15 severely inhibits growth in the presence of ace-
tic acid; about 24 h longer lag phase time was observed 

when ATP15 was overexpressed. Reduced biomass was 
observed under non-stress and low pH (2.3) conditions. 
The unprecedented growth repression by ATP15 overex-
pression under acetic acid stress confirmed that this pro-
tein is critical in combating stress (Fig. 6.).

Case study 2. Microproteins in the model plant A. thaliana
Plant stress responses have been studied to provide a 
basis for breeding crops that resist salt, cold environment, 

Fig. 4 The first part of the Mip-mining database results page. DGEs (Differential Gene Expression) result table contains the microprotein gene names, 
Log2FC: an estimate of the log2-fold-change corresponding to the contrast (case vs. control), AveExpr: average log2-expression for the sample, T.statistic: 
moderated t-statistic, P.value: raw p-value, Adj.P.val: adjust corrected p-value, Log.odds: log-odds that the gene is differentially expressed and Group: gene 
label indicates up-regulation or down-regulation or stabilization of microprotein visualization of the sample distribution
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drought, or microbial pathogens [18]. The tempera-
ture is an essential factor among these stress conditions 
encountered by plants. Low or high temperatures affect 
the development of plants and their immunity to harsh 
conditions [64]. In this regard, we select GSE116004 for 
analysis, which compares the global transcription of the 
model plant A. thaliana at 37  °C with the control con-
dition at normal temperature (Table S1). We observed 
changes in PIP1 and PIP2, which were annotated as 
endogenous secreted peptides that elicit an immune 

response and positive regulators of defence response 
[65]. So far, no reports have been found on the functions 
of these two proteins in heat resistance. Therefore, our 
results revealed the plant microproteins’ potential that 
can be further investigated for their functions under spe-
cific environmental conditions.

Case study 3. Microproteins related to human cancer
Breast cancer is a severe threat to women’s health, and 
triple-negative breast cancer is challenging to treat due 

Fig. 5 The second part of the result page. The page contains a visualization of sample distribution and DGEs (Differential Gene Expression) results, as 
well as the enrichment analysis results integrating GO, KEGG, and GSEA parts from RNA-seq data, and it also provides a download link for GO and KEGG 
analysis outcomes
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to its lack of therapeutic targets, high recurrence rate, 
and uncomplicated metastasis. We selected the dataset 
GSE171957 to study the connection between micropro-
teins and triple-negative breast cancer, hoping to provide 
more therapeutic directions for triple-negative breast 
cancer from the perspective of microproteins (Table S2). 
According to the results of the Mip-mining analysis, we 
conducted a literature survey and found that PKIB is 
involved in the signaling pathway induced by cAMP [66]. 
CENPW is associated with nucleosomes [67]. COA4 [68] 
is associated with cytochrome c oxidase. Among sig-
nificantly down-regulated genes, long non-coding RNA 
SNHG12 has been proven to be a potential pan-cancer 
marker and therapeutic target [69]. NUPR1 promotes 
cancer cell metastasis, can help cancer cells adapt to the 
microenvironment after chemotherapy and play a role in 
drug resistance [70]. In addition, reducing RPS27L can 
regulate autophagy and promote tumorigenesis [71].In 

addition to microproteins directly associated with triple-
negative breast cancer, we also found that significant 
downregulation of DPY30, which is thought to regulate 
the epithelial-mesenchymal transition to affect cervi-
cal squamous cell carcinoma [72], and is so far an unex-
plored microprotein regulator.

To summarize, through case studies of triple-nega-
tive breast cancer, we can find relevant key regulators 
that have been proven and can also provide research-
ers with more potential therapeutic targets and research 
directions.

Discussion
Mip-mining in the current study is the first database 
focusing on transcriptome profiles in microproteins 
related to environmental stress tolerance or diseases. It 
will be useful for researching and applying microproteins 
in sustainable bioproduction, biomarker discovery, and 
disease treatment. Compared with the existing micropro-
tein databases, including SmProt, sORFs.org, and PsORF, 
among others [23–31] contributing to the widespread 
existence of microproteins in living organisms, Mip-
mining is unique because it aims to reveal the effects 
of microproteins under a wide range of conditions. The 
database contains expanded data set from more diverse 
organisms, which includes microorganisms, plants, and 
animals. Additionally, the data we collected focus on 
multiple stress conditions and various diseases, which 
enables the exploration of microproteins with essential 
functions. Besides, only high-quality transcriptomic data 
were collected, and most of the RNA-seq data have litera-
ture support for easy traceability, which guarantees the 

Table 2 Yeast microproteins identified by Mip-mining by 
analyzing the dataset of GSE52160*

Gene name Log2FC Pheno-
type and 
function

PMP2 1.94 Acetic acid resistance de-
creased by gene deletion

ATP15 -2.92 Propionic acid pH resis-
tance decreased by gene 
deletion

SDH6 -3.4 Respiratory growth is 
absent after adding 2% 
acetate by deletion

*Functions were retrieved from Saccharomyces Genome Database (SGD), https://
www.yeastgenome.org/

Fig. 6 Overexpression of ATP15 affects yeast growth and stress tolerance. Dark blue and dark orange, growth of the control strain and the ATP15 overex-
pression strain carrying the empty plasmid and the ATP15 expression plasmid, respectively, under stress-free conditions; Grey and light orange, growth 
of the control strain and the ATP15 overexpression strain at pH 2.3; Light blue and green, growth of the control strain and the ATP15 overexpression strain 
in the presence of 4.2 g/L acetic acid. Yeast strains were grown in YPD broth at 30 shaking at 150 rpm with or without addition of acetic acid, and pH 2.3 
was adjusted using 1 M HCl.

 

https://www.yeastgenome.org/
https://www.yeastgenome.org/
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reliability of the analysis. Although most other databases 
collect data based on mass spectrometry analysis and 
ribosome profiling for microprotein studies, we empha-
size that the transcription of microprotein genes contains 
essential information and cannot be neglected. Firstly, 
transcription regulation starts gene expression, and the 
co-transcription of microproteins and other genes cor-
relates with their functions. Secondly, so far, detection of 
the translation of microproteins is still restricted by tech-
nical limitations due to low expression and or specific 
properties of microproteins; therefore, transcriptome 
data are a critical complement for in-depth studies.

The Mip-mining database establishes the connection 
between environmental stress or disease, microproteins, 
and functional characterization. Through analysis, it 
is possible to quickly clarify the changes in the mRNA 
level in the specific organism under each stress/disease 
condition, supported by multiple data sets. Enrichment 
analysis can help users to deduce which pathways are 
more important under certain conditions, and the data 
can be used to trace back which pathways small proteins 
are involved in. Compared with other related databases, 
our current database is more beneficial for researchers to 
establish functional exploration and design experiments 
for further mechanism studies.

The role of microproteins as regulatory proteins in var-
ious living organisms is increasingly recognized [73, 74]. 
However, studies on microproteins should not ignore the 
synergistic effects of these essential proteins with other 
proteins, such as the differential expression of multiple 
proteins simultaneously. Mip-mining provides a novel 
platform to explore protein interaction networks under 
various stressful environments involving microproteins. 
The information provided by our database can be fur-
ther used to study protein interaction networks to design 
more powerful small proteins. In this regard, the results 
may help employ microproteins to assist large protein 
complexes in various life activities.

We provide the function of screening differentially 
expressed microproteins for each set of data, but the 
information supplement for each microprotein has not 
yet been completed. Links with other reference micro-
protein databases can supplement more microprotein-
related information. Up to now, Mip-mining contains 
information about microproteins related to stress condi-
tions in 9 species. With the emergence of more RNA-seq 
data from non-model organisms and the improvement 
and advancement of sequencing technology, we will con-
tinue to collect microprotein information of more other 
species and refine related external conditions, for exam-
ple, more data related to various other human diseases.

Conclusion
We present the Mip-mining database - an innovative 
tool that allows users to conduct personalized analysis 
of microprotein functions. The Mip-mining database 
hosts 336 sets of high-quality transcriptome data from 
8626 samples and nine representative living organisms, 
including microorganisms, plants, animals, and humans. 
Microproteins are potentially related to various diseases 
and environmental stress conditions, including chemi-
cal, physical, biological, and multiple stresses, and thus 
understanding a related microprotein or set of micro-
proteins is crucial for a thorough understanding of these 
conditions. Users can select specific cutoff values for 
enhanced customization of their analysis. Consequently, 
this tool serves as a valuable resource for research com-
munities investigating microproteins in diverse scientific 
fields.
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