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Abstract
Background The survival and fertility of heifers are critical factors for the success of dairy farms. The mortality of 
heifers poses a significant challenge to the management and profitability of the dairy industry. In dairy farming, 
achieving early first calving of heifers is also essential for optimal productivity and sustainability. Recently, Council on 
Dairy Cattle Breeding (CDCB) and USDA have developed new evaluations of heifer health and fertility traits. However, 
the genetic basis of these traits has yet to be thoroughly studied.

Results Leveraging the extensive U.S dairy genomic database maintained at CDCB, we conducted large-scale GWAS 
analyses of two heifer traits, livability and early first calving. Despite the large sample size, we found no major QTL for 
heifer livability. However, we identified a major QTL in the bovine MHC region associated with early first calving. Our 
GO analysis based on nearby genes detected 91 significant GO terms with a large proportion related to the immune 
system. This QTL in the MHC region was also confirmed in the analysis of 27 K bull with imputed sequence variants. 
Since these traits have few major QTL, we evaluated the genome-wide distribution of GWAS signals across different 
functional genomics categories. For heifer livability, we observed significant enrichment in promotor and enhancer-
related regions. For early calving, we found more associations in active TSS, active Elements, and Insulator. We also 
identified significant enrichment of CDS and conserved variants in the GWAS results of both traits. By linking GWAS 
results and transcriptome data from the CattleGTEx project via TWAS, we detected four and 23 significant gene-trait 
association pairs for heifer livability and early calving, respectively. Interestingly, we discovered six genes for early 
calving in the Bovine MHC region, including two genes in lymph node tissue and one gene each in blood, adipose, 
hypothalamus, and leukocyte.

Conclusion Our large-scale GWAS analyses of two heifer traits identified a major QTL in the bovine MHC region 
for early first calving. Additional functional enrichment and TWAS analyses confirmed the MHC QTL with relevant 
biological evidence. Our results revealed the complex genetic basis of heifer health and fertility traits and indicated a 
potential connection between the immune system and reproduction in cattle.
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Background
Heifers are young female cows that have not yet given 
birth to a calf and are the future of the dairy herd. Heifer 
health and fertility are crucial for the success of a dairy 
farm, as it directly affects milk production and the sus-
tainability of a farm [1]. Healthy heifers are more likely 
to produce more milk once they begin lactating. In addi-
tion, heifers need to be healthy and well-cared for to 
conceive and carry a calf to term successfully. Unhealthy 
heifers may have difficulty getting pregnant, leading to 
lower milk production and fewer replacement cows for 
the farmer [2]. Diseased heifers may also require costly 
veterinary treatments that can add up quickly and cut 
into profits. Early first calving in heifers is also important 
for dairy farming, particularly for economic and envi-
ronmental considerations, because it can reduce unpro-
ductive periods and increase lifetime production, faster 
generation turnover and selection progress, and improve 
reproductive efficiency [3]. In summary, heifer health and 
fertility are critical for a profitable and sustainable dairy 
operation [1].

The health and fertility of cows are complex issues that 
involve various factors, including nutrition, environment, 
physiology, and genetics [4–6]. Compared to cows, heif-
ers generally encounter more challenges as heifers have 
not yet reached sexual maturity and are not yet capable 
of smooth reproduction and production. Moreover, heif-
ers typically have additional nutritional requirements 
than cows, as they are still growing and developing. 
Despite the complexity of cattle health and fertility, many 
GWAS studies have been conducted to identify genomic 
regions and genes associated with health and fertility-
related traits in cattle [7–12]. For instance, the bovine 
MHC region has been associated with cow livability and 
immune system-related diseases [7]. The ABCC9 and GC 
genes have been associated with pregnancy rate [8], while 
ARRDC3 was associated with growth and calving traits 
[4]. Heifer fertility and health traits are less studied than 
cows, mainly due to limited data availability.

Although the heritability of fertility and health traits 
tends to be relatively low, CDCB and the USDA Animal 
Genomics and Improvement Lab have been evaluating 
fertility and health-related traits using the large volume 
of data collected from the dairy industry (https://uscdcb.
com/). Recently, they added heifer livability and early 
first calving to the evaluation system [13, 14]. Heifer liv-
ability represents the expected survival percentage of an 
animal’s female offspring from 2 days after birth up to 
18 months of age in a herd with average management 
conditions. Larger, positive values of heifer livability are 
more favorable. It measures a heifer’s overall resistance 
to causes leading to mortality. Since the most common 
reasons for heifer death are digestive and respiratory 
diseases [15], heifer livability is primarily related to the 

resistance to these diseases and other causes of death. The 
heritability of heifer mortality has been estimated to be 
less than 1% in many studies [13, 16, 17]. Early first calv-
ing (EFC) is defined as the age at first calving. As a heifer 
fertility trait, the heritability of EFC is only 2–3% [14, 18, 
19]. As part of the genetic evaluation process, traits have 
been corrected for management effect by CDCB, result-
ing in a PTA (Predicted Transmission Ability) that can be 
used directly for genetic studies. In this research, we aim 
to identify genes and genomic regions associated with 
these heifer traits using the large amount of genotype 
and phenotype data from the US dairy genomic database. 
To further boost power, we also included transcriptome 
and other functional genomics data for fine-mapping and 
validation.

Results
Large-sample GWAS of heifer livability and early calving
Our large-sample GWAS started with a discovery popu-
lation of 3,649,734 genotyped Holstein cattle (336,386 
bulls and 3,313,348 cows). After calculating deregressed 
predicted transmitting ability (PTA) as phenotype and 
editing, we included 510,318 and 768,645 animals for the 
GWAS of heifer livability and early first calving, respec-
tively. All of the animals were imputed to 79 K SNPs, and 
we retained 73,554 SNPs after QC editing. We applied 
SLEMM [20] to perform the GWAS analyses that can 
efficiently run large-scale mixed models and incorpo-
rate variational residual variances for differential reli-
abilities of degressed PTAs. As a result, we found only 
one QTL region for each of the two traits (Fig.  1A and 
B C, and 1D). Nonetheless, for both traits, the P values 
for the majority of SNPs showed no inflation of test sta-
tistics and good quality of the results (Fig. 1A C). After 
removing SNPs with low minor allele frequency (MAF), 
only one SNP (ARS-BFGL-NGS-105563, P = 1.28e-07) 
passed the Bonferroni-corrected threshold for early calv-
ing (Table  1). Interestingly, this SNP is located near the 
Bovine MHC region on BTA 23 that encodes many fun-
damental molecules for regulating the immune response 
[21].

Despite the few QTL regions detected in the initial 
GWAS, we evaluated all SNPs passing the suggestive sig-
nificance levels for functional annotation analyses. For 
heifer livability, we obtained 118 genes located within or 
overlapping the vicinity of leading SNPs (< 1  Mb) using 
BioMart in the Ensembl database (Ensembl Genes 106; 
Table S1). Several genes close to the top SNPs exhib-
ited biological relevance for cow livability, including 
CHCHD7 and PLAG1, which are related to growth and 
development [22] and the LYN gene related to the regula-
tion of innate and adaptive immune responses [23]. We 
also performed GO analysis by KOBAS [24] to deter-
mine the potential biological functions of these genes. 

https://uscdcb.com/
https://uscdcb.com/
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Table 1 GWAS results for two heifer traits based on 79 K SNPs
Trait Chr SNP Position P MAF
Heifer Livability 5 BovineHD0500029553 102,805,184 5.66E-05 0.0988

8 BovineHD0800030830 101,970,883 5.16E-05 0.4321
14 Hapmap25183-BTC-049425 5,880,036 1.59E-05 0.4835
14 BovineHD1400007185 23,060,870 3.53E-10 0.0011
14 BovineHD1400007271 23,389,588 4.16E-05 0.0011
14 BTA-107899-no-rs 36,267,667 4.32E-05 0.0020
18 BovineHD1800007256 23,555,637 8.14E-05 0.3387
22 ARS-BFGL-NGS-100995 5,061,438 7.42E-05 0.2269
23 BovineHD2300005239 20,146,079 9.79E-05 0.4162
24 BTA-57516-no-rs 20,681,407 8.31E-05 0.3521
27 BovineHD2700002926 10,675,111 6.26E-05 0.3911

Early Calving 1 Hapmap38109-BTA-36588 73,971,461 4.95E-06 0.1178
22 ARS-BFGL-NGS-67185 60,478,622 8.48E-06 0.0260
23 BovineHD2300007231 26,926,436 8.13E-07 0.1781
23 BTA-27247-no-rs 26,934,192 2.07E-06 0.4998
23 BovineHD2300007469 27,446,664 8.13E-07 0.2150
23 BovineHD2300007953 28,526,405 2.64E-06 0.3401
23 BovineHD2300008056 28,785,343 5.63E-06 0.4924
23 BovineHD2300008081 28,825,626 3.31E-06 0.1532
23 ARS-BFGL-NGS-105563 29,018,391 1.28E-07 0.4395
23 BovineHD2300008507 29,958,908 1.61E-06 0.4158
23 ARS-BFGL-NGS-104394 30,013,004 3.85E-06 0.4494
23 Hapmap36280-SCAFFOLD155216_10397 30,176,828 3.85E-06 0.4495
23 BovineHD2300008966 31,163,980 9.45E-07 0.1188

Fig. 1 Large-scale GWAS results of heifer livability and early calving based on the 79 K SNPs. (A) Quantile–quantile (QQ) plot for heifer livability. (B) 
Manhattan plot for heifer livability. (C) QQ plot for early calving. (D) Manhattan plot for early calving. The red horizontal lines correspond to the genome-
wide significance threshold
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As a result, 139 significant GO terms (P < 0.05) were 
found, with the top relevant terms being mineral absorp-
tion, homeostasis, metabolic process, and development 
(Table S2). According to existing studies and the cattle 
QTL database [25], in the upstream and downstream 
1 Mb range of the top SNPs, many QTLs were previously 
associated with milk production, body type, and disease 
related traits in dairy cattle (Table S3).

For early first calving, we identified 596 genes within 
or near the associated SNPs (Table S4). Notably, the top 
associated SNPs were located within or near the bovine 
MHC region on BTA 23, indicating potential connections 
between the immune system and early first calving [26]. 
Many nearby genes were involved with immune functions 
and relevant biology for early calving, including ABCF1, 
ABHD16A, AGER, BOLA-NC1, BTN1A1, LTA, LTB, etc. 
We also performed the GO analysis based on these genes 
and detected 91 significant GO terms (P < 0.05) with 
a large proportion associated with immune processes 
(Table S5). Finally, previously reported QTL within 1 Mb 
of associated SNPs were associated with milk production, 
reproduction, body type, and disease-related traits in cat-
tle (Table S6).

Sequence-level GWAS and fine mapping of heifer livability 
and early calving in 27,235 bulls
To refine the GWAS results, we conducted additional 
GWAS analyses with imputed sequence data for heifer 
livability and early first calving in 27,235 bulls that have 

highly accurate phenotypes. We used 3,148,506 imputed 
sequence SNPs as genotype and de-regressed PTAs as 
phenotype. After editing and filtering on reliability, we 
included 11,562 and 10,700 bulls for heifer livability and 
early calving, respectively. The QTL regions discovered 
in the large-sample GWAS were validated for both traits 
at the nominal significance level (Fig.  2A and B C, and 
2D). Interestingly, sequence-level GWAS found some 
additional associations compared to low-density SNP 
data (Fig. 2B and D). As shown in Tables 2 and 16 SNPs 
passed the genome-wide threshold for heifer livability, 
and two SNPs passed the threshold for early calving. By 
checking the 1-Mb regions surrounding these associated 
SNPs, we identified many genes that were also detected 
in the large-sample GWAS, namely MOG, OR12D2E, 
OR12D3, OR2H1, OR5V1, OR5V1C, OR5V2, TRIM10, 
TRIM15 (Table S7).

Functional enrichment analysis
We analyzed the enrichment of GWAS signals across 
SNPs in different functional genomic regions based on 
the 27 K bulls and imputed sequence data. We first cat-
egorized sequence variants into 14 groups based on 
the locations of 14 chromatin states reported previ-
ously [27], i.e., CTCF/Active_TSS, Active_TSS, CTCF/
Promoter, Active_Promoter, Flanking_TSS, Promoter, 
Poised_Promoter, Active_Enhancer, CTCF/Enhancer, 
Primed_Enhancer, Active_Element, Insulator, Poly-
comb_Repressed, and Low_Signal. For heifer livability, 

Fig. 2 GWAS results of heifer livability (n = 11,562) and early calving (n = 10,700) based on bulls with imputed sequence variants. (A) Quan-
tile–quantile (QQ) plot for heifer livability. (B) Manhattan plot for heifer livability. (C) QQ plot for early calving. (D) Manhattan plot for early calving. The red 
horizontal lines correspond to the genome-wide significance threshold
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we observed significant enrichment of variants in Active_
Promoter, Promoter, CTCF/Enhancer, Primed_Enhancer, 
and Active_Element (Fig.  3). For early calving, we 
observed significant enrichment of associated variants in 
Active_TSS, Active_Element, and Insulator (Fig. 3).

We further investigated the enrichment of variants 
concerning their genomic locations (conserved) and 
genic annotations (CDS, intron, and UTR) inferred by 
SnpEff [28]. As a result, we observed significant enrich-
ment of CDS and conserved variants in the GWAS 
results of both traits. For heifer livability, we observed 
enrichment of intron variants (Fig. 3). And for early calv-
ing, we observed significant enrichment of variants in the 
UTR regions (Fig. 3).

Transcriptome-wide association study (TWAS)
TWAS seeks to identify trait-associated genes by testing 
for the association between a phenotype and the genetic 
components of gene expression levels [29]. By linking 
our GWAS results and existing transcriptome data from 
the CattleGTEx project [30] via a TWAS analysis, we 
detected four and 23 significant gene-trait association 
pairs for heifer livability and early calving, respectively 
(Fig.  4). Interestingly, we discovered six genes over-
lapped with 27 K bulls GWAS results for early calving in 
the Bovine MHC region, including two genes in lymph 
node tissue and one gene in blood, adipose, hypothala-
mus, and leukocyte (Table 3). In addition, the expression 
of OR12D2 in adipose was significantly associated with 
early calving (Table 3), consistent with previous findings 
that OR12D2 is linked with MHC [31].

Table 2 GWAS results based on imputed sequence variants for 
heifer livability (n = 11,562) and early calving (n = 10,700)
Trait Chr Position P
Heifer Livability 2 60,792,638 4.90E-14

2 63,123,798 1.44E-11
2 63,150,519 1.44E-11
2 64,387,597 5.00E-09
8 6,002,999 3.24E-08

11 33,641,469 1.43E-08
11 67,900,672 2.39E-08
11 67,903,861 2.39E-08
11 87,363,160 4.45E-08
14 16,826,158 1.27E-08
15 54,473,598 3.05E-12
17 27,784,375 4.32E-08
19 48,236,260 1.73E-08
19 50,258,942 1.07E-08
19 54,797,534 5.91E-09
24 52,033,790 4.15E-08

Early Calving 22 60,394,806 3.26E-08
22 60,422,561 3.26E-08

Fig. 3 Enrichment of fine-mapping variants across functional annotations
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Discussion
In this study, we identified genomic regions and candi-
date genes associated with heifer livability and early first 
calving using large-scale GWAS, functional enrichment 
analysis, and TWAS. We reported a major QTL in the 
bovine MHC region to be related to early first calving, 
suggesting a potential connection between the immune 
system and reproduction. TWAS using the CattleGTEx 
data confirmed the association and revealed several can-
didate genes in the bovine MHC locus.

Generally, health and fertility traits are expected to be 
complex traits with low heritability due to their multifac-
torial nature [32]. The two traits analyzed in this study, 
heifer livability and early first calving, also have low esti-
mated heritability, 0.0223 and 0.0328, respectively. These 
two heifer traits can be more complex due to the unique 
characteristics of heifers. For instance, heifers are not yet 
fully developed and may not be ready for reproduction. 
With the large sample sizes used in this study, we only 
found one major QTL for early first calving but none for 
heifer livability. Still, when we explored the genome-wide 
enrichment of GWAS signals with functional genomic 
regions, we reported significant enrichment of the asso-
ciation signals in promoter and enhancer regions, indi-
cating an exciting connection between the regulation of 
gene expression and these two complex traits.

The immune system plays a central role in protect-
ing the body from pathogens and infections. Moreover, 
it has a role in fertility and reproduction. In females, the 
immune system is involved in the whole reproductive 
process, from the development and maturation of the egg 
to implantation and maintenance of the pregnancy [33]. 
The immune system must tolerate the developing fetus, 
which is genetically different from the mother, while still 
protecting against infections. If the immune system is 
overactive, it can cause infertility or miscarriage, while 
an underactive immune system can lead to increased sus-
ceptibility to infections and complications during preg-
nancy. These potential connections between the immune 
system and reproduction further support the MHC QTL 
and candidate genes with early first calving in heifers.

This study showcased the usefulness of functional 
genomics data in post-GWAS and fine-mapping stud-
ies in cattle. When the associated variants are located in 
non-coding or intergenic regions, functional genomics 
data like those from the FAANG [27] and CattleGTEx 
projects would be useful to provide information about 
the biological mechanisms underlying the associations. 
Integration of functional genomics data with GWAS 
may also boost the power of detection when the power 
of the original GWAS is limited. For instance, the TWAS 
results in this research provided additional evidence for 
the MHC QTL with early first calving.

Fig. 4 Manhattan plots of transcriptome-wide association study (TWAS) for heifer livability and early calving
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Conclusion
Due to the complex genetic architecture of health and 
fertility traits, our large-scale GWAS analyses only 
detected a few major QTL for heifer livability and early 
first calving. Interestingly, the major QTL for early first 
calving is located in the bovine MHC region. This associ-
ation was further supported by post-GWAS analyses and 
TWAS, indicating a connection between the immune 
system and early reproduction. Despite the low power 
for major QTL, we evaluated the distribution of GWAS 
signals across different functional genomic regions. We 
found significant enrichment in promoter and enhancer-
related regions, which supports the contribution of gene 
regulation to the genetics of complex traits.

Methods
Data description
In this study, we conducted GWAS analyses with two 
datasets, a discovery dataset including 3,649,734 Hol-
stein cattle (336,386 bulls and 3,313,348 cows) genotyped 
by various SNP chips and imputed to 79,060 SNPs and 
a fine-mapping dataset including 27,235 bulls genotyped 
by 50  K SNP chips and imputed to 3,148,506 sequence 
variants. The original SNP data of the discovery dataset 
were from multiple SNP chips with densities ranging 

from 3 to 50 K [34]. The CDCB and USDA AGIL labo-
ratory routinely process the original genotype data and 
impute to 79  K common SNPs specifically selected for 
official evaluations using FindHap program [35]. For 
the discovery dataset, we applied PLINK 1.9 [36] to 
remove SNPs with call rates < 95%, minor allele frequen-
cies (MAF) < 0.01, Hardy-Weinberg equilibrium (HWE) 
P < 10− 6, and to remove animals with > 5% missing geno-
types. After this filtering, 73,554 SNPs and 3,520,002 ani-
mals (325,905 bulls and 3,194,097 cows) were retained for 
downstream analyses.

The phenotype data were part of the December 2021 
genomic evaluations from the U.S. Council on Dairy 
Cattle Breeding (CDCB), which routinely calculates pre-
dicted transmitting ability (PTA) values for dairy cattle 
of multiple breeds. We only included Holstein data for 
this study. We used deregressed PTA values as pheno-
type in the GWAS of two traits, heifer livability and early 
first calving [37]. To ensure robustness and accuracy, we 
excluded animals with low reliability. The majority of fil-
tered animals were young cows without any phenotypic 
records. Finally, the total number of animals used was 
510,318 and 768,645 for heifer livability and early calving, 
respectively.

Table 3 Gene-trait association pairs detected by TWAS based on CattleGTEx database
Trait Gene Chr Start End P value #SNP Tissue
Heifer Livability TP53BP2 16 27,139,848 27,207,478 0.000527 18 Intramuscular fat

C1QTNF9 12 34,293,438 34,304,505 0.003071 52 Liver
MIC1 23 27,841,095 27,913,198 0.003337 4 Uterus
PDCD10 1 99,744,376 99,804,996 0.004992 1 Uterus

Early Calving 23 28,925,617 28,926,246 4.00E-05 2 Lymph node
23 27,796,195 27,797,556 4.09E-05 1 Lymph node
23 29,612,534 29,613,169 0.000185 1 Adipose

ZSCAN26 23 30,416,140 30,427,406 0.000185 1 Lymph node
PGBD1 23 30,390,348 30,412,787 0.000185 1 Hypothalamus
TRIM26 23 28,777,770 28,787,696 0.000185 1 Lymph node

23 29,930,410 29,931,333 0.000187 1 Oviduct
BOLA 23 28,720,501 28,724,399 0.000413 5 Blood
ZSCAN16 23 30,561,557 30,568,915 0.000448 1 Liver
ZSCAN31 23 30,377,190 30,379,817 0.000526 2 Hypothalamus
H4C3 23 31,847,243 31,847,554 0.000836 2 Blood

23 28,677,524 28,686,666 0.000877 1 Uterus
OR12D2 23 29,305,933 29,309,785 0.000878 2 Adipose
MIC1 23 27,841,095 27,913,198 0.001024 4 Uterus
ELAC2 19 31,362,746 31,378,583 0.001419 19 Intramuscular fat

23 27,871,206 27,875,056 0.001801 1 Leukocyte
23 30,510,284 30,513,892 0.002936 1 Hypothalamus

MDC1 23 28,304,399 28,316,822 0.003641 3 Blood
23 25,691,259 25,695,296 0.003865 1 Lymph node
23 25,583,083 25,589,209 0.003865 1 Uterus

HFE 23 31,855,234 31,864,562 0.004076 1 Hypothalamus
RNF39 23 28,904,289 28,908,861 0.00474 1 Leukocyte

23 28,741,064 28,750,116 0.00474 1 Oviduct
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For the fine-mapping dataset, we obtained imputed 
sequence data of 27,235 bulls from previous studies [8]. 
Briefly, the imputation was conducted with FindHap v3 
[35] and 444 Holstein bulls from the Run5 of 1000 Bull 
Genomes Project as reference. Stringent filtering and 
removal of intergenic SNPs resulted in an enriched set of 
3,148,506 sequence variants. The imputation was highly 
accurate with an average percentage of consistent geno-
types 96.7%. Similarly, we excluded animals with low reli-
ability for deregressed PTA values, retaining 11,562 and 
10,700 bulls for heifer livability and early calving, respec-
tively. In this study, we only considered autosomal chro-
mosomes BTA 1–29 from the Bos taurus ARS-UCD1.2 
assembly [38].

GWAS analysis
We analyzed the discovery and fine-mapping datas-
ets separately in the GWAS analysis. We performed the 
GWAS using a linear mixed model approach imple-
mented in the SLEMM program [20]. SLEMM can han-
dle large-scale (up to millions) genome-wide association 
studies while accounting for genomic relationships. In 
addition, SLEMM can model differences in the reliabil-
ity between individual phenotypes using an error weight 
parameter to account for the variation of deregressed 
PTAs, which is calculated by 1/r2-1, where r2 is the reli-
ability of deregressed PTAs.

After GWAS analysis, we retrieved genes within 1 Mb 
of the significant SNPs using BioMart in the Ensembl 
database (Ensembl Genes 106). We carried out Gene 
Ontology (GO) and Pathway analysis using KOBAS [24]. 
GO terms with a False Discovery Rate (FDR) less than 
5% were considered statistically significant. Furthermore, 
we compared the regions within 1 Mb of the significant 
SNPs with our previous GWAS results [8] and the cattle 
QTLs in the Animal QTL database [25] to check if any 
associated genomic regions were previously reported.

Functional enrichment analysis with genome annotations
To evaluate the potential functions of the associ-
ated genomic regions, we explored the enrichment of 
GWAS results in different functional regions using the 
27,235 bulls and imputed sequence variants. We per-
formed enrichment analyses via MPH (MINQUE for 
Partitioning Heritability, https://github.com/jiang18/
mph) with the annotations inferred by SnpEff [28] and 
14 chromatin states from eight tissues reported by Kern 
et al. [27]. MPH is designed to partition SNP heritabil-
ity with genotypes of related individuals or with long-
spanning LDs. MPH is comparable to GREML in terms 
of accuracy, while being much faster and more memory 
efficient. It can do weighted analyses if residual vari-
ances are unequal and use many overlapping functional 
annotations. This approach included two steps: building 

genomic relationship matrices (GRMs) based on the dif-
ferent SNP annotation datasets, and partitioning SNP 
heritability accordingly. We set --min_maf and --min_
hwe_pval as 0 and 1e-8 respectively. We calculated stan-
dard errors using the Delta method.

Transcriptome-wide association study (TWAS)
We performed TWAS analyses based on the 27  K bull 
data using S-PrediXcan [39] to link GWAS results with 
transcriptome data that we assembled in a previous study 
[30]. For the TWAS analyses, we used the CattleGTEx v.1 
eQTL models [36]. For each trait, we imputed and har-
monized GWAS summary statistics and then performed 
TWAS across 24 cattle tissues separately. We considered 
genes with P < 0.005 as suggestive significant.
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