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Abstract 

Background Host genetics influences the development of infectious diseases in many agricultural animal species. 
Identifying genes associated with disease development has the potential to make selective breeding for disease 
tolerance more likely to succeed through the selection of different genes in diverse signaling pathways. In this study, 
four families of Pacific oysters (Crassostrea gigas) were identified to be segregating for a quantitative trait locus (QTL) 
on chromosome 8. This QTL was previously found to be associated with basal antiviral gene expression and survival 
to ostreid herpesvirus 1 (OsHV-1) mortality events in Tomales Bay, California. Individuals from these four families were 
phenotyped and genotyped in an attempt to find candidate genes associated with the QTL on chromosome 8.

Results Genome-wide allele frequencies of oysters from each family prior to being planting in Tomales Bay were 
compared with the allele frequencies of oysters from respective families that survived an OsHV-1 mortality event. Six 
significant unique QTL were identified in two families in these genome-wide allele frequency studies, all of which 
were located on chromosome 8. Three QTL were assigned to candidate genes (ABCA1, PIK3R1, and WBP2) that have 
been previously associated with antiviral innate immunity in vertebrates.

Conclusion The identification of vertebrate antiviral innate immunity genes as candidate genes involved in mol-
luscan antiviral innate immunity reinforces the similarities between the innate immune systems of these two groups. 
Causal variant identification in these candidate genes will enable future functional studies of these genes in an effort 
to better understand their antiviral modes of action.
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Background
Ostreid herpesvirus 1 (OsHV-1) is a viral pathogen that 
causes disease and mortality in Pacific oysters (Cras-
sostrea gigas) [1]. Since 2008, the emergence of viru-
lent variants of OsHV-1 in Australia [2], France [3], 
New Zealand [4], and the United States [5] have led to 
the development of strategies to mitigate the negative 
economic effects from massive mortalities on oyster 
growers. One strategy that has been uniformly adopted 
by farmers in these countries is the use of oysters that 
are tolerant to OsHV-1 [6–9]. However, despite the 
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success of breeding oysters with OsHV-1 tolerance, the 
genes and underlying mechanisms responsible for this 
increased tolerance have yet to be determined.

OsHV-1 is in the Herpesvirales order, which con-
tains herpesviruses that infect and cause disease in a 
wide range of animal hosts spanning mammalian ver-
tebrates, non-mammalian vertebrates, and inverte-
brates [10]. Genome-wide association studies (GWAS) 
in humans [11, 12], mice [13], rats [14], horses [15], 
pigs [16], chickens [17], common carp [18, 19], and 
Pacific oysters [20–22] have found significant regions 
in their respective genomes that are associated with 
herpesvirus disease severity. Many GWAS studies have 
been conducted in animals of agricultural importance 
because genetic loci associated with herpesvirus toler-
ance can be used for selective breeding to reduce her-
pesvirus-associated disease.

Selective breeding for a genetic locus controlling sur-
vival to OsHV-1, as well as antiviral gene expression, 
has recently been conducted in a Pacific oyster popula-
tion in the United States [20]; however, the significance 
interval of this locus on chromosome 8 of the Pacific 
oyster genome spanned 6.8 Mb and contained 316 pro-
tein-coding genes. Identifying the genes responsible for 
the increased tolerance to OsHV-1 in this locus could 
provide insights into the mechanisms behind this trait. 
The objectives of the current study were to find candi-
date genes on chromosome 8 responsible for OsHV-1 
tolerance in four biparental families (Table 1) from the 
Molluscan Broodstock Program (MBP) breeding popu-
lation [23] by comparing the genome-wide allele fre-
quencies of oysters that survived an OsHV-1 mortality 

event in Tomales Bay, California, with oysters that were 
collected prior to planting.

Results
Six significant QTL were identified from the genome-
wide allele frequency studies (GWAFS) in two families 
that mapped to unique positions on chromosome 8 in the 
genome (Table  2; Fig.  1). The GWAFS of family 30.058 
identified three QTL on chromosome 8. The GWAFS 
of family 30.065 identified four unique QTL on chro-
mosome 8, one of which mapped to the same genomic 
region as a QTL found in the GWAFS with family 30.058. 
The GWAFS of families 30.004 and 30.062 identified no 
QTL. Four candidate genes were assigned to QTL on 
chromosome 8 and included homologs to ABCA1 (phos-
pholipid-transporting ATPase ABCA1) (Fig.  2), FRRS1 
(ferric-chelate reductase 1), PIK3R1 (phosphatidylinosi-
tol 3-kinase regulatory subunit alpha) (Fig. 3), and WBP2 
(WW domain-binding protein 2).

GWAFS using post-mortality oysters from all rep-
licates did not always find the same QTL as GWAFS 
using post-mortality oysters from individual replicates; 
for example, the GWAFS of family 30.058 using oys-
ters from all replicates did not find the same QTL as 
the GWAFS of family 30.058 using oysters from only 
replicate 1 (Table 2). Additionally, different QTL were 
present or absent when using oysters from different 
replicate cages within the same family in a GWAFS; for 
example, significant QTL on chromosome 8 in family 
30.065 were found in the GWAFS using oysters from 
replicate 3 (Fig.  1p) but not when oysters from repli-
cates 1 and 2 were used (Fig.  1n, o). The presence of 
QTL in a GWAFS using oysters from a replicate was 

Table 1 Family sample and SNP statistics. Oysters from four biparental families were randomly sampled prior to being planted in 
Tomales Bay, California, and all planted oysters that survived an OsHV-1-associated mortality event were sampled. Sampled oysters 
were genotyped to obtain SNPs on the maternal and paternal haplotypes that were used in genome-wide allele frequency studies 
(GWAFS)

Family Oysters
(pre-planting 
samples)

Oysters
(planted in Tomales Bay)

Oysters
(post-mortality samples)

SNPs

30.004 166 Replicate 1: 150
Replicate 2: 150
Replicate 3: 150

Replicate 1: 95
Replicate 2: 133
Replicate 3: 124

Maternal haplotype: 16,794
Paternal haplotype: 17,165

30.058 174 Replicate 1: 150
Replicate 2: 150
Replicate 3: 150

Replicate 1: 49
Replicate 2: 42
Replicate 3: 54

Maternal haplotype: 18,381
Paternal haplotype: 18,097

30.062 145 Replicate 1: 150
Replicate 2: 150
Replicate 3: 150

Replicate 1: 105
Replicate 2: 82
Replicate 3: 68

Maternal haplotype: 18,095
Paternal haplotype: 18,221

30.065 89 Replicate 1: 150
Replicate 2: 150
Replicate 3: 150

Replicate 1: 106
Replicate 2: 96
Replicate 3: 79

Maternal haplotype: 18,060
Paternal haplotype: 17,956



Page 3 of 7Divilov et al. BMC Genomics          (2023) 24:631  

not always determined by the percentage of oysters 
surviving in that replicate; for example, 30.062 (repli-
cate 2) and 30.065 (replicate 3) had 55% and 53% sur-
vival in the field, respectively, but the GWAFS with the 
former found no QTL (Fig. 1k) while the GWAFS with 
the latter found four QTL (Fig. 1p).

Discussion
The QTL found in the GWAFS were all located on one 
end of chromosome 8 where an antiviral QTL was pre-
viously identified in a GWAS with oyster families from 
MBP cohorts 27 and 29 [20]. With the greater mapping 
resolution available in the current study, it is evident 

Table 2 QTL for survival to an OsHV-1-associated mortality event in Tomales Bay identified in two biparental families from cohort 30 in 
genome-wide allele frequency studies (GWAFS) with the post-mortality group as either oysters from all three replicate cages or oysters 
from one of the three replicate cages

a Positions represent the first significant, most significant, and last significant SNPs in a QTL interval. When only two positions are provided, they are the first and last 
SNPs of an interval containing two or more SNPs that have tied for being the most significant SNP. When only one position is provided, it represents a QTL with only 
one significant SNP
b Change in allele frequency between the pre-planting and post-mortality groups of oysters

Family Haplotype Chr Position (bp)a Δpb Candidate gene

30.065 (all replicates) Paternal 8 991,891–991,891–1,005,626 0.31 PIK3R1

30.065 (replicate 3) Paternal 8 991,891–1,404,593–1,810,572 0.35 —

30.065 (replicate 3) Paternal 8 2,087,539–2,604,508 0.34 —

30.058 (all replicates) Paternal 8 2,403,628 0.28 —

30.065 (replicate 3) Paternal 8 5,061,600 0.43 WBP2

30.065 (replicate 3) Paternal 8 5,413,906–5,634,130–6,008,157 0.25 —

30.058 (replicate 1) Paternal 8 6,911,780–6,911,780–7,788,427 0.37 FRRS1

30.058 (replicate 1) Paternal 8 9,405,510–9,405,510–9,573,362 0.35 ABCA1

Fig. 1 Manhattan plots showing the results of the genome-wide allele frequency studies (GWAFS) for survival to an OsHV-1-associated mortality 
event in Tomales Bay in four biparental families. GWAFS were performed with the post-mortality group as either oysters from all three replicate 
cages or oysters from one of the three replicate cages. Chromosomes 1 to 10 are indicated by different colors from left to right. Log-transformed 
p-values above and below zero represent those associated with the maternal and paternal haplotypes, respectively. The red horizontal line 
represents the genome-wide Bonferroni-corrected p-value significance threshold of 0.05
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that there are multiple QTL segregating on chromo-
some 8 rather than a single QTL segregating in the MBP 
population. In the field study, there was an unexpected 
amount of variability in the presence and absence of 
QTL in GWAFS with oysters from different replicate 
cages. Because there was a limit to how many oysters 
were able to be put into a single replicate cage without 
density-dependent mortality, oysters from a single family 
were distributed among multiple replicate cages in order 
to increase the sample size in the GWAFS. We found 
that GWAFS with oysters from different replicates from 
the same family that experienced similar levels of mor-
tality did not necessarily identify the same QTL despite 
the replicates being planted very close to each other; for 
example, the three replicate cages of family 30.058 were 

planted approximately 1 m from each other and experi-
enced between 64 and 72% mortality but a QTL was only 
detected in the GWAFS with replicate 1. Factors other 
than host genetics, such as size [24, 25], energy reserves 
[26], and opportunistic bacteria [27], have been shown 
to play a role in survival to OsHV-1. Additionally, sig-
nificant micro-scale spatial effects on survival have previ-
ously been observed during an OsHV-1 mortality event 
that have been associated with OsHV-1 load heteroge-
neity [28, 29]. We believe that these factors were likely 
responsible for the presence/absence variability of QTL 
in the GWAFS. Ideally, oysters within cages would have 
been monitored daily to obtain a continuous survival 
phenotype, e.g., time to death, as well as other pheno-
types, such as size, to better understand the influence of 

Fig. 2 Genome-wide allele frequency study of the paternal 
haplotype of family 30.058 (replicate 1) at the a genome, b 
chromosome, and c sub-chromosome levels. The red horizontal 
line represents the genome-wide Bonferroni-corrected p-value 
significance threshold of 0.05. The gene highlighted in red 
is the candidate gene assigned to the QTL while the gray colored 
genes are other genes in the region

Fig. 3 Genome-wide allele frequency study of the paternal 
haplotype of family 30.065 (all replicates) at the a genome, b 
chromosome, and c sub-chromosome levels. The red horizontal 
line represents the genome-wide Bonferroni-corrected p-value 
significance threshold of 0.05. The gene highlighted in red 
is the candidate gene assigned to the QTL while the gray colored 
genes are other genes in the region
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other potentially interacting factors; however, the plant-
ing site in this study was intertidal and accessible only 
at low tide with a boat, which made trips to the site for 
long-term, short-interval sampling impractical for the 
company hosting the study site.

Three candidate genes (ABCA1, PIK3R1, WBP2) iden-
tified among the QTL have previously been associated 
with the pathogenesis of herpesviruses or other viruses. 
ABCA1 is a regulator of cholesterol and has been asso-
ciated with the severity of herpes simplex virus 2 in 
a GWAS in humans [30]. Additionally, ABCA1 gene 
expression has been shown to be upregulated after infec-
tion with Marek’s disease virus (gallid alphaherpesvirus 
2) in chicken fibroblasts [31]. PIK3R1 is part of the PI3K/
Akt/mTOR signaling pathway, which is involved in innate 
immunity [32], and mutations in PIK3R1 have been asso-
ciated with severe, recurrent, or persistent infections of 
herpesviruses in humans [33]. WBP2 is a gene involved in 
many signaling pathways, including the PI3K/Akt/mTOR 
signaling pathway [34], and has been shown to be down-
regulated in pig macrophages after infection with porcine 
reproductive and respiratory syndrome virus [35].

The identification of candidate genes in the Pacific 
oyster associated with survival to an OsHV-1 mortality 
event that have previously been implicated in the patho-
genesis of vertebrate herpesviruses reinforces the paral-
lels previously identified between the innate immune 
systems of molluscs and vertebrates [36, 37]. It also sug-
gests that OsHV-1 could potentially be used as a model 
to study vertebrate herpesviruses, some of which share 
the genomic structure of OsHV-1 [10], and that insights 
from vertebrate herpesviruses could potentially be used 
to better understand OsHV-1. Despite identifying candi-
date genes for some of the QTL, it was not possible to 
identify candidate causal variants related to these candi-
date genes with the reduced-representation sequencing 
method used in this study, i.e., GBS. We anticipate that 
future studies utilizing whole genome sequencing will 
enable the identification of candidate causal variants for 
these genes and that these variants will motivate future 
functional studies of these genes.

Methods
Genotyping
Families in cohort 30 of the Molluscan Broodstock 
Program (MBP) were reared, planted in Tomales Bay, 
California, and phenotyped for survival as previously 
described by Divilov et al. [20]. Briefly, cohort 30 (n = 79 
biparental families) was spawned in the MBP hatchery 
at the Hatfield Marine Science Center (HMSC) in New-
port, Oregon, on 18 March 2021 and planted in Tomales 
Bay, California (38°12′17″N 122°56′05″W) on 8 June 

2021. Oysters were checked every two weeks until the 
detection of significant mortality. Oyster mortality 
counts were taken on 19 October 2021. Individuals in 
four of these families, namely families 30.004, 30.058, 
30.062, 30.065 (pedigree provided in Fig. S1), were 
chosen for pre-planting and post-mortality genotyp-
ing. Individuals in these families were chosen because 
their parents were heterozygous for a SNP at position 
9,719,736 on chromosome 8, which has been associated 
with survival in Tomales Bay and basal antiviral gene 
expression [20]. Whole animal tissues of spat (juvenile 
oysters) from the four families obtained from the same 
pool of spat that were chosen for planting in Tomales 
Bay were stored in 95% ethanol and are referred to as 
the pre-planting samples (Table 1). These four families 
were planted in Tomales Bay in triplicate with a den-
sity of 150 oysters per replicate cage that was concur-
rent with the planting date and location of cohort 30 in 
Tomales Bay described above. The replicate cages for 
this additional planting were planted adjacent to each 
other in a row. Mantle tissue from oysters that survived 
the mortality event in each replicate cage from the four 
families were sampled in a biosafety level 2 laboratory, 
stored in 95% ethanol, and are referred to as the post-
mortality samples (Table 1).

DNA from the pre-planting and post-mortality sam-
ples as well as the parents of the four families were 
extracted using the MagMAX DNA Multi-Sample Ultra 
2.0 Kit (Thermo Fisher Scientific) and quantified using 
the Quant-iT Broad Range dsDNA Assay Kit (Thermo 
Fisher Scientific) on a Synergy LX Multi-Mode Micro-
plate Reader (BioTek). Barcoded 96-plex genotyping-
by-sequencing (GBS) libraries were constructed as 
described by Elshire et al. [38] using the ApeKI restric-
tion enzyme and sequenced on an Illumina NextSeq 
2000 (1 × 100 bp) at Oregon State University’s Center 
for Quantitative Life Sciences.

Reads were demultiplexed using Axe [39] and adapter 
trimmed using fastp [40]. A 5’ to 3’ sliding window of 4 
bp was also used in fastp to drop all base pairs after the 
mean quality dropped below 20. Afterward, all reads 
less than 50 bp were removed. Filtered reads were then 
aligned to the Crassostrea gigas NCBI RefSeq genome 
[41] using bwa [42], and biallelic SNPs were called 
using bcftools [43] with a minimum mapping quality of 
40 and a minimum base quality of 30. SNPs were then 
phased and imputed using AlphaFamImpute [44] with 
the genotype calling threshold set to 0.9 after filtering 
for minimum read depth (< 5), maximum read depth 
(> 100), minor allele frequency (< 0.15), and SNP miss-
ingness rate (> 0.8) (Table  1). Parentage assignment of 
offspring in each of the four families was confirmed 
using the apparent algorithm [45].
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Genome-wide allele frequency study (GWAFS)
Fisher’s exact test [46] was used to test for SNP allele 
frequency differences between the pre-planting and 
post-mortality samples within a family. Tests were con-
ducted using SNPs within maternal and paternal hap-
lotypes in a family. Additionally, tests were performed 
with the post-mortality samples being either oysters 
from all three replicate cages of a family or oysters from 
one of the three replicate cages of a family. A Bonfer-
roni-corrected p-value of 0.05 was used as the genome-
wide significance threshold. The R packages fastman 
[47] and LocusZoom-like [48] were used to generate 
Manhattan plots, and the RefSeq genome annotation 
was used to identify candidate genes.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12864- 023- 09744-0.

Additional file 1: Fig. S1. Pedigree of families 30.004, 30.058, 30.062, 
and 30.065. Ancestry prior to cohort 22 is not shown as families in these 
cohorts were not spawned using single pair matings.
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