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Abstract 

Background Genomic variants of the disease are often discovered nowadays through population-based genome-
wide association studies (GWAS). Identifying genomic variations potentially underlying a phenotype, such as hyper-
tension, in an individual is important for designing personalized treatment; however, population-level models, such 
as GWAS, may not capture all the important, individualized factors well. In addition, GWAS typically requires a large 
sample size to detect the association of low-frequency genomic variants with sufficient power. Here, we report 
an individualized Bayesian inference (IBI) algorithm for estimating the genomic variants that influence complex traits, 
such as hypertension, at the level of an individual (e.g., a patient). By modeling at the level of the individual, IBI seeks 
to find genomic variants observed in the individual’s genome that provide a strong explanation of the phenotype 
observed in this individual.

Results We applied the IBI algorithm to the data from the Framingham Heart Study to explore the genomic influ-
ences of hypertension. Among the top-ranking variants identified by IBI and GWAS, there is a significant number 
of shared variants (intersection); the unique variants identified only by IBI tend to have relatively lower minor allele 
frequency than those identified by GWAS. In addition, IBI discovered more individualized and diverse variants 
that explain hypertension patients better than GWAS. Furthermore, IBI found several well-known low-frequency vari-
ants as well as genes related to blood pressure that GWAS missed in the same cohort. Finally, IBI identified top-ranked 
variants that predicted hypertension better than GWAS, according to the area under the ROC curve.

Conclusions The results support IBI as a promising approach for complementing GWAS, especially in detecting 
low-frequency genomic variants as well as learning personalized genomic variants of clinical traits and disease, such 
as the complex trait of hypertension, to help advance precision medicine.
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Background
Hypertension (HTN; high blood pressure) is a key risk 
factor for many cardiovascular diseases, and it was pri-
marily responsible for about 7.8 million world-wide 
deaths in 2015 alone. Previous studies indicate that in 
addition to environmental factors, genomic factors play 
a significant role in blood pressure (BP) regulation [1]. 
Hypertension is a polygenic disease [2], burdening a large 
population across the globe. Current efforts at identify-
ing significant genomic variants mostly involve genome-
wide association studies (GWAS). Although GWAS has 
successfully identified more than 1000 genomic loci 
containing significant single nucleotide polymorphisms 
(SNPs; the most common type of genomic variants 
among people) for BP regulation [3], there are limita-
tions to this commonly used approach. GWAS requires 
a large cohort to gain enough power to identify many 
of the significant SNPs, especially those with low minor 
allele frequency (MAF). That is why before 2015 only 
about 64 significant SNPs were identified for blood pres-
sure, and only recently were more SNPs identified due to 
the increased sample sizes (~ 1 million individuals) [4–6]. 
Still, most SNPs identified so far are common SNPs with 
small effect sizes, and the total genetic variance in blood 
pressure explained by these ~1000 SNPs is small (~5.7%) 
[3]. There are likely a significant number of non-common 
variants missed by GWAS that can help explain much of 
the remaining genomic variance [7]. 

GWAS is a population-based approach, and it extracts 
significant SNPs from a population level, not consider-
ing the specific genome of a given individual. Therefore, 
GWAS is not tailored to identify the genomic influences 
of HTN in an individual, which is the focus of personal-
ized medicine. It is not uncommon that a HTN patient 
does not carry the disease-associated alleles (mostly 
minor alleles) of any significant variants identified at the 
population level. Thus, identifying the most probable 
genomic variants of individual patients is important but 
remains an unmet need.

We have developed an individualized Bayesian infer-
ence (IBI) algorithm for estimating the genomic factors 
influencing the development of hypertension and other 
complex traits in an individual. As a general machine 
learning framework, IBI applies a Bayesian method to 
identify the significant genomic variants in a given indi-
vidual or patient. Bayesian methods including Bayesian 
multiple logistic [8] or linear regression have been used 
for identifying the causal SNPs among the significant 
genomic regions identified by GWAS for binary or con-
tinuous traits [9, 10]. However, none of these are indi-
vidualized. IBI evolved from a tumor-specific causal 
inference algorithm (TCI) that members of our team 

developed for estimating the somatic mutations driving 
the development of individual cancerous tumors [11]. 
In contrast to TCI, IBI is designed to model and learn 
the relationships between an individual genome and a 
complex trait, such as HTN. Also, IBI was optimized 
for efficient computation with whole-genome data, 
whereas TCI was developed to use whole-exome data.

IBI identifies significant and potentially causal 
genomic variants for each individual based on their 
specific genomic background (and available training 
data on similar individuals). By concentrating on the 
genomic variants observed in a particular individual, 
IBI has the potential to discover significant variants 
of low frequency that exist only in a small number of 
individuals and could have been missed by GWAS. The 
genomic variants identified as being significant by IBI 
could help inform the design of personalized treatment 
for individuals with or at risk for hypertension.

Methods
Overview of Bayesian networks
A Bayesian network (BN) [12, 13] is a probabilistic 
graphical model with two components. One is a graphi-
cal structure containing nodes and directed edges. 
Nodes represent domain variables such as genomic 
variants or clinical traits. Directed edges represent 
conditional dependencies between variables. The other 
component of a BN is a set of parameters which are 
conditional probabilities. Each node has a conditional 
probability given its potential causes, which can be 
described by a conditional probability function. The 
joint probabilities of all nodes can be written as a prod-
uct of each node’s conditional probability, given its 
direct causes, based on the local causal Markov con-
dition. A BN is a flexible framework for modeling the 
probabilistic relationships among variables in a com-
plex domain by representing the joint probability of all 
the variables modeled in a probabilistic structure. A 
bipartite BN is a particular class of BN with less com-
plexity. There are only two sets of nodes in level 1 and 
level 2, and potential causal relationships only occur 
from nodes in level 1 to nodes in level 2.

How do we search for the most probable BN given 
data? A very popular class of methods are score-based 
algorithms that assign a Bayesian score to the BN 
model and return the BN with the highest score [12, 
13]. This Bayesian score of the BN model is assigned 
based on how well this BN is supported by both the 
data and prior knowledge [14]. In this study, we use a 
popular Bayesian score for modeling discrete variables, 
the Bayesian Dirichlet equivalent uniform (BDeu) score 
[14] as TCI did [11].
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The general framework of individualized Bayesian 
inference.
As mentioned, IBI is based on TCI [11] and has been 
further developed and adapted to fit the circumstances 
of modeling a variety of complex diseases or traits 
using whole-genome genotyping or sequencing data. 
IBI is designed to estimate the significant genomic vari-
ants, such as SNPs, in a specific individual or patient for 
downstream clinical and molecular phenotypes. IBI uses 
a bipartite BN [12, 13] for modeling the probabilistic 
dependency relationships between the genomic variants 
as a set of nodes V  and the downstream traits or pheno-
types as a set of nodes T  ; directed edges between nodes 
in V  and T  represent probabilistic dependency from vari-
ants to traits (Fig. 1A). Within this bipartite BN, among 

all the variants in one individual, IBI assigns a poste-
rior probability that there is a dependency relationship 
between each variant (represented by a V  node) and the 
phenotypic trait of interest (represented by node T  ) spe-
cific to this individual (Fig. 1A, D).

For a current individual h , let Vs be a variable that rep-
resents a specific genomic variant s (e.g., a SNP) and let Ti  
be a specific trait i (e.g., HTN) of this individual. Let V h

S 
be a vector representing all the genomic variants in indi-
vidual h. For each possible variable Vs, we will examine 
the relationship ( Vs → Ti), which models that Vs has a 
probabilistic influence on Ti . That is, the value of Vs influ-
ences our belief (probability) about the distribution of Ti . 
It is this sense of the term influence that we will use in 
this manuscript. Let P(Vs → Ti) be the prior probability 

Fig. 1 The Individualized Bayesian Inference (IBI) algorithm. A IBI uses a bipartite BN to model the probabilistic relationships from genomic Variants 
to Traits. V nodes denote variants and T nodes denote traits; the arcs denote probabilistic influence of V on T with only one assumed influencing 
variant being evaluated at a time indicated by the solid arc. B Using the entire dataset (D) (e.g., the population) to evaluate the association 
of a particular genomic variant and a trait, GWAS methods output a p-value while the Bayesian method uses the marginal likelihood ( Ms ) and global 
posterior probability (GPP). C Based on the value of a particular variant Vs , IBI partitions the whole population into two subpopulations, DVs=1 
and DVs=0 , and derives the subpopulation-specific marginals, M1

S
 and M0

r , using Vs and Vr . The overall marginal Ms,r and the individual-specific 
posterior probability, P V

h
s → T

h
i
|D  for the SNP Vs can be further derived. D Pseudo code for the IBI algorithm



Page 4 of 14Rahman et al. BMC Genomics          (2022) 23:863 

for Vs influencing Ti, which could be estimated using 
biological background knowledge or could be set using 
a uniform prior that assumes all the genomic variants 
have the same prior probability of influencing Ti. Let D 
represent the data. Let Ms represent the log form of the 
marginal likelihood of P(D|Vs → Ti) which is derived by 
modeling one genomic variant s as influencing Ti in the 
population represented by D. Ms can be normalized by 
dividing by the summation of Ms across all the SNPs to 
derive a posterior probability (PP) P(Vs → Ti|D) . When 
scoring Vs → Ti for the entire population D using Bayes-
ian learning and a uniform prior, PP is proportional to 
Ms ; thus, the ranking of the specific driver Vs by Ms or PP 
as a potential estimator of a trait at the population level is 
the same. Thus, we will use Ms as the score for Vs → Ti . 
When evaluating the influence of Vs on Ti in the entire 
population using GWAS, the p-value is derived to indi-
cate the significance of that influence (Fig. 1B).

IBI partitions the overall population into two subpopu-
lations (Fig. 1C). Suppose the current patient has Vs = 1 , 
which represents the minor-allele of this SNP. Let DVs=1 
represent the patient-like-me subpopulation, where 
all the patients in this subpopulation contain the value 
Vs = 1 . IBI evaluates how well Vs influences the HTN sta-
tus within DVs=1 , which has a marginal likelihood score 
of P

(

DVs=1|Vs → Ti

)

 that we abbreviate as M1
S (Fig. 1C, 

D). Let  DVs=0 represent the remaining cases that do not 
have Vs = 1 , but rather, have Vs = 0. To estimate the data 
in DVs=0 , IBI finds the SNP Vr (where “r” denotes the 
remaining cases) that maximizes the marginal likelihood 
of Vr → Ti , namely, P

(

DVs=0|Vr → Ti

)

, which we abbre-
viate as M0

r . The marginal likelihood for all of the data, 
given Vs as an individualized estimator and Vr as the best 
estimator of the remaining cases, is M1

s +M0
r  , which we 

refer to as Ms,r (Fig. 1C, D). This score of Ms,r can be used 
to evaluate and rank the capability of Vs in explaining the 
patients-like-me subpopulation that contain this minor 
allele as well as in helping reduce the noise for modeling 
the remaining subpopulation.

The marginal likelihood is computed using the BDeu 
score [14] (Fig.  1D, Equation  1; refer to the TCI paper 
[8]). Individualized posterior probabilities of the form 
Vs → Ti are further derived relative to the SNPs that are 
minor alleles in the genome of the current patient h. Thus, 
the posterior probability considers the specific genomic 
background of the given individual (Fig. 1D, Equation 2). 
In summary, IBI is individualized in the following ways: 
(1) The overall marginal likelihood for each relationship 
Vs → Ti (Equation  1) contains an individualized com-
ponent that uses the subpopulation of “patients like me” 
that have the same variant (i.e., Vs = 1 ). (2) Each indi-
vidual has a unique set of genomic variants. Depending 
on the specific set of variants, the posterior probability 

for a given relationship Vs → Ti may be different in dif-
ferent individuals (Equation 2). The individualized nature 
of IBI makes it a potential tool for advancing precision 
medicine where personalized treatments are desired 
for individuals of varying genetic backgrounds. IBI is 
implemented in Python with vectorization and matrix 
operations for efficient computation involving millions of 
variants and has been tested on whole-genome sequenc-
ing data on the BioData Catalyst platform [15].

Genome‑Wide association studies
GWAS is the standard approach for identifying the sig-
nificant variants associated with traits at the popula-
tion level (e.g., p-value < 5 ×  10−8 for genome-wide 
significance). Conventional GWAS uses standard logistic 
regression models or Fisher’s exact test for discrete traits 
[16]. We performed GWAS using Fisher’s exact test on 
the same datasets we applied IBI and compared results.

Data and data preprocessing
We used the whole-genome genotyping data of Affym-
etrix HuGeneFocused50K from the Framingham Heart 
Study (FHS) cohort (dbGaP Study Accession: phs000007.
v30.p11), which covered about 50K gene-centric and 
coding SNPs across the genome [17, 18]. We used the 
following functions from plink for further filtration and 
quality control, and have acquired 38,342 SNPs: --mind 
0.03 --geno 0.03 --maf 0.01 –hwe 10e-6 –me 0.05 0.1 –
sexCheck. We filled missing SNP values with the most 
frequent value for that particular SNP across the entire 
population. Dominant coding was then performed in 
plink, and thus, the final SNP values are 0 or 1 where 0 
represents zero copy of the minor allele (risk allele) and 
1 represents one or two copies of the minor allele. The 
focus of this paper is to estimate the risk (minor) allele 
SNPs that potentially cause hypertension (high blood 
pressure) rather than protecting the subject from hyper-
tension. Therefore, we further removed the SNPs with a 
minor-allele risk ratio smaller than 1, resulting in a total 
of 19,276 SNPs of interest. We further computed linkage 
disequilibrium (LD) measures, d-prime values, for every 
pair of these SNPs within a specified genomic region 
using the R package SNPRelate [19]. The d-prime value 
close to 1 indicates a high level of LD between the two 
SNPs. We set a popular d-prime threshold of 0.2 for LD 
pruning. After LD pruning, 19,006 SNPs remained, indi-
cating that the vast majority (98.5%) of the 19,276 SNPs 
are considered as independent.

Clinical phenotype data included harmonized systolic 
BP (SBP) and diastolic BP (DBP) data which were down-
loaded from PIC-SURE on the NHLBI BioData Catalyst 
platform [15]. SBP and DBP are specifically harmonized 
by the Trans-omics for Precision Medicine (TOPMed) 
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Data Coordinating Center [20] by taking the average of 
two SBP or DBP measurements obtained at a single clinic 
visit. 10 and 5mm Hg were specifically added for SBP and 
DBP for individuals taking antihypertensive drugs [21]. 
If SBP>=140, or DBP>=90 or an individual was taking 
antihypertensive drugs, we considered this individual as 
having HTN and assigned ‘HTN = 1’; otherwise, we clas-
sified this individual as not having HTN, and we assigned 
‘HTN = 0.’ After merging the SNP and BP data, we 
obtained 6,613 patients with 19,276 SNPs. We performed 
a stratified random split to produce an 80% training set 
(discovery set; 5,290 subjects) and a 20% test set (1,323 
subjects), and we reserved this test set for the evaluation 
task.

Results
To evaluate IBI in inferring significant genomic variants 
for HTN, we compared its performance to that of GWAS. 
As a proof of concept, we applied IBI and GWAS to the 
whole-genome data of Affymetrix HuGeneFocused50K 
measurements and harmonized phenome data of BP 
measurements from the FHS cohort [18] as described 
above.

A Bayesian method for GWAS analysis
As was explained in the Methods section, when using a 
Bayesian method and a uniform prior to study a single 
variant’s influence on HTN at the population level, the 
derived marginal likelihood, Ms,  for this variant is pro-
portional to its global posterior probability (GPP), mak-
ing it possible to use the marginal likelihood to find the 
top influencing SNP (Fig.  2A). We observed that when 
using a uniform prior, as we did in this study, a popula-
tion-based (i.e., not individualized) Bayesian approach to 

identifying top-ranked SNPs based on Ms yielded similar 
results to the population-based GWAS method (Fig. 2A). 
The Spearman correlation coefficient between the GWAS 
p-values and the IBI Ms values across the top 188 inde-
pendent SNPs (Additional File 1,2) is -0.9. We further 
examined and compared the top 188 independent SNPs 
ranked by Ms or p-value. The top SNPs identified by high 
Ms values or low p-values are highly overlapping: 164 out 
of the top 188 SNPs and 18 out of the top 20 SNPs over-
lapped between these two rankings (Fig.  2A). Further-
more, the ranking of these top SNPs by Ms and p-value 
are either exactly the same or very similar (Fig. 2A) where 
Ms and GPP are negatively correlated with the p-value 
(Fig. 2B, C).

IBI complements GWAS and better detects significant 
variants of low MAF
We applied both IBI and GWAS to the training (discov-
ery) subset of FHS subjects (n = 5,290) with 19,276 SNPs 
and HTN status, and derived the IBI marginal values of 
Ms,r (Fig.  3A) and GWAS p-values (Fig.  3B) for all the 
SNPs in the Manhattan plots. In Fig. 3A, the values of Ms,r 
were normalized with (-2436 - Ms,r) / (-2436 – (-2463)) 
considering -2436 as the maximum and -2463 as the min-
imum, based on the min-max normalization technique. 
For the GWAS analysis, taking 0.05 / 19,276 = 2.59e-6 
as the significance level for p-value after the Bonferroni 
correction, five SNPs reach such significance (Fig.  3B). 
In Fig. 2, the population-level Ms values were derived by 
assuming one SNP as the global estimator or potential 
cause of HTN for the entire population (Fig. 1B). When 
using two SNPs to specifically explain HTN status from 
two distinct subpopulations as is done by IBI (Fig.  1C), 
the overall marginal values ( Ms,r ) significantly increase 

Fig. 2 A Bayesian method for GWAS analysis. A The p-value ranks and Ms or GPP ranks are the same or similar for the top 188 SNPs selected by Ms 
or p-value ranking. B The p-values were negatively correlated with the Ms values for the top 188 SNPs selected by Ms or p-value ranking. C The 
p-values were negatively correlated with the global posterior probabilities (GPP) of the top 188 SNPs selected by Ms or p-value ranking.
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for many SNPs of Vs . Among all the SNPs, 188 Vs SNPs at 
independent loci have Ms,r values bigger than the biggest 
Ms value (indicated by the red threshold line in Fig. 3A) 
derived in the population level from the best global esti-
mator, represented as Vg (Fig. 3A; Additional file 3). The 
higher score of IBI compared to the population-based 
Bayesian method also has theoretical support. It has been 
proved that instance-based (i.e., individualized) causal 
inference methods, a family of algorithms to which the 
IBI belongs, are consistent. More specifically, in the large 
sample limit, the score of the data-generating instance-
specific model will be assigned the highest score of any 
model [22]. These results support that the HTN status in 

the overall population has been explained better by IBI 
with any of the top 188 SNPs, Vs , explaining the subpopu-
lation of DVs=1 and with the remaining-population esti-
mator, Vr , explaining the remaining DVs=0 subpopulation, 
in comparison to using the best global estimator Vg itself 
to explain the entire population of D.

We performed another evaluation from the perspective 
of information theory. In this setting, GWAS analysis is 
searching for a variant Vs that has strong information with 
respect to a trait Ti(HTN), and the amount of information 
can be measured as information gain (IG) [23]. IG can be 
calculated by splitting samples according to one variable 
( Vs) and then measuring the change in the entropy of the 

Fig. 3 Comparison of IBI and GWAS. A A Manhattan plot of the chromosome location of SNPs and their normalized Ms,r values according to IBI. 
Threshold lines for Ms,r values are shown in blue and red for the top five and top 188-ranked SNPs, respectively. The top five SNPs were annotated 
with rs IDs. B A Manhattan plot of chromosome location of SNPs and p-values for GWAS. Threshold lines for p-values are shown in blue and red 
for the top five and top 188-ranked SNPs, respectively. The top five SNPs were annotated with rs IDs. C Information gain from top 188 SNPs ranked 
respectively by IBI, GWAS and randomly-selected 188 SNPs. The black dots represent the information gain values for individual SNPs. D Violin 
plots of the MAF distributions of the SNPs in the three groups: IBI only, Intersection, and GWAS only. The black dots represent the MAF values 
for individual SNPs. The thick vertical gray bars show the interquartile range and the three white dots represent the medians. Wider sections indicate 
higher probabilities for the given MAF values
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other variable ( Ti) during partitions. Rather than focusing 
on just one variant as in a GWAS analysis, the IBI algo-
rithm evaluates how much information we can gain with 
respect to the trait Ti (HTN) if we consider both the spe-
cific variant of interest ( Vs) and the remaining-population 
estimator ( Vr) , IG ( Vs,Vr;Ti ) [24]. The more Vs and Vr 
complement each other (e.g., they are two distinct esti-
mators for different subgroups) to provide information 
with respect to Ti , the higher the IG. In other words, IBI 
searches for variants that not only explain HTN well in the 
“patients-like-me” subpopulation, but also help enhance 
the information of Vr with respect to HTN in the remain-
ing subpopulation that do not contain this specific variant 
of interest. Based on information gain values, the top-5 IBI 
SNPs were rs11574358, rs1794108, rs11000217, rs2292664 
and rs9928967 while top-5 GWAS SNPs were rs11574358, 
rs2292664, rs383306, rs5491 and rs1794108 sharing three 
common ones with top-5 IBI. IG values for the top 188 IBI 
SNPs of Vs selected by Ms,r are significantly higher than 
those of the top 188 independent GWAS SNPs selected 
by the p-values; IG values for the top 188 GWAS SNPs are 
also significantly higher than the values for 188 randomly-
selected SNPs as expected (Fig. 3C; Additional File 4).

We further examined whether there is any overlap 
between the top 188 IBI and GWAS SNPs. We found that 40 
of the top 188 SNPs were identified by both IBI and GWAS, 
and three of the top five IBI and GWAS SNPs are the same 
(Fig. 3A, B). Thus, IBI and GWAS share many of the same 
top SNPs, suggesting a mutual agreement between these two 
approaches. The 148 unique SNPs for IBI or GWAS also sup-
port that the two approaches are complementary. We further 
examined the MAF distribution for IBI-only, GWAS-only 
SNPs (Fig. 3D), and SNPs common to both. Interestingly, the 
IBI-only SNPs overall had much lower MAF than GWAS-
only SNPs (Fig. 3D). This result supports the hypothesis that 
IBI identifies more lower-frequency significant variants rela-
tive to GWAS by concentrating on the genomic variants of a 
given individual in a specific subpopulation.

IBI discovered more individualized and diverse significant 
SNPs that better explain the HTN patients, compared 
to GWAS
For a given individual h, IBI derives the posterior proba-
bility for each genomic variant Vs , P

(

Vh
s → Th

i |D
)

 , by 

normalizing Ms,r with a summation over all the Ms,r 
across all the existing minor allele SNPs (i.e., the SNP 
value is 1) in this individual. This posterior probability 
considers the diverse genomic background or context for 
different individuals. More specifically, a particular SNP 
Vs with the same Ms,r may have different posterior proba-
bilities in different individuals due to their distinct 
genomic background (i.e., different sets of existing minor 
allele SNPs). For a given HTN patient, IBI ranked all the 
minor alleles existing in this individual based on their 
individualized posterior probabilities (this ranking will be 
the same as the ranking based on Ms,r in a given patient); 
the SNP with the highest posterior probability was con-
sidered to have the most probable influence on HTN for 
this given patient. For comparison, we designated a top 
SNP for each HTN patient based on the population-level 
p-values derived by GWAS: among the existing minor 
alleles in a given HTN patient, the non-protective minor 
allele with the lowest (most significant) p-value was con-
sidered to most probably have influence for HTN in this 
particular patient.

Among all the 930 HTN patients in the training (dis-
covery) dataset, we identified 16 unique SNPs accord-
ing to GWAS ranking (Fig.  4A; Additional File 5) and 
25 unique SNPs based on IBI ranking (Fig.  4B; Addi-
tional File 6); each of these unique SNPs was assigned 
by GWAS or IBI as a top-1 SNP for at least one HTN 
patient. Figure  4A, B  shows the accumulated number 
of explained HTN patients by including one or more 
of these unique SNPs; the number of HTN patients 
explained by each of these unique SNP can be derived by 
the differences of the accumulated number of explained 
HTN patients (Fig.  4A, B) between including and not 
including this particular SNP. The more unique SNPs 
identified by IBI (n = 25) suggests that IBI was able to 
find a more diverse set of significant SNPs with a more 
personalized approach. IBI identified 13 SNPs that 
explain less than 10 HTN patients individually while 
GWAS found six such SNPs. Interestingly, at the same 
time, IBI assigns the intronic SNP rs13265032 in the 
CSMD1 loci as the top-1 SNP with the highest PP and 
Ms,r for each of 425 (46%) HTN patients (Fig.  4B); the 
association of the CSMD1 loci with HTN was further 
discussed later when explaining Table 1.

Fig. 4 HTN patient coverage. A The 16 unique GWAS SNPs ranked by p-values are plotted against the cumulative number of HTN 
patients explained from the 930 HTN patients in the training (discovery) dataset. B. The 25 unique IBI SNPs ranked by Ms,r were plotted 
against the cumulative number of HTN patients explained from the 930 HTN patients in the training (discovery) dataset. The number of HTN 
patients covered by each of these SNPs can be derived by taking the difference of the two adjacent cumulative numbers of explained HTN patients 
as shown for rs13265032 which accounts for 425 HTN patients. C A histogram of the individualized posterior probability of the top-1 SNP assigned 
by IBI to each of the 930 HTN patients. This shows the value scale and distribution of the individualized posterior probabilities for the top-1 SNPs 
across the 930 HTN patients

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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For the GWAS analysis, if considering 0.05/19,276 
= 2.59e-6 as the significance level for p-value after the 
Bonferroni correction, then 120 out of 930 (12.9%) HTN 
patients can be assigned a significant SNP identified by 
GWAS; even with a relaxed significance level of 1.09e-
5, only 146 out of 930 (15.7%) HTN patients are covered 
or explained by these significant GWAS SNPs (Fig. 4A). 
This suggests that the significant SNPs of HTN identified 
at the population level by GWAS do not necessarily exist 
in a given HTN patient, leaving a significant portion of 
HTN patients unexplained by these significant SNPs.

We examined the number of minor-allele SNPs exist-
ing in each HTN patient (with the value of minor-allele 
SNP as ’1’), and we further calculated the average num-
ber across all 930 HTN patients. On average, there are 
7,767minor-allele SNPs (out of 19,276 total SNPs) exist-
ing in HTN patients. Assuming all these existing risk 
alleles have the same prior probability of causing HTN, 
and only one of them is causing HTN, then the prior 
probability for each risk allele is 1.0 / 7767 = 1.3e-4. 
Interestingly, the top one SNP selected by IBI for each 
HTN patient has a much higher posterior probability, 
ranging from 0.08 to 0.99 (Fig. 4C). If considering 0.1 as 
a significant posterior probability threshold, then 922 out 
of 930 (99.1%) HTN patients can be assigned a significant 
IBI SNP as the potential cause for their HTN status; with 
a more restrictive threshold of 0.2, 741 out of 930 (79.7%) 
HTN patients can be explained. These results provide 
support that IBI is able to find a top SNP with significant 
posterior probability (>=0.1) of influencing HTN, rela-
tive to random chance (1.3e-4), for the majority of HTN 
patients as a potential genomic cause.

As shown in Table  1, the intronic SNP rs13265032 in 
the CSMD1 loci is assigned as the top-1 SNP by IBI for 
46% (425) of 930 HTN patients. It was also ranked high 
(12) by IBI Ms,r among all the SNPs. By contrast, this SNP 
was never assigned as a top-1 SNP for any HTN patient 
by GWAS and this SNP was ranked lowly (5,361) by 
GWAS among all the SNPs. Interestingly, other intronic 
SNPs in the CSMD1 loci have been reported to be associ-
ated with hypertension [25] or blood pressure response 
to hydrochlorothiazide [26, 27], an antihypertensive 

drug. Among the 86 SNPs located in the CSMD1 loci 
in our dataset, three of them were ranked highly by IBI, 
as shown in Table 1, while all of them were ranked rela-
tively low by GWAS. These three novel SNPs identified 
by IBI in the CSMD1 loci provide evidence to support 
the reported role of CSMD1 in HTN, which may war-
rant further analysis for their potential causal influ-
ence on CSMD1 regulation. In addition to SNPs in the 
CSMD1 loci, IBI also identified a novel missense variant 
of rs1803274 in the BCHE loci, a novel intron variant 
rs948028 in the GRIK4 loci, and a novel missense vari-
ant of rs12779623 in the MALRD1 loci as the top-1 likely 
cause of HTN in 9, 2 and 1 HTN patients, respectively 
(Table  1). Interestingly, BCHE [28, 29] loci, GRIK4 [30] 
loci and MALRD1 loci [4] have been reported to be asso-
ciated with blood pressure regulation, although GWAS 
analysis ranked their SNPs relatively low (Table  1). 
Overall, these results provide support for IBI being able 
to identify novel and biologically meaningful SNPs or 
genes associated with HTN that were missed by GWAS 
analysis.

IBI found well‑known significant variants or genes 
that were missed by the parallel GWAS analysis in the same 
cohort
We list several missense variants (Table 2) as well as the 
gene loci (Table 3) that were previously reported for their 
influence on blood pressure regulation, beyond the ones 
discussed in Table  1. In Tables  2 and 3, IBI ranks were 
determined by Ms,r while GWAS ranks were determined 
by the p-value.

In Table  2, the missense variant of rs37369 [41] has 
been shown to be one of the four functional SNPs of 
AGXT2, which has been reported to have strong asso-
ciations with several cardiorenal traits, such as coronary 
heart disease [42]. Its significant association with hyper-
tension was recently reported via multiple regression 
analysis involving only several targeted SNPs [43]. The 
missense variant rs11575542 was recently identified as 
a functional variant of the DOPA Decarboxylase (DDC) 
gene during systematic polymorphism screening across 
the 15-Exon DCC locus [44]. The SNP was shown to alter 

Table 1 Novel SNPs in BP-associated genes identified by IBI as the individualized and most-probable HTN cause

rs ID Genes: Variant type MAF IBI rank GWAS rank p‑value # HTN 
explained

rs13265032 CSMD1: Intron Variant 0.34 12 5,361 0.26 425

rs1564573 CSMD1: Intron Variant 0.42 20 1,858 0.08 27

rs2449184 CSMD1: Intron Variant 0.42 33 3,760 0.17 0

rs1803274 BCHE: Missense Variant 0.20 23 221 0.01 9

rs948028 GRIK4: Intron Variant 0.16 38 14,922 0.78 2

rs12779623 MALRD1: Missense Variant 0.20 48 303 0.01 1
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the enzyme activity of DCC and result in changes in renal 
Dopamine excretion that is linked to hypertension [44]. 
The missense variant of rs723580 was reported to be a 
top trans-eSNP [45] for the expression level of EPO asso-
ciated with the red blood cell traits that were strongly 
linked to hypertension [46]. With low MAF in our rela-
tively small discovery cohort, these three SNPs were 
ranked much higher by IBI than by the parallel GWAS 
analysis (Table  2). This result provides support that IBI 
can recognize biologically meaningful genomic variants 
of low MAF, relative to GWAS, particularly when the 
sample size is small compared to the number of SNPs to 
be tested.

Table 3 shows a list of genes reported to be associated 
with BP regulation or HTN where at least one related 
paper was found for each gene’s association with BP. 
IBI identified these genes as candidate genes influenc-
ing HTN since these gene loci contain at least one SNP 
that is highly ranked by IBI for its association with HTN. 
Interestingly, all these genes were ranked relatively low by 
GWAS even considering the highest SNP rank by GWAS 
(‘Top GWAS rank’ in Table 3) within each gene locus; all 
of these novel SNPs were also ranked relatively low by 
GWAS (‘GWAS rank’ in Table  3) with non-significant 
p-values (Table  3). Moreover, among these eight SNPs 
highly-ranked by IBI and lowly-ranked by GWAS, six 
have MAF lower than 0.1 and three have MAF as low as 

0.01 (Table 3). Tables 2 and 3 provide support that IBI is 
better able than GWAS to identify significant variants of 
low MAF.

IBI top SNPs identify genetic risk scores that are more 
predictive for HTN than do the GWAS top SNPs
We further compared the capabilities of significant 
SNPs, identified by IBI and GWAS, in predicting HTN. 
After running IBI and GWAS on the training (discovery) 
dataset, we were able to rank all the SNPs based on Ms,r 
derived from IBI or p-values obtained from GWAS. For 
each subject in the test set (n = 1,323), based on the IBI 
ranking or GWAS ranking, we identified the top 1 SNP 
and the top 3 SNPs that exist in this subject (with a value 
of ‘1’ denoting a minor allele). We then used these top 
SNPs to calculate the genetic risk scores (GRS) for each 
subject as the sum of their risk (minor) alleles, weighted 
by the odds ratio for GWAS and by Ms,r for IBI. We used 
min-max normalization to normalize both the IBI and 
GWAS GRS to avoid potential bias from the different 
scales of the original values. We then directly calculated 
the area under the ROC curve (AUROC or AUC) using 
the normalized GRS for each patient (Fig.  5). We also 
trained a logistic regression model for HTN prediction 
using this feature of normalized GRS, which gave very 
similar results (data not shown).

As expected, using randomly selected SNPs showed 
poor prediction performance, with an AUROC of 0.50 
(Fig. 5A, D); the GWAS-selected top one or three SNPs 
both have an AUROC of 0.55 (Fig.  5B, E) suggesting 
some level of prediction; the IBI-selected top SNP had 
an AUROC of 0.59 (Fig. 5C) and the top three SNPs had 
an AUROC of 0.60 (Fig. 5F). To understand whether the 
improvement of AUROC by the IBI-selected SNPs is 
statistically significant, compared to that by the GWAS-
selected SNPs, we used the R package of pROC that is 
dedicated to comparing ROC curves [47]. The p-values 
for comparing the top-1 and top-3 SNPs ROC curves 
between GWAS and IBI are 0.05 and 0.01 specifically, 

Table 2 SNPs well-known for blood pressure regulation 
identified by IBI but missed by GWAS

rs ID Genes: Variant 
type

MAF IBI rank GWAS rank p‑value

rs11575542 DDC: Missense 
Variant

0.01 79 599 0.02

rs37369 AGXT2: Missense 
Variant

0.08 93 748 0.03

rs723580 CLIC5: Missense 
Variant

0.04 189 11851 0.61

Table 3 Genes well-known for blood pressure regulation identified by IBI but ranked relatively low by GWAS

rs ID Genes: Variant type MAF IBI rank GWAS rank Top GWAS rank p‑value

rs3211938 CD36 [31, 32]: Stop Gained 0.01 32 141 141 3.8E-03

rs6730396 ALLC [33]: Missense Variant 0.01 45 192 192 5.5E-03

rs9896904 ANKFN1 [26]: Intron Variant 0.07 57 14392 2130 7.5E-01

rs11899922 THSD7B [4, 34]: Intron Variant 0.07 70 9415 929 4.8E-01

rs10968668 LINGO2 [35, 36]: Intron Variant 0.08 80 1237 1237 4.9E-02

rs13261739 PDGFRL [37, 38]: Intron Variant 0.13 94 7156 7156 3.6E-01

rs6140644 PLCB1 [39]: Intron Variant 0.17 116 9947 699 5.1E-01

rs7647302 KCNAB1 [40]: Intron Variant 0.01 158 9528 1964 4.9E-01



Page 11 of 14Rahman et al. BMC Genomics          (2022) 23:863  

suggesting a statistical significance. The statistically 
higher AUROC achieved by IBI provides support that the 
top SNPs it selects predict hypertension better than the 
top SNPs selected by GWAS.

Discussion
In this study, we developed and applied a novel and indi-
vidualized method (IBI) to estimate the personalized 
genomic variants for the complex trait of hypertension. 
We compared its performance with the population-
based GWAS method using a real dataset from the FHS 
cohort. The significant overlap of the top-ranked SNPs 
by both IBI and GWAS suggests a degree of agreement 
between these two approaches. On the other hand, 
the unique SNPs they found support a complementary 
role of IBI to current GWAS analyses. Interestingly, by 
focusing on each individual and its patient-like-me sub-
group, IBI could identify significant SNPs of low MAF 
in the same cohort, relative to GWAS. IBI was also able 
to identify more diverse and individualized top SNPs to 
explain the HTN patients. Moreover, the top SNPs iden-
tified by IBI from the discovery cohort were able to pre-
dict HTN better than the top ones derived from GWAS 
when applied to an unseen test cohort. We also identi-
fied evidence from the literature to support the biologi-
cal significance of top SNPs found by IBI, especially the 
ones highly-ranked by IBI and lowly-ranked by GWAS. 
In summary, our study provides support that IBI can 

serve as a complementary approach in discovering novel 
and personalized genomic variants that may be missed by 
GWAS.

Contemporary GWAS studies often involve using 
large sample sizes (~1 million) to gain sufficient power, 
especially for variants of low MAF. Considering the 
large genomic heterogeneity among different individu-
als, as well as the nature of complex diseases often being 
affected by many variants of small effect size, an alterna-
tive approach is to focus on the subpopulation containing 
the specific variant of low MAF under evaluation, as IBI 
does. In this way, IBI may be able to better evaluate the 
effect of low-MAF variants in a patient-like-me subpopu-
lation, without the potential noise from a large remain-
ing population not containing such variants; moreover, 
this large remaining population could be explained bet-
ter with a remaining-population driver. The fact that the 
top-ranked SNPs by IBI in general have a higher overall 
marginal likelihood, Ms,r , and higher information gain 
with respect to the HTN status, provides support that 
IBI may have found specific drivers that better explain 
the subpopulations. Our results also support that IBI is 
not compromised in identifying significant high-MAF 
SNPs. IBI’s population partition strategy aligns well with 
the concept of personalized medicine in which different 
individuals or subpopulations may have different under-
lying genomic influences on producing complex clinical 
phenotypes such as HTN.

Fig. 5 ROC curves for predicting hypertension from top SNPs. The top-1 SNP (A, B, C) and top 3 SNPs (D, E, F) selected by GWAS (p-value ranking), 
IBI ( Ms,r ranking) or randomly were used to calculate the genetic risk scores for each test patient (n = 1,323), which were further used to derive 
the AUROC for predicting hypertension. For these two experiments, random SNPs have an AUROC of 0.50, as shown in (A, D); GWAS-selected top 
SNPs have AUROC of 0.55, as shown in (B, E); IBI-selected top SNPs have AUROC of 0.59 for top 1 SNP and 0.60 for top 3 SNPs, as shown in (C, F)
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As a general Bayesian framework, IBI can be applied 
to any discrete trait. It can also be applied to continuous 
traits by changing the marginal likelihood function from 
using the BDeu score for discrete variables to using the 
Bayesian information criterion (BIC) score for continu-
ous variables such as blood lipid levels [14]. The traits can 
be clinical traits such as HTN, or molecular traits such 
as gene expression from microarray or RNA-seq data. 
The genomic data can be genotyping array data or whole 
genome sequencing (WGS) data; indeed, IBI has a signifi-
cant potential in detecting rare or low-frequency genomic 
variants from the rapidly-accumulating WGS data.

For the current approach presented in this study, one 
limitation is that it only considers the genomic factors 
of HTN, while not modeling the effects of other factors 
such as age, sex, population structure, and the family 
relatedness that may exist in this FHS cohort. To model 
the effects from non-genomic factors, we plan to incorpo-
rate linear mixed models [48–52] into our current frame-
work. Also, due to confounding factors such as population 
structure, as well as linkage disequilibrium (LD), the influ-
encing variants described in this paper are not necessar-
ily causal. Further fine mapping approaches, functional 
analysis, or Mendelian randomization can be used to fur-
ther pinpoint the potential causality. Another interesting 
future direction is to search for more than one genomic 
variant that might work together to affect and influence 
the phenotypes of individuals and subpopulations.

Conclusions
In summary, we described a novel Bayesian method for 
identifying personalized genomic variants that influence 
complex traits, such as HTN. IBI can serve as a comple-
mentary approach to GWAS, especially in detecting sig-
nificant genomic variants of low frequency. The novel 
SNPs we identified for HTN warrant further analysis for 
their possible causal role in blood pressure regulation.
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