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Abstract 

Background H3K9me3 and DNA methylation co-marked CpG-rich regions (CHMs) are functionally important 
in mouse pre-implantation embryos, but their characteristics in other biological processes are still largely unknown.

Results In this study, we performed a comprehensive analysis to characterize CHMs during 6 mouse developmental 
processes, identifying over 2,600 CHMs exhibiting stable co-mark of H3K9me3 and DNA methylation patterns at CpG-
rich regions. We revealed the distinctive features of CHMs, including elevated H3K9me3 signals and a significant 
presence in euchromatin and the potential role in silencing younger long terminal repeats (LTRs), especially in some 
ERVK subfamilies. The results highlight the distinct nature of universal CHMs compared to CpG-rich nonCHMs in terms 
of location, LTR enrichment, and DNA sequence features, enhancing our understanding of CpG-rich regions’ regula-
tory roles.

Conclusions This study characterizes the features of CHMs in multiple developmental processes and broadens our 
understanding of the regulatory roles of CpG-rich regions.
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Background
H3K9me3 and DNA methylation are two repressive 
marks that are associated with heterochromatin and 
transposable element (TE) repression [1, 2]. H3K9me3 
and DNA methylation are positively correlated in fungi 
and plants [3, 4], but the relationship in mammals is 
more complicated [5]. The positive relationship between 
H3K9me3 and maintenance DNA methylation is par-
ticularly important at mouse developmental stages when 

the genome is broadly hypomethylated, including pre-
implantation embryogenesis and primordial germ cell 
(PGC) development [6–8]. On the other hand, H3K9me3 
is negatively associated with de novo DNA methyla-
tion during mouse spermatogenesis [9, 10]. Our recent 
study in mouse pre-implantation embryos discovered 
a highly positive correlation between H3K9me3 and 
DNA methylation at CpG-rich regions [6]. However, it is 
unclear whether the positive correlation between DNA 
methylation and H3K9me3 in CpG-rich regions exists 
for different biological processes, such as de novo DNA 
methylation processes during spermatogenesis.

In our previous study, we defined CpG-rich genomic 
loci with high H3K9me3 signals and DNA methyla-
tion levels as CHMs, which are widespread across the 
genome, not only in pericentromere-associated domains 
(PADs) but also in promoters and potential enhanc-
ers [6]. CHMs are important in the development of 
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pre-implantation embryos, as they are hotspots for DNA 
methylation maintenance [6]. In addition, allele-specific 
CHMs include the majority of known imprinting control 
regions (ICRs) and dozens of ICR-like regions (ICRLRs), 
which play important roles in embryonic development 
by regulating the allele-specific expression of imprinted 
genes and transposable elements [6]. However, whether 
CHMs play regulatory roles in other biological processes 
during mouse development is still largely unknown. To 
address the above questions, we performed a comprehen-
sive analysis to characterize the co-localization between 
H3K9me3 and DNA methylation at CpG-rich regions 
during multiple mouse developmental processes.

Results
CHMs are stable during mouse development
To explore the co-localization between H3K9me3 and 
DNA methylation, we collected public H3K9me3 chro-
matin immunoprecipitation sequencing (ChIP-seq) and 
whole-genome bisulfite sequencing (WGBS) data during 
mouse pre-implantation embryogenesis [11], PGC devel-
opment [12], spermatogenesis [13, 14], retina develop-
ment [15], heart and liver development after gastrulation 
[16–18] (Supplementary Table 1). By dividing the genome 
into three classes of regions according to the number of 
CpGs, we found that H3K9me3 signals and DNA meth-
ylation levels showed the highest positive correlations at 
CpG-rich regions in all processes (Supplementary Fig. 
S1A), which was consistent with our previous observa-
tion during pre-implantation embryogenesis [6]. This 
finding suggests that CHMs may play regulatory roles 
during multiple mouse development processes.

To investigate the features and potential roles of CHMs 
during mouse development, we identified CHMs in all 
developmental processes (Fig. 1A). For each developmen-
tal process, candidates were detected by a pipeline for 
CHM calling and scoring allele-specific regulatory poten-
tial, named PCAR [6] at each stage, and those present 
in more than two-thirds of the stages were defined as 
CHMs for this process. The number of identified CHMs 
ranged from 6,032 (liver development) to 14,614 (retina 
development) (Fig. 1B), suggesting that CHMs are widely 
spread in different developmental processes. In most 

cases, CHMs harbored significantly higher H3K9me3 
signals and DNA methylation levels than non-ubiquitous 
candidates (Supplementary Fig. S1B and C), which were 
only present in less than two-thirds of stages of a devel-
opmental process.

To investigate whether H3K9me3 and DNA meth-
ylation always co-exist at CpG-rich regions, we further 
identified CH-nonMs (i.e., CpG-rich regions marked by 
H3K9me3 but not DNA methylation) and CM-nonHs 
(i.e., CpG-rich regions marked by DNA methylation but 
not H3K9me3) (see Methods for details). The total num-
ber of identified CM-nonHs (134,267) was larger than 
that of CHMs (20,313) and CH-non-Ms (14,707), indi-
cating that both modifications do not always co-exist at 
CpG-rich regions. Nevertheless, 2,677 (13.18%) CHMs 
were present in all 6 developmental processes (termed 
universal CHMs), while only 41 (0.28%) and 1,206 (0.90%) 
CH-nonMs and CM-nonHs were found in all processes 
(Fig. 1C, D, Supplementary Fig. S1D and E). This finding 
indicates that CHM is one of the most stable modifica-
tion patterns at CpG-rich regions during mouse develop-
ment and that the identified universal CHMs are worth 
investigating for additional characterization of features 
and functions.

Features of CHMs in distinct chromatin compartments
CpG-rich regions play a crucial role in various aspects 
of gene regulation and genome functionality. One well-
studied subset of these regions is the CpG islands (CGIs), 
which are generally unmethylated in healthy cells. In our 
study, we examined diverse types of CpG-rich regions, 
categorized based on CHM features. For clarity, we 
organized CpG-rich regions into two main groups: 
CHMs and non-CHM CpG-rich regions (see Methods 
for details). Additionally, we further segmented CHMs 
into universal CHMs and non-universal CHMs, defin-
ing the latter as a complementary set to universal CHMs 
across all six processes examined (Fig.  2A). To iden-
tify process-specific markers, we further categorized 
the non-universal CHMs into 1,298 pre-implantation-
specific CHMs, 167 PGC development CHMs, 2,006 
spermatogenesis-specific CHMs, 3,121 retina develop-
ment-specific CHMs, 314 heart development-specific 

(See figure on next page.)
Fig. 1 CHMs are stable during mouse development. A Definition of CHM candidates and CHMs. Candidates present in more than 2/3 stages 
of each developmental process were defined as CHMs. PCAR, a computational pipeline for CHM calling and scoring allele-specific regulatory 
potential. B Summary of candidates and CHMs in each developmental process. C Venn diagram showing the overlap of CHMs in 6 developmental 
processes. D The UCSC Genome Browser view of DNA methylation amount (DNAme amount), H3K9me3 signals, and CpG site number 
around a representative universal CHM. The scales of the CpG number track and DNAme amount tracks were 0–50, and those of the H3K9me3 
tracks were 0–1. The genomic location of the universal CHM is indicated by a black rectangle. The DNA methylation amount represents the product 
of DNA methylation level and CpG number for each 1-kb window, and the H3K9me3 signal represents the ChIP-seq RPM
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Fig. 1 (See legend on previous page.)
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Fig. 2 Environments of CHMs in compartment A and B. A Schematic representation of the relationship between universal CHMs, non-universal 
CHMs and CpG-rich nonCHMs. B Pie plot showing universal CHMs overlapping with compartment A and B. C-D Line plots showing H3K9me3 
signals (C) and DNA methylation levels (D) surrounding universal CHMs (± 50 kb, solid), non-universal CHMs (± 50 kb, dashed) and CpG-rich 
nonCHMs (± 50 kb, dotted) in compartment A (pink) and B (blue) in pre-implantation embryogenesis. E–F Box plots showing the expression levels 
of potential target genes (E) and potential target TEs (F) of universal CHMs (dark), non-universal CHMs (mid-tone) and CpG-rich nonCHMs (light) 
in compartment A (pink) and B (blue). The expression level was calculated as the  log2(TPM + 1). TPM, transcripts per kilobase million
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CHMs and 74 liver development-CHMs (see Methods 
for details). Given that H3K9me3 and DNA methylation 
are both repressive modification marks, we next investi-
gated whether universal CHMs are exclusively located at 
heterochromatin. As compartment A and B derived from 
Hi-C datasets are regarded as euchromatin and hetero-
chromatin respectively [19, 20], we calculated the per-
centages of universal CHMs in Hi-C compartments from 
5 cell types (ESCs, NPCs, ncxNPCs, CNs, ncxCNs) [21] 
(see Methods for details). 946 (35.34%) universal CHMs 
were located in compartment B in all cell types, and 553 
(20.66%) were located in compartment A in all cell types 
(Fig. 2B). In addition, 917 (34.25%) universal CHMs were 
located in different compartments in different cell types. 
The distributions of non-universal CHMs in compart-
ment A and B were similar to those of universal CHMs 
(Supplementary Fig. S2A). Conversely, CpG-rich non-
CHMs behaved differently, with 55.97% (12,351) located 
in compartment A, while only a mere 2.90% (639) were 
located in compartment B (Supplementary Fig. S2B). Our 
results demonstrated that universal CHMs and non-uni-
versal CHMs were not exclusively located in heterochro-
matin, while CpG-rich nonCHMs prefer euchromatin. 
Upon further analysis, we found that retina develop-
ment-specific CHMs tend to be more prevalent in the 
inconsistent compartment A in neural cells, especially 
in NPCs  and  CNs, comparing to other types of CHMs 
(Supplementary Fig. S2C). This observation subtly hints 
at the potential functional significance of process-specific 
CHMs.

To characterize the features of universal CHMs, non-
universal CHMs and CpG-rich nonCHMs in compart-
ment A and B, we displayed the H3K9me3 signals and 
DNA methylation levels around universal CHMs in two 
compartments separately. As expected, we observed 
much higher H3K9me3 signals at CHMs than adjacent 
regions in both compartments during all developmental 
processes, while the H3K9me3 signals at adjacent regions 
in compartment B were relatively higher than those in 
compartment A (Fig.  2C and Supplementary Fig. S2D). 
Furthermore, in most instances, the H3K9me3 signals 
of universal CHMs were slightly elevated compared to 
those of non-universal CHMs. However, the patterns of 
DNA methylation levels around CHMs were complicated 
(Fig.  2D and Supplementary Fig. S2E). CHMs displayed 
much higher DNA methylation levels than adjacent 
regions during pre-implantation embryogenesis and PGC 
development, while the DNA methylation level differ-
ences between CHMs and adjacent regions were weak for 
other developmental processes, mainly due to the high 
background DNA methylation level across the mamma-
lian genome in most tissues [1]. Strikingly, DNA meth-
ylation levels at adjacent regions of universal CHMs and 

non-unversal CHMs were even lower in compartment B 
than in compartment A at some stages of spermatogen-
esis, retina, heart, and liver development. Furthermore, 
as expected, the H3K9me3 signals and DNA methylation 
levels in CpG-rich nonCHM regions were much lower 
compared to those in the other two types of CpG-rich 
regions. Taken together, the findings indicate that the key 
feature of CHMs as genomic islands is that H3K9me3 
signals are much higher than those in adjacent regions, 
regardless of compartment A or B.

To investigate whether these CpG-rich regions play 
regulatory roles, we first examined their distances to 
genes and TEs in compartment A and B respectively. 
Compared with CpG-rich nonCHMs, CHMs displayed 
much larger distances to their nearest gene transcription 
start sites (TSSs), especially for those in compartment B 
(Supplementary Fig. S3A). For the distances to the near-
est TEs, there were no clear differences between CHMs 
and CpG-rich nonCHMs in both compartment A and 
B (Supplementary Fig. S3A; see Methods for details). 
Then we examined the expression levels of potential tar-
get genes and TEs of CHMs and CpG-rich nonCHMs 
(see Methods for details). No matter in compartment 
A or B, the expression levels of CHMs’ potential tar-
get genes and TEs were significantly lower than those 
of CpG-rich nonCHMs’ potential targets (Fig.  2E, F), 
indicating that CHMs play a repressive regulatory role, 
consistent with the known properties of H3K9me3. The 
functional enrichment analysis showed that the poten-
tial target genes of universal CHM in compartment A 
were enriched in the regulation of developmental pro-
cess, while non-universal CHMs in compartment A 
were enriched in metabolic processes, whereas universal 
CHMs and non-universal CHMs in compartment B were 
enriched in sensory perception of stimuli (Supplemen-
tary Fig. S3B, Supplementary Table  2). The target genes 
of CpG-rich nonCHM regions were enriched in cellular 
metabolic processes in compartment A and associated 
with nervous system development in compartment B. 
We also observed that pre-implantation-specific CHMs 
in compartment A have target genes enriched in cellu-
lar metabolic processes, while spermatogenesis-specific 
CHMs in the same compartment are enriched in female 
gamete generation (Supplementary Fig. S3C, Supplemen-
tary Table 3). This points to a potential inhibitory role of 
process-specific CHMs in compartment A.

Enrichment of CHMs in IAP subfamilies
To further depict the genomic distribution of univer-
sal CHMs, we investigated their regional enrichment. 
As expected, universal CHMs, non-universal CHMs, 
and CpG-rich nonCHMs were enriched in CpG islands 
(CGIs) (Fig.  3A). Universal CHMs and non-universal 
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CHMs were enriched in long terminal repeats (LTRs), 
non-universal CHMs were enriched in Long Interspersed 
Nuclear Element (LINE), while CpG-rich nonCHMs 
were enriched in promoters and exons (Fig. 3A). In addi-
tion, on most occasions, the regional enrichments of uni-
versal CHMs and non-universal CHMs in compartment 
A displayed similarities, as did non-universal CHMs and 
CpG-rich nonCHMs in compartment B (Supplementary 
Fig. S4A). The process-specific CHMs exhibited diverse 
patterns of enrichment in certain genomic regions, 
including the enrichment in promoters and exons of 
retina-specific and liver-specific CHMs, while the enrich-
ment in LINE of pre-implantation-specific and spermat-
ogenesis-specific CHMs (Supplementary Fig. S4B). We 
then investigated the enrichment of CHMs in families 
and subfamilies of repetitive elements and found that 
universal CHMs and non-universal CHMs were highly 
enriched in subfamilies of two LTR families, ERVK and 
ERV1, compared to CpG-rich nonCHMs (Fig. 3B, C). In 
contrast, universal CHMs were not enriched in two other 
types of retrotransposons, LINEs and SINEs (Fig.  3A, 
Supplementary Fig. S4C and D). Non-universal CHMs 
exhibited a slight enrichment in LINEs compared to the 
other two types of CpG-rich regions (Supplementary Fig. 
S4C). Interestingly, compared with LTR subfamilies not 
enriched in universal CHMs and non-universal CHMs, 
element parts of LTR subfamilies they enriched in were 
less well conserved in evolution (Fig.  3D; see Methods 
for details), indicating that CHMs may be involved in the 
silencing of evolutionarily younger LTRs.

We next investigated the detailed relationship between 
CHMs and enriched LTR subfamilies. By displaying the 
overlapping ratios and enrichment scores, we found a 
significant overlap between universal CHMs and a spe-
cific subgroup of IAP ERVs (Intracisternal A Particle 
Endogenous Retroviruses), namely the IAPEz-int (and 
its cognate LTRs IAPLTR1a-Mm and IAPLTR1_Mm), 
with an enrichment score above 1 and an overlap ratio 

exceeding 10% (Fig. 3E, F and Supplementary Fig. S4E). 
However, for non-universal CHMs, no subfamilies of 
either LTR or LINE exhibited significant enrichment 
overlap (Supplementary Fig. S4F, SG). For the IAPEz-
int, as most of the members overlapped with universal 
CHMs (Fig. 3E), we suspected that the remaining mem-
bers of IAPEz-int overlapped with CHM candidates 
identified in at least one stage. The percentages of the 
IAPEz-int overlapping with or having at least one CHM 
candidate nearby (± 2 kb) were indeed 98.93% when con-
sidering all CHM candidates, demonstrating the role of 
CHMs in silencing specific ERVK subfamilies globally. It 
was previously reported that a significant overlap existed 
between DMR and the IAPEz-int sub-family, which was 
associated with Dnmt1’s de novo activity during the early 
stages of development [22]. Our findings suggested that 
while there were CHMs exhibiting inconsistency, such as 
H3K9me3 or 5mC gain or loss particularly during pre-
implantation and PGC development, the predominant 
overlap of IAPEz-int and CpG-rich regions was observed 
at CHM consistent regions (Supplementary Fig. S4H-J). 
This implied that IAPEz-int required both H3K9me3 and 
5mC for their repression during development.

DNA sequence features of CHMs
To explore whether universal CHMs have distinct DNA 
sequence features, we compared the nucleotide composi-
tion between universal CHMs, non-universal CHMs and 
CpG-rich nonCHMs. We found that universal CHMs had 
the lowest CpG frequencies (Fig. 4A), demonstrating that 
universal CHMs are a subset of CpG-rich regions with 
lower CpG frequency. Given that ZFP57 is an ICR-related 
regulator whose DNA binding motif is TGCmCGC [23, 
24], we examined its abundance in all types of CpG-rich 
regions, and found a significantly higher count of ZFP57 
motif hits in universal CHMs than in other two CpG-
rich regions (Fig. 4A). Our results indicate that universal 

(See figure on next page.)
Fig. 3 Universal CHMs tend to be enriched in IAP subfamilies. A Bar plot showing the enrichment of universal CHMs (red), non-universal CHMs 
(green) and CpG-rich nonCHMs (blue) in CGI, promoter, gene body, exon, intron, LTR, LINE and SINE regions. The enrichment score represents 
the  log2-transformed observed overlapping length/the expected overlapping length ratio. B Sina plots showing the enrichment scores of universal 
CHMs, non-universal CHMs and CpG-rich nonCHMs in LTR subfamilies. Element parts of each LTR subfamily, for example, IAPEz-int, IAPLTR1_Mm 
and IAPLTR1a_Mm, were represented by a dot respectively. Element parts from different LTR subfamilies were differentiated using distinct 
colors. C Pie plot showing the components of enriched element parts of LTR subfamilies in universal CHMs (left), non-universal CHMs (middle) 
and CpG-rich nonCHMs (right). Element parts of the LTR subfamily with an enrichment score ≥ 1 was considered to be enriched, which were 
dots above the dashed line in Fig. 3B. D Boxplot showing the conservation score of element parts of LTR subfamilies enriched or non-enriched 
in universal CHMs and non-universal CHMs. E Venn diagram showing the overlap between universal CHMs (red) and IAPEz-int (yellow). F The UCSC 
Genome Browser view of DNAme amount, H3K9me3 signals and CpG site number around representative universal CHMs and IAPEz-int. The scales 
of the CpG number track and DNA methylation amount tracks were 0–50, and those of the H3K9me3 tracks were 0–1. The genomic locations 
of the universal CHMs and IAPEz-int are indicated by black and blue rectangles, respectively. The DNA methylation amount represents the product 
of DNA methylation level and CpG number for each 1-kb window, and the H3K9me3 signal represents the ChIP-seq RPM



Page 7 of 13Yang et al. BMC Genomics          (2023) 24:663  

Fig. 3 (See legend on previous page.)
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Fig. 4 Potential formation mechanisms of universal CHMs. A Box plots showing the frequency of CpGs (left) and methylated ZFP57 motifs (right) 
in universal CHM CpG-rich 1-kb bins and CpG-rich nonCHMs. CpG sites in ZFP57 motifs were considered to be methylated if the DNA methylation 
level ≥ 0.5 in more than 2/3 stages. The frequencies of 1-kb bins from the same universal CHMs were averaged to one number. B ROC curve 
showing the prediction of universal CHMs (red), non-universal CHMs (green), CpG-rich nonCHMs (blue) using Nucleotide Transformer fine-tuned 
with a MLP model. The Area Under the Curve (AUC) scores were indicated in the brackets. C-D Bar plot showing the AUC of top 10 k-mers 
with the best performance in distinguishing universal CHMs from CpG-rich nonCHMs (C), and universal CHMs from non-universal CHMs (D). 
E–F Strip plot showing the top 10 transcription factors most similar to the CpG-rich 1 kb-bins of universal CHMs (E) and non-universal CHMs (F). 
CpG-rich 1 kb-bins were defined as genomic 1 kb-bins with more than 30 CpGs inside
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CHMs indeed differ from other two CpG-rich regions in 
sequence features.

To detect whether universal CHMs, non-universal 
CHMs and CpG-rich nonCHMs have distinct features of 
DNA sequences, we fine-tuned Nucleotide Transformer 
[25] with a multi-layer perceptron (MLP) (see Meth-
ods for details). Optimal accuracy on the test data was 
achieved with the following parameters: 100 epochs, a 
batch size of 50, a learning rate of 0.001, and the usage 
of the 20th embed layer of the Nucleotide Transformer. 
Upon evaluating the performance of the fine-tuned 
model, we conducted a receiver operating characteris-
tic (ROC) analysis for each of the three CpG-rich region 
types, comparing each against the other two. Intriguingly, 
the area under the curve (AUC) amounted to 0.9869 for 
universal CHMs, 0.8746 for non-universal CHMs, and 
0.9883 for CpG-rich nonCHMs (Fig.  4B). In terms of 
precision-recall analysis, the area under the precision-
recall curve (AUPRC) yielded values of 0.9085 for univer-
sal CHMs, 0.6061 for non-universal CHMs, and 0.9954 
for CpG-rich nonCHMs. These results suggested that 
each type of CpG-rich region has specific DNA sequence 
features.

To investigate the exact DNA features of univer-
sal CHMs, we next generated all possible DNA k-mers 
(1 ≤ k ≤ 6) and examined their occurrences between uni-
versal CHMs and CpG-rich nonCHMs. We conducted 
a receiver operating characteristic (ROC) analysis to 
pinpoint k-mers whose frequency of occurrence could 
differentiate between universal CHMs and CpG-rich 
nonCHMs, universal CHMs and non-universal CHMs, 
as well as non-universal CHMs and CpG-rich nonCHMs 
(see Methods for details). The top 10 k-mers adeptly dis-
tinguished universal CHMs from the other two types of 
CpG-rich regions well, as evidenced by AUC values rang-
ing between 0.85 and 0.90 (Fig. 4C, 4D). When attepting 
to distinguish between non-universal CHMs and CpG-
rich nonCHMs, AUC scores were slightly lower, ranging 
from 0.70 to 0.80 (Supplementary Fig. S5A). Among the 
top 10  k-mers that best differentiated universal CHMs 
from CpG-rich nonCHMs best, 7 were more frequently 
found in the universal CHMs, while the remaining 3 
were more common in CpG-rich nonCHMs (Supple-
mentary Fig. S5B). There was also a significant difference 
in the frequency of the top 10 k-mers that distinguished 
universal CHMs from non-universal CHMs, as well as 
non-universal CHMs from CpG-rich nonCHMs, across 
these CpG-rich regions (Supplementary Fig. S5C, D). 
This revealed a distinct difference in DNA sequence fea-
tures among the three types of CpG-rich regions. Such a 
sequence preference in universal CHMs was also discern-
able in IAPEz, which extensively overlapped with univer-
sal CHMs (Supplementary Fig. S5E), suggesting that the 

sequence preference might be derived from this ERVK 
subfamily. These results indicating the roles of DNA 
sequence preferences in CHM determination.

To investigate the differences in transcription factor 
(TF) binding preferences between different types of CpG-
rich regions, we applied the Cistrome toolkit [26, 27] to 
identify potential binding TFs  or chromatin regulator 
(CR). We found that universal CHMs had a higher poten-
tial to be bound by TRIM28, MECP2, INO80, MBD1, etc. 
(Fig. 4E, Supplementary Table 4), which included known 
methyltransferases of H3K9me3, DNA methylation bind-
ing factors, suggesting their roles in maintaining the co-
localization of two epigenetic modifications. However, 
non-universal CHMs exhibited a heightened potential 
for interaction with transcriptionally active factors such 
as POLR2A (Fig. 4F). CpG-rich nonCHMs, on the other 
hand, had a higher potential to be bound by general tran-
scription factors, such as MED1 and GTF2B (Supple-
mentary Fig. S5F). Process-specific CHMs tended to be 
associated with corresponding transcription factors. For 
instance, GATA4, which is related to myocardial differ-
entiation and function, was likely to bind to heart devel-
opment-specific CHMs. Similarly, FOXA, instrumental 
in liver differentiation, was found to associate with liver 
development-specific CHMs (Supplementary Fig. S5H, 
Supplementary Table  4). Our results indicate that there 
are distinct transcription factor binding potentials 
between different types of CpG-rich regions, especially 
universal CHMs and nonCHM CpG-rich regions.

Discussion
H3K9me3 and DNA methylation frequently co-localize 
to silence genes and transposable elements in hetero-
chromatin, which is usually GC-poor [28]. However, 
our previous study in mouse embryos revealed their co-
localization at CpG-rich regions, termed CHMs, and 
suggested that those regions can escape DNA demethyla-
tion during pre-implantation embryogenesis [6]. Certain 
types of CpG-rich regions, such as CpG islands (CGIs), 
which are typically conserved and associated with gene 
promoters, have been extensively studied. These regions 
are often free from DNA methylation. In this study, we 
confirmed the co-localization of H3K9me3 and DNA 
methylation in CpG-rich regions in multiple mouse 
developmental processes and termed the consistently co-
localized regions as universal CHMs. Universal CHMs 
were distinct from other CpG-rich regions, i.e., CpG-rich 
nonCHMs, in three aspects. First, many more universal 
CHMs in proportion were located consistently in com-
partment B than CpG-rich nonCHMs (35.34% vs. 2.90%). 
Second, universal CHMs were specifically enriched 
in LTRs, while CpG-rich nonCHMs were specifically 
enriched in gene promoters and exons. Third, the DNA 
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sequence features of those two types of CpG-rich regions 
differed significantly. This study broadens our under-
standing of the regulatory roles of CpG-rich regions.

Some types of repetitive elements are known to be 
suppressed through the co-occupancy of H3K9me3 and 
DNA methylation [29]. Our study highlighted the co-
localization of H3K9me3 and DNA methylation in the 
ERVK and ERV1 families, particularly in the ERVK sub-
family IAPEz-int. Those evolutionarily younger repeat 
subfamilies are thought to be regulated by KRAB-con-
taining zinc finger proteins (KZFPs) and their cofactor 
TRIM28 [30, 31], whose binding sites preferentially over-
lap with universal CHMs, suggesting a similar regulatory 
mechanism for universal CHMs.

Conclusions
Our research provides a comprehensive analysis of 
H3K9me3 and DNA methylation co-marked CpG-rich 
regions (CHMs) across six distinct mouse developmen-
tal processes. We have discovered that the co-occurrence 
of H3K9me3 and DNA methylation represents one of the 
most consistent modification patterns within CpG-rich 
regions, with more than 2,600 CHMs observed through-
out all examined developmental stages. Notably, CHMs 
are characterized by significantly higher H3K9me3 sig-
nals when compared to surrounding regions, with a large 
portion located in euchromatin. Our findings also suggest 
a potential role of sequence preferences in determining 
CHM characteristics and hint at the possible involve-
ment of CHMs in silencing evolutionarily younger LTRs, 
particularly within certain ERVK subfamilies. This study 
elucidates the distinct features of CHMs during multiple 
developmental processes and enriches our understand-
ing of the regulatory roles of CpG-rich regions in mam-
malian development. Further research may lead to new 
insights into the intricate epigenetic regulation of devel-
opmental processes and contribute to our knowledge of 
the biological significance of these modifications.

Methods
Data processing and normalization for ChIP-seq, RNA-seq, 
and WGBS
ChIP-seq reads were aligned to the mouse genome 
mm10 using Bowtie2 (v2.4.2) [32] with default param-
eters. Signal tracks for each sample were generated using 
the MACS2 (v2.1.1.20160309) [33] pileup function and 
were saved as reads per million (RPM). ChIP-seq biologi-
cal replicates were pooled. RNA-seq reads were aligned 
to the mouse genome mm10 using HISAT2 (v2.1.0) [34] 
with default parameters. The expression levels for all Ref-
Seq genes were quantified as TPM values using String-
Tie (v2.1.4) [35], and the TPM values of replicates were 
averaged. All of the WGBS reads were first processed 

using Trim galore (v0.6.6) to trim low-quality reads. The 
trimmed WGBS reads were then mapped to the mouse 
genome mm10 using bsmap, and the methylation level 
of each CpG site was estimated using mcall. Both bsmap 
and mcall were from MOABS (v1.3.2) [36].

Calculation of DNA methylation amount (DNAme amount)
We generated genome-wide sliding windows with 1 kb as 
the size and 10  bp as the step and calculated the DNA 
methylation level (methylated CpG/total CpG) and CpG 
number for each 1-kb window separately. Then we mul-
tiplied the DNA methylation level and CpG number 
for each 1-kb window as the DNA methylation amount 
(DNAme amount) for the center position of the given 
window.

CHM-related terminology
PCAR (v0.1.0) [6] was used to call candidates with 
default parameters. For each developmental process, 
candidates existing in more than 2/3 stages were defined 
as CHMs, while others were defined as non-ubiqui-
tous candidates. Neighboring CHMs within 2  kb were 
merged. CHMs existing in all 6 processes were defined 
as universal CHMs. Non-universal CHMs were defined 
as the complementary set to universal CHMs across all 
six processes. CH-nonMs and CM-nonHs were called 
using PCAR with the parameters “-D CHnonM” or 
“-D CMnonH” respectively. 1-kb bins with more than 
30 CpGs were selected as CpG-rich regions. CpG-rich 
regions without CHM candidates within 2  kb were 
defined as CpG-rich nonCHMs. CHMs existing in only 
one certain process were defined as process-specific 
CHMs. For example, CHMs only exited during heart 
development were defined as heart development-specific 
CHMs.

Compartment calling
The annotations of compartment A and B in mouse ESCs, 
in  vitro differentiated neural progenitor cells (NPCs), 
in vitro differentiated cortical neurons (CNs), NPCs puri-
fied in  vivo from the E14.5 neocortex (ncxNPCs), and 
CNs purified in vivo from the E14.5 neocortex (ncxCNs) 
were downloaded from Bonev et al. (2017) [21]. The A or 
B compartments from 5 tissues were intersected, respec-
tively. Regions that were not either A or B in the 5 cell 
types were intersected and classified into the “other” 
group. Regions that were inconsistent in the 5 cell types 
were classified into the “inconsistent” group. Inconsistent 
compartment A and B regions were defined as genome 
regions which were not consistent to be compartment A 
or compartment B across the 5 cell types (ESCs, NPCs, 
CNs, ncxNPCs and ncxCNs).
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Assembly of TE transcripts
Transposable element (TE) transcripts during mouse 
development were constructed as in ref. [37]. The RNA-
seq reads in each developmental stage were mapped to 
the mm10 genome using STAR (v2.7.4a) [38] with the 
following parameters: “–outSAMtype BAM SortedBy-
Coordinate –outFilterMultimapNmax 500 –outSAMat-
tributes NH HI NM MD XS AS –readFilesCommand 
zcat”. Transcript assembly of each RNA-seq sample was 
performed using StringTie (v2.1.4) [35] with the follow-
ing parameters: “-j 2 -s 5 -f 0.05 -c 2”. Assembled tran-
scripts from multiple RNA-seq samples were merged 
using TACO (v0.7.3) [39] with default parameters. 
Transcripts whose exons overlapped with transposable 
elements but not the exons of RefSeq protein-coding 
genes were regarded as TE transcripts.

Calculation conservation score for TEs
The conservation scores for Transposable Elements 
(TEs) were obtained from the UCSC Table Browser 
(https:// genome. ucsc. edu/ cgi- bin/ hgTab les) [40]. The 
scores were derived from the mm10 assembly, spe-
cifically from the “Comparative Genomics” group, 
the “Conservation” track, and the “60 Vert. Cons 
(phastCons60way)” table. These scores encompassed 
three subsets: Glires, Euarchontoglires, and placental 
mammal.

Potential target genes/TEs
We defined genes whose TSSs were located within 10 kb 
of universal CHMs, non-universal CHMs, CpG-rich non-
CHMs or process-specific CHMs as their potential target 
genes and TEs overlapping with universal CHMs, non-
universal CHMs and CpG-rich nonCHMs as their poten-
tial target TEs.

Genomic enrichment analysis
The enrichment of universal CHMs, non-universal 
CHMs, CpG-rich nonCHMs and process-specific CHMs 
in genomic features such as CGI, promoter, gene body, 
exon, intron, LTR, LINE and SINE was calculated. We 
used the  log2-transformed “observed overlapping length 
ratio” divided by the “expected overlapping length ratio” 
as the enrichment score. The observed overlapping ratio 
was the proportion of the length of universal CHMs, 
non-universal CHMs, CpG-rich nonCHMs or process-
specific CHMs overlapping with features to the total 
length of universal CHMs, non-universal CHMs, CpG-
rich nonCHMs or process-specific CHMs. The expected 
overlapping length ratio was the proportion of each 

feature’s total length, for example, total length of promot-
ers, to the whole mm10 genome.

Functional annotation
Functional annotation clustering analysis was performed 
using the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) Bioinformatics Resource 
6.8 [41]. For each functional cluster from “GOTERM_
BP_ALL”, one representative Gene Ontology (GO) term 
was selected, and its -log10(p-value) was plotted to indi-
cate the significance. Regarding the CpG-rich nonCHMs, 
the number of their target genes in compartment A 
exceeded the upper limit of 3,000 as set by DAVID. We 
therefore randomly selected 3,000 genes from the target 
genes of CpG-rich nonCHM regions five times. These 
selections were individually processed through DAVID 
each time and the resulting GO terms were combined. 
Due to the limited number of CHMs of each process-
specific CHM classes, we could only obtain significant 
GO terms enriched in pre-implantation-specific CHMs 
and PGC development CHMs.

Fine-tuning the nucleotide transformer
We utilized the pre-trained ’2B5_multi_species’ Nucleo-
tide Transformer model [25], setting the ’max_positions’ 
parameter to 171. This was calculated based on the 1-kb 
sequence length we used and the 6-mer maximum k-mer 
length utilized by the Nucleotide Transformer. For our 
predictions, we used 3,402 CpG-rich 1  kb-bins of uni-
versal CHMs, 2,392 CpG-rich 1 kb-bins of non-universal 
CHMs, and 22,069 CpG-rich nonCHMs, excluding 7 
CpG-rich nonCHMs containing N sites. We stored the 
embedding results from layers 10 to 20 during the predic-
tion process for separate fine-tuning. 20% of the labeled 
embedding scores were randomly selected as a test 
dataset, with the remaining data split into a 4:1 ratio for 
training and validation datasets. A Multi-Layer Percep-
tron (MLP) model was utilized to fine-tune the embed-
ding scores across all combinations of hyperparameters: 
embedding layers of 10, 15, 20; batch sizes of 50, 100, 500; 
epoch numbers of 10, 50, 100; and learning rates of 0.001, 
0.0001, 0.00001. The MLP model was constructed with 
a flatten layer, a linear layer (with 2,560 inputs and 512 
outputs), a ReLU layer, and a final linear layer (with 512 
inputs and 3 outputs for class probability determination). 
After extensive fine-tuning, the optimal parameters for 
the highest test dataset accuracy (0.9616) were found to 
be a learning rate of 0.001, 100 epochs, a batch size of 50, 
and using the  20th embedding layer.

ROC analysis of k-mers
The frequencies of each possible k-mer (1 ≤ k ≤ 6) 
were calculated for universal CHM, non-universal 

https://genome.ucsc.edu/cgi-bin/hgTables
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CHMs and CpG-rich nonCHM sequences. For each 
possible k-mer, we labeled universal CHM sequences 
as “1” and CpG-rich non-CHM sequences as “0” and 
used the sequence labels and k-mer frequency to 
calculate the AUC score with Scikit-learn (sklearn, 
v1.1.3) [42]. The frequency and AUC score of each 
k-mer were equivalent to those of its reverse com-
plementary k-mer. This process was similarly carried 
out for universal CHMs versus non-universal CHMs, 
as well as non-universal CHMs versus CpG-rich 
nonCHMs.

Statistical analysis
Statistical analysis was performed using R or SciPy 
(v1.5.4) [43], and the statistical details are shown in 
the figure legends. Asterisks represent statistical sig-
nificance (****: p-value < 0.0001; ***: p-value < 0.001; **: 
p-value < 0.01; *: p-value < 0.05; n.s.: not significant).

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12864- 023- 09758-8.

Additional file 1: Supplementary Figure S1. CHMs are one of the most 
stable forms at CpG-rich regions during mouse development. Supple-
mentary Figure S2. Environments of CHMs in compartment A and B. 
Supplementary Figure S3. Potential functions of CHMs in compartment 
A and B. Supplementary Figure S4. Enrichment of universal CHMs in 
repeats. Supplementary Figure S5. Potential formation mechanisms of 
universal CHMs.

Additional file 2: Supplementary Table S1. Public high through-put 
sequencing data used in this study. Supplementary Table S2. Biological 
Process (BP) GO term enrichment analysis of potential target genes of 
universal CHMs, non-universal CHMs and CpG-rich nonCHMs in compart-
ment A and B. Supplementary Table S3. Biological Process (BP) GO term 
enrichment analysis of potential target genes of pre-implantation-specific 
CHMs and spermatogenesis-specific CHMs in compartment A and B. 
Supplementary Table S4. Results of Toolkit for Cistrome Data Browser to 
find significant factors binding overlap with universal CHMs, non-universal 
CHMs, CpG-rich nonCHMs and process-specific CHMs.

Acknowledgements
We would like to thank Wen Wang for assistance in data analysis.

Authors’ contributions
Y.Z. conceived and designed the research. H.Y., Y.M. and Y.Z. designed and 
performed computational analysis. H.Y., Y.M. and Y.Z. wrote the manuscript.

Funding
We acknowledge funding support from the National Natural Science Founda-
tion of China (32030022, 32325012, 31970642) and the National Key Research 
and Development Program of China (2021YFA1302500).

Availability of data and materials
All scripts used for the analysis described are available on GitHub (https:// 
github. com/ Tongj iZhan glab/ CHMs_ during_ mouse_ devel opment). The data-
sets supporting the conclusions of this article are included within the article 
and its additional files.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 27 June 2023   Accepted: 20 October 2023

References
 1. Greenberg MVC, Bourc’his D. The diverse roles of DNA methyla-

tion in mammalian development and disease. Nat Rev Mol Cell Biol. 
2019;20(10):590–607.

 2. Jambhekar A, Dhall A, Shi Y. Roles and regulation of histone methylation 
in animal development. Nat Rev Mol Cell Biol. 2019;20(10):625–41.

 3. Jackson JP, Lindroth AM, Cao X, Jacobsen SE. Control of CpNpG DNA 
methylation by the KRYPTONITE histone H3 methyltransferase. Nature. 
2002;416(6880):556–60.

 4. Tamaru H, Selker EU. A histone H3 methyltransferase controls DNA meth-
ylation in Neurospora crassa. Nature. 2001;414(6861):277–83.

 5. Janssen SM, Lorincz MC. Interplay between chromatin marks in develop-
ment and disease. Nat Rev Genet. 2022;23(3):137–53.

 6. Yang H, Bai D, Li Y, Yu Z, Wang C, Sheng Y, Liu W, Gao S, Zhang Y. Allele-
specific H3K9me3 and DNA methylation co-marked CpG-rich regions 
serve as potential imprinting control regions in pre-implantation embryo. 
Nat Cell Biol. 2022;24(5):783–92.

 7. Leung D, Du T, Wagner U, Xie W, Lee AY, Goyal P, Li Y, Szulwach KE, Jin P, 
Lorincz MC, et al. Regulation of DNA methylation turnover at LTR retro-
transposons and imprinted loci by the histone methyltransferase Setdb1. 
Proc Natl Acad Sci U S A. 2014;111(18):6690–5.

 8. Liu S, Brind’Amour J, Karimi MM, Shirane K, Bogutz A, Lefebvre L, Sasaki H, 
Shinkai Y, Lorincz MC. Setdb1 is required for germline development and 
silencing of H3K9me3-marked endogenous retroviruses in primordial 
germ cells. Genes Dev. 2014;28(18):2041–55.

 9. Yamanaka S, Nishihara H, Toh H, Eijy Nagai LA, Hashimoto K, Park SJ, 
Shibuya A, Suzuki AM, Tanaka Y, Nakai K, et al. Broad Heterochromatic 
Domains Open in Gonocyte Development Prior to De Novo DNA Meth-
ylation. Dev Cell. 2019;51(1):21-34.e25.

 10. Shirane K, Miura F, Ito T, Lorincz MC. NSD1-deposited H3K36me2 directs 
de novo methylation in the mouse male germline and counteracts 
Polycomb-associated silencing. Nat Genet. 2020;52(10):1088–98.

 11. Wang C, Liu X, Gao Y, Yang L, Li C, Liu W, Chen C, Kou X, Zhao Y, Chen J, 
et al. Reprogramming of H3K9me3-dependent heterochromatin during 
mammalian embryo development. Nat Cell Biol. 2018;20(5):620–31.

 12. Hill PWS, Leitch HG, Requena CE, Sun Z, Amouroux R, Roman-Trufero M, 
Borkowska M, Terragni J, Vaisvila R, Linnett S, et al. Epigenetic reprogram-
ming enables the transition from primordial germ cell to gonocyte. 
Nature. 2018;555(7696):392–6.

 13. Hasegawa K, Sin HS, Maezawa S, Broering TJ, Kartashov AV, Alavattam KG, 
Ichijima Y, Zhang F, Bacon WC, Greis KD, et al. SCML2 establishes the male 
germline epigenome through regulation of histone H2A ubiquitination. 
Dev Cell. 2015;32(5):574–88.

 14. Liu Y, Zhang Y, Yin J, Gao Y, Li Y, Bai D, He W, Li X, Zhang P, Li R, et al. 
Distinct H3K9me3 and DNA methylation modifications during mouse 
spermatogenesis. J Biol Chem. 2019;294(49):18714–25.

 15. Aldiri I, Xu B, Wang L, Chen X, Hiler D, Griffiths L, Valentine M, Shirinifard 
A, Thiagarajan S, Sablauer A, et al. The Dynamic Epigenetic Landscape of 
the Retina During Development, Reprogramming, and Tumorigenesis. 
Neuron. 2017;94(3):550-568 e510.

https://doi.org/10.1186/s12864-023-09758-8
https://doi.org/10.1186/s12864-023-09758-8
https://github.com/TongjiZhanglab/CHMs_during_mouse_development
https://github.com/TongjiZhanglab/CHMs_during_mouse_development


Page 13 of 13Yang et al. BMC Genomics          (2023) 24:663  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 16. Consortium EP. An integrated encyclopedia of DNA elements in the 
human genome. Nature. 2012;489(7414):57–74.

 17. Sloan CA, Chan ET, Davidson JM, Malladi VS, Strattan JS, Hitz BC, Gabdank 
I, Narayanan AK, Ho M, Lee BT, et al. ENCODE data at the ENCODE portal. 
Nucleic Acids Res. 2016;44(D1):D726-732.

 18. Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, Hilton 
JA, Jain K, Baymuradov UK, Narayanan AK, et al. The Encyclopedia 
of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 
2018;46(D1):D794–801.

 19. Bonev B, Cavalli G. Organization and function of the 3D genome. Nat Rev 
Genet. 2016;17(12):772.

 20. Falk M, Feodorova Y, Naumova N, Imakaev M, Lajoie BR, Leonhardt H, 
Joffe B, Dekker J, Fudenberg G, Solovei I, et al. Heterochromatin drives 
compartmentalization of inverted and conventional nuclei. Nature. 
2019;570(7761):395–9.

 21. Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL, 
Lubling Y, Xu X, Lv X, Hugnot JP, Tanay A, et al. Multiscale 3D Genome 
Rewiring during Mouse Neural Development. Cell. 2017;171(3):557-572 
e524.

 22. Haggerty C, Kretzmer H, Riemenschneider C, Kumar AS, Mattei AL, Bailly 
N, Gottfreund J, Giesselmann P, Weigert R, Brandl B, et al. Dnmt1 has de 
novo activity targeted to transposable elements. Nat Struct Mol Biol. 
2021;28(7):594-+.

 23. Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner 
S, Baglivo I, Pedone PV, Grimaldi G, Riccio A, et al. In embryonic stem 
cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect 
chromatin and DNA methylation of imprinting control regions. Mol Cell. 
2011;44(3):361–72.

 24. Liu Y, Toh H, Sasaki H, Zhang X, Cheng X. An atomic model of Zfp57 
recognition of CpG methylation within a specific DNA sequence. Genes 
Dev. 2012;26(21):2374–9.

 25. Dalla-Torre H, Gonzalez L, Revilla JM, Carranza NL, Grzywaczewski AH, 
Oteri F, Dallago C, Trop E, Sirelkhatim H, Richard G, et al. The Nucleotide 
Transformer: Building and Evaluating Robust Foundation Models for 
Human Genomics. bioRxiv. 2023:2023.2001.2011.523679.

 26. Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, Zhu M, Wu J, Shi X, Taing 
L, et al. Cistrome Data Browser: a data portal for ChIP-Seq and chro-
matin accessibility data in human and mouse. Nucleic Acids Res. 
2017;45(D1):D658–62.

 27. Zheng R, Wan C, Mei S, Qin Q, Wu Q, Sun H, Chen CH, Brown M, Zhang X, 
Meyer CA, et al. Cistrome Data Browser: expanded datasets and new tools 
for gene regulatory analysis. Nucleic Acids Res. 2019;47(D1):D729–35.

 28. Jabbari K, Chakraborty M, Wiehe T. DNA sequence-dependent chromatin 
architecture and nuclear hubs formation. Sci Rep. 2019;9(1):14646.

 29. Karimi MM, Goyal P, Maksakova IA, Bilenky M, Leung D, Tang JX, Shinkai Y, 
Mager DL, Jones S, Hirst M, et al. DNA methylation and SETDB1/H3K9me3 
regulate predominantly distinct sets of genes, retroelements, and chi-
meric transcripts in mESCs. Cell Stem Cell. 2011;8(6):676–87.

 30. Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S, Aktas 
T, Maillard PV, Layard-Liesching H, Verp S, Marquis J, et al. KAP1 
controls endogenous retroviruses in embryonic stem cells. Nature. 
2010;463(7278):237–40.

 31. Coluccio A, Ecco G, Duc J, Offner S, Turelli P, Trono D. Individual retrotrans-
poson integrants are differentially controlled by KZFP/KAP1-dependent 
histone methylation, DNA methylation and TET-mediated hydroxy-
methylation in naive embryonic stem cells. Epigenetics Chromatin. 
2018;11(1):7.

 32. Langdon WB. Performance of genetic programming optimised Bowtie2 
on genome comparison and analytic testing (GCAT) benchmarks. Bio-
Data Min. 2015;8(1):1.

 33. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nus-
baum C, Myers RM, Brown M, Li W, et al. Model-based analysis of ChIP-Seq 
(MACS). Genome Biol. 2008;9(9):R137.

 34. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome 
alignment and genotyping with HISAT2 and HISAT-genotype. Nat Bio-
technol. 2019;37(8):907–15.

 35. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. 
StringTie enables improved reconstruction of a transcriptome from RNA-
seq reads. Nat Biotechnol. 2015;33(3):290–5.

 36. Sun DQ, Xi YX, Rodriguez B, Park HJ, Tong P, Meong M, Goodell MA, Li W: 
MOABS: model based analysis of bisulfite sequencing data. Genome Biol. 
2014;15(2):R38.

 37. Shao W, Wang T. Transcript assembly improves expression quantifica-
tion of transposable elements in single-cell RNA-seq data. Genome Res. 
2021;31(1):88–100.

 38. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, 
Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioin-
formatics. 2013;29(1):15–21.

 39. Niknafs YS, Pandian B, Iyer HK, Chinnaiyan AM, Iyer MK. TACO produces 
robust multisample transcriptome assemblies from RNA-seq. Nat Meth-
ods. 2017;14(1):68–70.

 40. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, 
Kent WJ. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 
2004;32(Database issue):D493-496.

 41. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analy-
sis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 
2009;4(1):44–57.

 42. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, 
Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. Scikit-learn: Machine 
Learning in Python. J Mach Learn Res. 2011;12:2825–30.

 43. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau 
D, Burovski E, Peterson P, Weckesser W, Bright J, et al. SciPy 1.0: funda-
mental algorithms for scientific computing in Python. Nat Methods. 
2020;17(3):261–72.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Characterization of H3K9me3 and DNA methylation co-marked CpG-rich regions during mouse development
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Results
	CHMs are stable during mouse development
	Features of CHMs in distinct chromatin compartments
	Enrichment of CHMs in IAP subfamilies
	DNA sequence features of CHMs

	Discussion
	Conclusions
	Methods
	Data processing and normalization for ChIP-seq, RNA-seq, and WGBS
	Calculation of DNA methylation amount (DNAme amount)
	CHM-related terminology
	Compartment calling
	Assembly of TE transcripts
	Calculation conservation score for TEs
	Potential target genesTEs
	Genomic enrichment analysis
	Functional annotation
	Fine-tuning the nucleotide transformer
	ROC analysis of k-mers
	Statistical analysis

	Anchor 27
	Acknowledgements
	References


