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Abstract 

Background The deep-sea snail Phymorhynchus buccinoides belongs to the genus Phymorhynchus (Neogastropoda: 
Raphitomidae), and it is a dominant specie in the cold seep habitat. As the environment of the cold seep is character-
ized by darkness, hypoxia and high concentrations of toxic substances such as hydrogen sulfide  (H2S), exploration 
of the diverse fauna living around cold seeps will help to uncover the adaptive mechanisms to this unique habitat. In 
the present study, a chromosome-level genome of P. buccinoides was constructed and a series of genomic and tran-
scriptomic analyses were conducted to explore its molecular adaptation mechanisms to the cold seep environments.

Results The assembled genome size of the P. buccinoides was approximately 2.1 Gb, which is larger than most 
of the reported snail genomes, possibly due to the high proportion of repetitive elements. About 92.0% of the assem-
bled base pairs of contigs were anchored to 34 pseudo‐chromosomes with a scaffold N50 size of 60.0 Mb. Compared 
with relative specie in the shallow water, the glutamate regulative and related genes were expanded in P. bucci-
noides, which contributes to the acclimation to hypoxia and coldness. Besides, the relatively high mRNA expression 
levels of the olfactory/chemosensory genes in osphradium indicate that P. buccinoides might have evolved a highly 
developed and sensitive olfactory organ for its orientation and predation. Moreover, the genome and transcriptome 
analyses demonstrate that P. buccinoides has evolved a sulfite-tolerance mechanism by performing  H2S detoxifica-
tion. Many genes involved in  H2S detoxification were highly expressed in ctenidium and hepatopancreas, suggesting 
that these tissues might be critical for  H2S detoxification and sulfite tolerance.

Conclusions In summary, our report of this chromosome-level deep-sea snail genome provides a comprehen-
sive genomic basis for the understanding of the adaptation strategy of P. buccinoides to the extreme environment 
at the deep-sea cold seeps.
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Background
Deep-sea cold seeps are submarine springs where flu-
ids emanate from the sea floor through the sediments 
by pressure gradients [1, 2]. The environment of deep-
sea cold seeps is characterized by darkness, coldness, 
hypoxia, lack of photosynthesis-derived nutrients but 
rich in heavy metals and toxic substances [3–5]. There is 
no penetration of light in the 1000 m depth below the sea 
surface [6]. Low-oxygen zones also occur in the deeper 
waters of tropical and temperate oceans, usually between 
100 and 1000 m [7]. Temperature in the oceans decreases 
with increasing depth. At tropical latitudes, the tempera-
ture range extends from 26 °C at the sea surface to 5 °C at 
1500 m depth [8, 9]. In particular, the anaerobic oxidation 
of methane (AOM) via sulfate reduction is considered as 
the most important biogeochemical process at cold seeps 
[10]. During this process, carbonates are formed through 
anaerobic methane oxidation to produce extremely high 
concentrations of  H2S in pore waters [11–13]. Therefore, 
an in-depth exploration of communities living in the 
deep-sea cold seeps will contribute to reveal the adapta-
tion mechanism of this unique ecosystem.

In recent years, the benthic communities at the cold 
seeps have attracted increasing attention with the devel-
opment of technologies for deep-sea research [14, 15]. A 
typical cold seep environment supports various commu-
nities of metazoans containing chemoautotrophic bacte-
ria, tubeworms [16] and mussels [17]. As light disappears 
below 1000  m, deep-sea   organisms living in the dark 
communicate and interact through chemical signals [18]. 
The temperatures of cold seeps are 2 ℃ to 5 ℃ and the 
known adaptations of low temperature for other inverte-
brates are mainly about freezing below 0 ℃ [19, 20]. The 
cold seep habitat is characterized by chronic hypoxia, 
sometimes reaching complete anoxia. Organisms inhab-
iting these environments often adopt morphological 
adaptations of gills [21]. In particular, recent research 
has shown that the  H2S level in the bottom water of 
the chemosynthetic communities is remarkably high 
(~ 1940  μM) at the active cold seep at Formosa Ridge 
(Site F) on the continental slope of the northern South 
China Sea [22]. The high concentrations of  H2S will 
induce oxidative damage to the marine invertebrates such 
as molluscs [23]. Invertebrates achieve sulfide detoxifica-
tion by oxidation of sulfide and thiosulfate is the main 
detoxification product [24–26]. Meanwhile, more and 
more high-throughput technologies and comparative 
genomics are shedding light on the researches of extreme 

environments adaptation [27, 28]. Since seep animals 
need to evolve unique adaptation mechanism to survive 
in the threatening environment, studying seep organisms 
at the genomic levels, especially the acclimation to the 
cold, dark, hypoxia, and  H2S-rich environment, will help 
to discover novel physiological and biochemical capa-
bilities, and provide clues to understand their adaptation 
and evolution strategies to thrive in the extreme environ-
ments [3, 29].

The snail Phymorhynchus buccinoides, which belongs 
to the order Neogastropoda was sampled from the active 
deep-sea cold seep of the South Sea of China in this 
research. Neogastropods are often dominant species of 
the benthic community at the top of the food chains due 
to their amazing predatory specializations [30]. Previous 
researches have also shown that as a secondary consumer, 
P. buccinoides feeds on mytilid mussel Bathymodiolus 
platifrons, biological carcass, and organic debris sinking 
down from the upper layer. It is the important predator 
of the food chains in the cold seeps and it contributes 
to the balances of the cold seep fauna communities, 
energy flows and other interactions among the commu-
nities living around the deep-sea cold seeps [31, 32]. In 
the present study, we report the first chromosome-level 
reference genome of the deep-sea snail P. buccinoides. 
Comparative genomic analyses of gene expansion, con-
traction, and identification of genes related to sulfate 
metabolism, chemical sensing, and glutamate regulative 
genes which contribute to the acclimation to hypoxia and 
coldness were also conducted, helping to elucidate the 
molecular basis of the adaptation to the deep-sea cold 
seep habitats.

Results
Sequencing, assembly, annotation of chromosome‑scale 
genome
The genome of P. buccinoides (Fig.  1a) was sequenced 
using a hybrid approach. A total of raw reads and clean 
data including 52.2  Gb and 42.0  Gb for Illumina reads 
with an insert size of 350  bp (Table S1), 392.9  Gb and 
327.1 Gb for Hi-C reads with insert sizes of 300–500 bp 
(Table S3), 47.5  Gb and 45.7  Gb for transcriptomic 
Illumina reads (Table S4), polymerase and subreads: 
130.4 Gb and 130.1 Gb for genome (Table S2), 21.3 and 
20.4 for transcriptome (Table S5) of Pacific Biosciences 
(PacBio) reads with a long insert size of 20  kb, were 
obtained using the NovaSeq 6000 platform and PacBio 
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Sequel instrument (Table S7). The PLATANUS v1.2.4 and 
DBG2OLC were employed to assemble sequence reads 
into contig level [33, 34]. The total length of the assem-
bled contigs of P. buccinoides was 2.1 Gb, and the contig 
N50 value was 308.7  kb (Table S8). The Benchmarking 
Universal Single-Copy Orthologs (BUSCO) value was 
86.0% (total BUSCO groups for searching is 5295), indi-
cating the completeness of the assembly. The technology 
of pseudo-chromosomes (Chrs) construction for assis-
tant assembly was employed to produce the final chro-
mosome-level genome. A total of 18,751 contigs were 
broken, clustered, ordered and mounted successfully in 

34 Chrs (Fig. 1d, e). Finally, the chromosome-level assem-
bly of P. buccinoides was obtained and the Hi-C contact 
map was also produced (Table S9 and Fig. 1d). The long-
est Chr was 105.8 Mb and the shortest was 34.0 Mb. The 
total length of the P. buccinoides final chromosomal-level 
assembled genome and Chrs sequences were 2.1 Gb and 
1.9 Gb, respectively. About 92.0% of the assembled base 
pairs of contigs were anchored to Chrs, and the N50 
size of Chrs was 60.0 Mb (Table S9). There were numer-
ous links between Chrs of P. buccinoides and that of its 
relative species (Figure S2). Detailed distributions of gene 
density, GC content, repeat sequence content of each 

Fig. 1 Sampling site, morphology, divergence distribution of transposable elements, chromosomal contact map and genomic landscape of P. 
buccinoides. a Morphology of P. buccinoides. b Sampling site of P. buccinoides. P. buccinoides used in the present study were collected from cold 
spring district. This specie is also common in cold spring vents. The mussels associated with P. buccinoides are also in photo. c Divergence 
distribution of transposable elements (TEs) in the P. buccinoides genome. De novo prediction. The distribution of sequence divergence rates 
of TEs as percentages of the genome size is shown. The y-axis shows the percentage of the genome that is annotated as TEs (TE contents). The 
x-axis shows sequence divergence rate. DNA transposon shown as DNA is indicated with red color, long interspersed nuclear element (LINE) 
is indicated with orange color, long terminal repeat (LTR) is indicated with yellow color, and short interspersed nuclear element (SINE) is indicated 
with green color. The percentage of genome and the sequence divergence rate show the cumulative proportion and inconsistency of repeat 
elements, respectively. d Chromosomal contact map of P. buccinoides. Based on Hi-C data, the chromosomal contact map was built. The contacts 
between one location and another are referred by blocks. The blocks correspond to 34 Chrs of P. buccinoides. The color reflects the intensity 
of each contact, and it represents the interaction density from high (red) to low (white) in the plot. In the x-axis and y-axis, each number means 
the genomic length (Mb). e Diagram and genomic landscape of the gastropod P. buccinoides. Circos atlas represents the Chr information of P. 
buccinoides. From outside to inside of the concentric circles, (I) Chr length (Mb) and numbers, (II) Density of gene distribution in each 100 kb 
genomic interval, (III) GC content of 100 kb genomic intervals, and (IV) distribution of genomic repeats density in 100 kb non-overlapping windows. 
Deep blue color indicates higher repeat density. (V) Major interchromosomal relationships of P. buccinoides Chrs are presented with purple lines, 
and each line indicates one pair of paralog genes
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Chr, and the major inner connections in P. buccinoides 
Chrs were illustrated in Fig. 1e.

In the assembled genome, the repeat content 
accounted for about 73.4% (Table S10). The transpos-
able elements (TEs) including DNA transposons (24.19%) 
and retrotransposons (24.77%) accounted for 48.96% of 
the genome (Table S11), which showed high divergence 
(Fig. 1c, Figure S1). The retrotransposons were composed 
of 15.97% long interspersed nuclear elements (LINE), 
1.74% short interspersed nuclear elements (SINE), and 
7.06% long terminal repeats (LTR) (Table S11). A final 
nonredundant consensus gene set of P. buccinoides 
was obtained with the gene prediction and functional 
annotation (Fig.  2a). In the assembled genome, 45,545 

protein-coding genes were predicted (Table S12), and 
42,162 (92.6%) of them were functionally annotated 
(Table S13).

Gene families and phylogeny of P. buccinoides
In the present study, the gene family cluster analysis of 
P. buccinoides and other 10 selected species (including 7 
molluscan species) were performed. In total, 33,107 gene 
families and 100 single-copy orthologs were identified 
across P. buccinoides and the other 10 species (Figure 
S3, Table S14). Comparisons of the genes of 7 mollus-
can species including Octopus bimaculoides, Crassostrea 
gigas, Mizuhopecten yessoensis, Lottia gigantea, Poma-
cea canaliculate, Biomphalaria glabrata, and Aply-
sia californica were summarized in Figure S4. The P. 

Fig. 2 Venn, phylogeny and clusters of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. a Venn 
of the annotation in P. buccinoides. b Phylogenetic tree of P. buccinoides. The phylogenetic tree was based on the genome sequences. The reference 
divergence times for calibrations were retrieved from the TimeTree database. The black numbers on the branches represent the estimated diverge 
times. The P. buccinoides is marked in red color. c GO and KEGG enrichment analysis of gene families specific to P. buccinoides. The x-axis shows 
the number of genes and the y-axis shows the annotation terms. Different sizes and colors of bubbles exhibit different number and terms
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buccinoides-unique gene families were annotated to 21 
GO terms and 32 KEGG pathways, mainly including cel-
lular process, cellular community, and signal transduc-
tion (Fig. 2c, Table S15).

Compared with the shallow sea gastropod L. gigantea, 
562 expanded and 15 contracted gene families were 
detected in P. buccinoides. The expanded genes in P. buc-
cinoides were mainly enriched in the items such as envi-
ronmental adaptation, sensory system, immune system 
process and antioxidant activity (Fig.  3, Table S16), and 
most of them were associated with olfactory and che-
mosensory, glutamate regulation, sulfur metabolism. 
Besides, GO and KEGG enriched in the contracted gene 
families of P. buccinoides compared with L. gigantean, 
mainly in association with metabolism, catalysis, and 
transport were showed in Figure S5, Table S17.

A phylogenetic tree was constructed using the single-
copy gene families to investigate the phylogenetic evolu-
tionary relationships among P. buccinoides and the other 
species. Phylogenetic analysis suggested that P. bucci-
noides diverged from Pomacea canaliculata approxi-
mately 218.9 million years ago (Mya). The estimated 
divergence time between L. gigantea and the branch 
group including P. buccinoides was 437.3 Mya. The gas-
tropod showed an estimated divergence time of approxi-
mately 498.7 Mya from its sister group bivalve, and the 
time that cephalopod diverged from other lineages of 
mollusca was about 550.6 Mya. The mollusca were sepa-
rated from brachiopoda, annelida and arthropoda about 
608.2, 682.3 and 762.4 Mya (Fig. 2b).

Genomic basics of deep‑sea dark, cold and toxic 
adaptation
Results from the genomic comparative analysis showed 
that the glutamate regulative and related genes including 
glutamine synthetase, glutamine γ-glutamyltransferase, 
and γ-aminobutyric acid receptor (GABA(A)) were 
expanded in P. buccinoides genome comparing with 
that in its relative specie living in shallow water (Fig.  3, 
Table S16). The olfactory/chemosensory gene families, 
such as olfactory specific medium-chain acyl CoA syn-
thetase, serpentine type seven transmembrane GPCR 
chemoreceptor srw, G-protein coupled receptor were 
also significantly expanded (Fig. 3, Table S16). RNA-seqs 
of six tissues including hepatopancreas, foot, mantle, 
ctenidium, gonad and osphradium were also conducted 
to identify differentially expressed genes (DEGs) corre-
sponding to olfactory and chemo/chemosensory receptor 
and sulfur metabolism related genes (Fig.  4, Table S18). 
A total of 17 olfactory/chemosensory genes, including 
ionotropic receptor 25a, zinc finger protein 62 homolog, 
transmembrane protein 256 homolog, voltage-gated 
hydrogen channel 1-like, G-protein coupled receptor, 
N-formyl peptide receptor 2-like, probable G-protein 
coupled receptor 139, and BTB/POZ domain containing 
protein KCTD7-like, were highly expressed in osphra-
dium. These genes were enriched in five protein families 
including seven transmembrane odorant receptor, seven 
transmembrane chemosensory receptor, serpentine 
type seven transmembrane GPCR chemoreceptor srw, 
srg family chemoreceptor, and olfactory marker protein 
(Fig. 4a).

Fig. 3 GO and KEGG enrichment analysis of expanded gene families between deep-sea gastropod P. buccinoides and shallow sea gastropod L. 
gigantea 
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Pathways and networks related to  H2S detoxification
Compared with shallow sea gastropod L. gigantea, the 
expanded genes in P. buccinoides were also primar-
ily in association with sulfotransferase (Fig.  3, Table 
S16). Furthermore, the mRNA expression patterns of 
the sulfur metabolism related genes in the tissues of 
osphradium, hepatopancreas, foot, mantle, ctenidium 
and gonad were also detected. As shown in Fig.  4b, c 
and Table S18, the characteristics and expression lev-
els of key sulfur metabolism related genes including 
sulfite oxidase-like, bifunctional 3’-phosphoadenosine 
5’-phosphosulfate synthase isoform X1, 3’(2’),5’-bis-
phosphate nucleotidase 1-like, persulfide dioxygenase 
ETHE1 mitochondrial (like), sulfide:quinone oxi-
doreductase mitochondrial-like (SQR), cystathionine 
gamma-lyase, and genes in taurine catabolism dioxy-
genase TauD TfdA, phosphoadenosine phosphosulfate 

reductase protein families were generally highly 
expressed in ctenidium and/or hepatopancreas.

Moreover, the gene co-expression networks based on 
transcriptome were also constructed to identify hub 
genes in hepatopancreas and ctenidium tissues. Some 
key genes relevant to sulfur metabolism and detoxi-
fication were detected in the hepatopancreas and 
ctenidium-related modules. In details, analysis of the 
yellow module of hepatopancreas showed microsomal 
glutathione S-transferase 3 and thioredoxin peroxidase 
2 were the most important hub genes with the highest 
intramodular connectivity (Fig.  5a). Sulfotransferase 
was identified in the network of light green module 
(Fig. 5b) while Fig. 5c illustrated a group of genes such 
as melanotransferrin-like, DNA repair protein com-
plementing Xeroderma pigmentosum (XP)-A cells 
homolog and NAD-dependent protein deacetylase 

Fig. 4 Heat map and hierarchical clustering showing expression of key genes impacting deep-sea environments adaptation and overview 
of sulfide detoxification in P. buccinoides. a Expression of olfactory and chemo/chemosensory receptor related genes in six tissues. b Expression 
of sulfur metabolism related genes in different tissues. The genes marked with red stars are important genes which are involved in the sulfide 
detoxification process. c Overview of sulfide detoxification in P. buccinoide. The model of sulfide detoxification of P. buccinoides is shown
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sirtuin-6-like. The zinc finger with UFM1-specific 
peptidase domain protein-like and thioredoxin reduc-
tase 2 were identified in Fig. 5d.

Discussion
The present study provides the first chromosome-level 
genome assembly of P. buccinoides and the results 
(Table S8, 9 and Fig.  1d, e) show that the assembled 
genome of P. buccinoides has high integrity and accu-
racy. The phylogeny of P. buccinoides (Fig. 2b) is consist-
ent with previous researches [35–37], which confirms 
that other species of caenogastropoda are the most 
closely related species and they evolved together with 
other gastropod species, which diverged from other 
molluscan species including cephalopoda and bivalves 
a long time ago. In gastropod, the caenogastropoda 
diverged from panpulmonata and euopisthobranchia, 
and their ancestors diverged from patellogastropoda. 

Compared with the reported genomes of gastropods, 
most of which are less than 2  Gb [35, 36, 38–40], the 
genome size of P. buccinoides is relatively large (Table 
S9). It might be due to the high proportion of repeti-
tive elements (Table S10, 11). For example, the repeats 
of Pomacea maculate (genome size is 432 Mb), P. can-
aliculate (448  Mb), Lanistes nyassanus (510  Mb), and 
Marisa cornuarietis (536 Mb) are 20.5–30.8%, and that 
of B. glabrata (916 Mb), Sinotaia purificata (984 Mb), 
Achatina fulica (1.85  Gb), Cepaea nemoralis (3.5  Gb) 
and Oreohelix idahoensis (5.4  Gb) are 44.8%, 47.93%, 
71%, 77% and 85.74%, respectively [36, 39, 41–44]. 
Overall, the chromosome-level genome assembly of 
P. buccinoides is a valuable resource for studying the 
adaptation to deep-sea cold seep environments.

Compared with the shallow sea gastropod L. gigantea, 
GO and KEGG enriched in the contracted gene fami-
lies of P. buccinoides are mainly in association with 

Fig. 5 The co-expression network in P. buccinoides. Node size represents the intramodular connectivity of a given gene. Gene names are showed 
for the top hub and key genes. a Hepatopancreas-related module (yellow, see Figure S9a). Key genes are labeled in red. b Hepatopancreas-related 
module (lightgreen, see Figure S9a). Sulfur metabolism-related gene is labeled in orange. c Hepatopancreas-related module (royalblue, see Figure 
S9a). Key genes are labeled in green. d Ctenidium-related module (greenyellow, see Figure S9b). Key genes are labeled in red
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metabolism, catalysis, and transport (Figure S5, Table 
S17), which is consistent with previous reports that the 
metabolic rates of deep-sea life are orders of magnitude 
lower than those of life on Earth’s surface [45]. Expan-
sion of gene families play important roles in adaptation 
to environment including deep sea [46]. It is worth not-
ing that the expanded genes in P. buccinoides are mainly 
associated with glutamate regulation, olfactory and che-
mosensory and sulfur metabolism (Table S16c).

The glutamate regulative and related genes (glu-
tamine synthetase, glutamine γ-glutamyltransferase, and 
γ-aminobutyric acid receptor (GABA(A)) are notewor-
thy since they play important roles in hypoxia acclima-
tion [47]. Glutamate uptake and transport by astrocytes 
is fundamentally important in the regulation of nervous 
system function, and hypoxia can suppress the glutamate 
transport in astrocytes [48]. Neurons and astrocytes 
can increase the release of glutamate, as well as improve 
glutamine and/or glutamate utilization to acclimate 
to the hypoxia condition [49]. Previous studies reveal 
that glutamate may be a conditionally essential amino 
acid resulting in enhanced tolerance to hypoxia, cold 
and amelioration of hypoxia-induced oxidative stress in 
rats [50, 51]. The γ-aminobutyric acid (GABA) exerts 
its inhibitory effects by binding to the GABA(A), and 
cDNA sequences encoding GABA(A) subunit has been 
cloned in mollusca [52]. GABA causes stress tolerance in 
plant cells and can be found in most eukaryotic organ-
isms. Under hypoxia/anoxia stress, dual effects of GABA 
on both pH and TCA pathways play an important role 
in diminishing injury [53]. Increase of glutamate con-
centration can promote GABA synthesis in germinated 
soybean under hypoxia stress [54]. When exposure to 
hypoxia, GABA is neuroprotective to mature neurons of 
rat [55]. In the present study, the expansion of the glu-
tamate regulating and related genes implies that the P. 
buccinoides has evolved to be more effective in glutamate 
production to ensure the physiological activities in a low-
oxygen environment, which is of vital importance for its 
prosperity at the seep habitats. In addition, glutamate 
regulative genes are also responsive in cold acclimation. 
It is reported that the release of glutamate evoked by cap-
saicin is enhanced in spinal dorsal horn slices of repeated 
cold stress and adjuvant arthritic rats [56], and cold-
induced glutamate release in vivo from the magnocellular 
region of the paraventricular nucleus is involved in ovar-
ian sympathetic activation [57]. Similar to the response 
to hypoxia, the hosts intend to secrete more glutamate 
upon cold stress to sustain the physiological activities in 
mammals [58]. A substantial conversion of glutamate to 
GABA is proportional to the severity of cold stress and 
GABA accumulates to a higher extent when exposed 
to lower temperature. GABA is suspected to involve in 

tolerance to low temperature [59]. Collectively, results in 
the present study indicate that the deep-sea snail P. buc-
cinoides might be able to produce more glutamate and 
GABA to adapt to the relatively hypoxic and cold envi-
ronment at the deep-sea cold seep.

Throughout the animal kingdom, chemical senses are 
one of the primary means by which organisms make 
sense of their environment [60]. The size and diversity of 
chemoreceptors that mediate the transduction of chemi-
cal signals can reflect the niche inhabited by the organ-
isms. For example, Caenorhabditis elegans requires an 
abundance of chemoreceptors to navigate and interpret 
its nutrient-rich living environments, because they spend 
more foraging time compared to parasitic nematodes 
[61]. Especially, previous researches show that expan-
sions of G-protein coupled receptor are correlated with 
environmental adaptations by enabling the evolution of 
sensory functions in some invertebrate species [62–64]. 
Therefore, the expansion of olfactory/chemosensory 
genes in the present study suggests that P. buccinoides 
might rely mainly on the sense of odorants or chemi-
cals for predation and orientation to survive at the dark 
seep environment. Moreover, the transcriptomic survey 
revealed that olfactory/chemosensory genes also showed 
obviously high expression levels in osphradium (Fig. 4a, 
Table S18). Osphradium is a single or paired chemosen-
sory organ connected with one of the visceral ganglia 
and situated near the gill of most aquatic molluscs [65, 
66]. The olfactory organ is extremely important for mol-
luscan environmental adaptation since it helps them to 
locate food, nest sites, and escape dangers. For example, 
nautilus, a well-known “living fossil”, possesses a pair of 
olfactory organs called rhinophores that are similar to the 
olfactory organs in octopus and other cephalopods [66]. 
The rhinophores serve primarily in distance chemore-
ception during tracking [67]. Odor on a variety of spatial 
scales is an important information source to nautiluses in 
their complex coral-reef environment. Olfactory memory 
for predator and prey is also of great importance to their 
survival in the wild [68]. The osphradium also possess 
carrion (or prey) locating function in some gastropods 
[65]. And, the rhodopsin G-protein coupled recep-
tors are highly expressed in sensory epithelia microdis-
sected from Aplysia rhinophore, which are involved 
in its chemical detection [69]. Thus, the present study 
indicates that osphradium might be the olfactory/che-
mosensory organ of P. buccinoides. Since the cold seeps 
are usually characterized as sulfate-rich, hypoxic, dark, 
organic enrichments such as whale skeletons are released 
into the ocean, the expansion of olfactory/chemosen-
sory genes in the genome and the relatively high mRNA 
expression in osphradium suggest that P. buccinoides has 
evolved a highly developed and sensitive olfactory organ 
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comparing with their relative specie living in the shallow 
water, which might contribute to their orientation, preda-
tion to adapt to the cold seep environment.

H2S is toxic and creates extreme environmental con-
ditions [70–72]. The toxicity of  H2S is often exhibited 
through inhibition of cytochrome c oxidase (COX) in the 
mitochondrial respiratory chain to inhibit ATP produc-
tion [73]. Exposure to environmental  H2S will impact the 
capability of survival and reproduction of an organism 
[74]. Deep-sea cold seeps are rich in sulfides and heavy 
metals [2, 11–13, 75]. The tubeworms, deep-sea mussels, 
and deep-sea snails have thrived at the cold-seep envi-
ronment by evolving strategies to acclimate to the toxic 
conditions [75]. Based on recent studies, three mecha-
nisms of  H2S tolerance have been revealed in different 
organisms. First, some organisms can minimize the flux 
rich in  H2S into the body [76]. Second, the  H2S tolerance 
can be achieved through the modifications of toxicity 
targets that make them less sensitive to adverse conse-
quences caused by elevated endogenous concentration in 
the face of continuous influx from the environment [77]. 
Third, the organisms can tolerate to  H2S by perform-
ing detoxification mediated by a series of enzymes such 
as SQR, ETHE1 and TST [78, 79]. In the present study, 
SQR, ETHE1, and thiosulfate sulfurtransferase (TST) 
were highly expressed in ctenidium and hepatopancreas 
(Fig. 4b, Table S18), and they are responsible for detoxi-
fication of  H2S [79]. Ctenidium is a respiratory organ 
found in many molluscs, which is responsible for gas  (O2 
and  H2S) exchange [80]. Hepatopancreas is regarded as a 
critical organ for metabolism and detoxification in mol-
luscs [81]. Therefore, the current results suggest that 
P. buccinoides might have the strong capability in toler-
ating sulfide by conducting  H2S detoxification, and its 
ctenidium and hepatopancreas are critical tissues for 
such process. In addition, glutathione S-transferase is a 
well-known antioxidant and detoxification enzyme, and 
it contribute to the metabolism of drugs, pesticides and 
other xenobiotics [82, 83]. The glutathione S-transferase 
and thioredoxin peroxidases also take part in response 
to onslaught of oxidants and function in maintaining 
efficient antioxidant defense in invertebrates [84–86]. In 
the present study, as the hub genes of hepatopancreas 
and ctenidium-related modules in gene co-expression 
networks (Fig.  5), microsomal glutathione S-transferase 
3 and thioredoxin peroxidase 2 are presumed to be 
key genes of antioxidant and detoxification in P. bucci-
noides. Besides, sulfotransferase in the network utilizes 
3′-phospho-5′-adenylyl sulfate (PAPS) as a sulfonate 
donor [87] to participate in sulfur metabolism, while 
the zinc finger with UFM1-specific peptidase domain 
protein-like (deubiquitylating enzyme) and thioredoxin 
reductase 2 are speculated to play important roles in 

DNA damage responses and repair [88]. In summary, it 
is quite possible that P. buccinoides adapts to the sulfide-
rich cold seep environment by enhancing the  H2S detoxi-
fication activities in ctenidium and hepatopancreas. It 
has been reported that there are no symbiotic bacteria 
in ctenidium of P. buccinoides [32], however, whether 
the sulfide detoxification is performed by endosymbiotic 
bacteria in other tissues deserves further investigation in 
the future.

Conclusions
The first chromosome-level genome assembly of the 
deep-sea snail P. buccinoides was constructed in the pre-
sent study. The genome size of P. buccinoides is relatively 
large (about 2.1  Gb, scaffold N50 = 60.0  Mb) compared 
with the other known snail genomes, which might be 
due to the high proportion of repetitive elements. The 
glutamate regulative and related gene family was found 
to be expanded, which might contribute to the acclima-
tion to hypoxia and coldness. The relatively high mRNA 
expression of the olfactory and chemosensory related 
genes in osphradium indicates that P. buccinoides might 
have evolved a highly developed and sensitive olfactory 
organ for its orientation and predation. More impor-
tantly, results of the transcriptomic and network analy-
sis showed that P. buccinoides might have evolved sulfite 
tolerance mechanism by performing  H2S detoxification 
in ctenidium and hepatopancreas. The present study pro-
vides insights into the mechanisms of adaptation of gas-
tropod to the dark, hypoxic and  H2S-rich environment in 
the deep-sea cold seeps.

Methods
Sample collection and sequencing
The deep-sea snails P. buccinoides (Fig. 1a) were collected 
at cold seep site F (22°06′N, 119°17′E), which was located 
on the continental slope of the South Sea of China during 
the expedition cruise of the R/V Kexue in 2018 (Fig. 1b). 
These snails were found 1,119 m beneath the sea surface 
with temperatures of 3.35–3.89  °C, salinity of 34.53–
35.54 psu, and dissolved oxygen of 3.01–3.18  mg/L. 
In the bottom water of the chemosynthetic communi-
ties, the  H2S level increased remarkably and the highest 
 H2S level (~ 1940  μM) among all seawater samples was 
in the bottom water above the reduced sediments [22]. 
The samples were preserved at -80 ℃. All of the experi-
ments were performed following the animal ethics guide-
lines approved by the Ethics Committee of Dalian Ocean 
University.

Genomic DNA was extracted from hepatopancreas and 
muscle of snails using the modified phenol/chloroform 
method [89]. One sequencing library with insert size 
of 350  bp was generated using Truseq Nano DNA HT 
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Sample Preparation Kit (Illumina, San Diego, CA, USA) 
following manufacturer’s recommendations. PacBio 
library with insert size of 20  kb was constructed using 
PacBio single molecule, real-time long reads sequenc-
ing technology (SMRT) SMRTbell Template Prep Kits 
(PacBio, Menlo Park, CA, USA). One short insert size 
(350  bp) library was sequenced on NovaSeq 6000 plat-
form (Illumina, San Diego, CA, USA) using whole-
genome shotgun sequencing (WGS) strategy. The raw 
data were generated and filtered by SOAPFILTER v2.2, 
a software in the SOAPdenovo package [90]. The long 
insert size (20  kb) library was sequenced on PacBio 
Sequel instrument (PacBio, Menlo Park, CA, USA) to 
obtain long reads (polymerase reads) data. After remov-
ing the adapters, the polymerase reads were partitioned 
to form subreads (Pacific Biosciences Terminology).

A total of 1000 μL (10.3 ng/μL) hepatopancreas sample 
of P. buccinoides from the same collection lot was treated 
[91] and the Hi‐C libraries were constructed with NEB-
Next Ultra II DNA library Prep Kit for Illumina (NEB, 
Ipswich, MA, USA). The target fragments were captured 
with Dynabeads MyOne Streptavidin C1 (Thermo Fisher 
Scientific, Inc., Waltham, MA, USA). After that, the chi-
meric fragments were amplified with NEBNext Ultra II 
DNA library Prep Kit (NEB, Ipswich, MA, USA). Two 
replicates of libraries were generated and the libraries 
were sequenced on Illumina Novaseq 6000 instrument 
(Illumina, San Diego, CA, USA).

To perform the single-molecule long-read transcrip-
tome sequencing with SMRT, the hepatopancreas, foot, 
mantle, ctenidium, gonad, and osphradium tissues were 
harvested. The sample is precious in the present study 
and three biological and technical replicates should be 
performed generally. RNA from different tissue sam-
ples was isolated using Trizol reagent (Sangon, Shang-
hai, China). By using NEBNext Ultra RNA Library Prep 
Kit for Illumina (NEB, MA, USA), short read RNA-Seq 
libraries were prepared and then sequenced on NovaSeq 
6000 platform (Illumina, San Diego, CA, USA). With the 
Clontech SMARTer PCR cDNA Synthesis Kit (Clontech, 
CA, USA), one SMART bell library was constructed. The 
SMRT sequencing was performed on Pacific Bioscience 
Sequel System (Pacific Biosciences, CA, USA).

Assemblies of genome and transcriptome
All cleaned reads from short insert library were assem-
bled using PLATANUS v1.2.4 [33] with parameter “-k 27” 
to obtain a de Bruijn graph assembly. Subsequently, the 
DBG2OLC was employed to align the de Bruijn graph 
assembly upon the PacBio reads for further construction 
of contigs [34]. Three rounds of mapping were performed 
with MINIMAP v2.1 [92] and polished with RACON 
v1.3.1 [93] to construct consensus contigs. Then, BWA 

v0.7.15 [94] and PILON v1.22 [95] were used to pol-
ish the assembly one round with 350 bp library Illumina 
paired-end reads. Completeness of the final assembly at 
contig level was assessed using BUSCO v3.1.0 [96]. The 
mollusca_odb10 [97] orthologues gene set was used as 
the BUSCO reference.

The raw data generated from Hi‐C library were filtered 
with TRIMMOMATIC v0.39 [98], and the clean data 
were aligned against the draft genome using JUICER 
v1.6.2 [99] with the default parameters. The Hi-C con-
tacts without duplicates were used to assist genomic 
assembly by 3D-DNA v180114 [100]. The heatmap of 
chromosome interactions was constructed with 3D-DNA 
v180114 [100] to visualize the contact intensity among 
Chrs. The scaffolds were assembled and the obtained 
genome at contig-level was located onto the Chrs. By 
using JUICEBOX v1.8.8 [101], the Hi-C contact map was 
visualized and the extensive manual curation was per-
formed to ensure the scaffolds within the same pseudo-
chromosomal linkage group to meet the Hi-C linkage 
characteristics. The clustered contigs and mis-joins were 
ordered, oriented and fixed.

By using SMRTLINK v6.0 software (Pacific Bio-
sciences, CA, USA) (https:// www. pacb. com/ suppo rt/ 
softw are- downl oads), the non-chimeric circular consen-
sus sequences (CCSs) were generated from subread BAM 
files and a ccs.bam file was obtained. By performing the 
isoform level Iterative Clustering for Error Correction 
(ICE), consensus isoforms were identified from Full-
length non-chimeric (FLNC) then and they were further 
polished with QUIVER v2.2.2 [102]. To correct nucleo-
tide indels and mismatches in consensus reads resulting 
in corrected isoforms, the Illumina RNA-Seq data with 
same samples were used by LoRDEC v0.7 [103]. By using 
CD-HIT v4.6.8 [104], the redundancies in corrected con-
sensus reads were removed and final non-redundancy 
transcripts for the subsequent analysis were obtained.

By using SOAPnuke v1.5.6 [105], the low-quality reads 
(quality score ≤ 20) were removed. The clean transcrip-
tome reads were assembled using TRINITY v2.5.1 [106]. 
By using BOWTIE v1.1.1 [107], sequences obtained by 
Illumina-Seq were aligned to the transcript obtained by 
SMRT sequencing, regarded as a reference. The gene 
expression levels of each sample were estimated with 
Expectation–Maximization (RSEM) v1.3.0 [108]. By 
using the GOseq R package v1.10.0 [109], GO enrich-
ment analysis of DEGs were performed. GO terms of 
DEGs with corrected P-value < 0.05 were considered 
enriched significantly. The statistical significant enrich-
ments of DEGs in KEGG pathways were determined by 
KOBAS v3.0 [110] with the P-value < 0.05.

https://www.pacb.com/support/software-downloads
https://www.pacb.com/support/software-downloads
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Structure and functional annotation
Prior to gene prediction using the assembled genome, 
de novo and homology-based prediction were used to 
annotate repeat elements. The local de novo repeat ref-
erence library was generated using LTR FINDER v1.0.6 
[111], REPEATMASKER v4.0.6 [112] and REPEATMOD-
ELER v1.08 [113]. Subsequently, the assembled genome 
was aligned against this reference to produce the de novo 
predicted repeat elements. For the homology-based pre-
diction, REPEATPROTEINMASK v4.06 [112], REPEAT-
MASKER v4.0.6 [112] and TANDEM REPEATS FINDER 
(TRF) v4.07 [114] were run to identify, classify and mask 
repeats with REPBASE v21.01 [115] in the P. buccinoides 
genome. Finally, the non-redundant results were gener-
ated by integrating the data from two predictions.

The assembly was annotated with three different 
strategies. AUGUSTUS v2.5 [116], GENSCAN v1.0 
[117] and SNAP v2.0 [118] were employed for the 
first ab  initio gene prediction method and the genome 
assembly was masked to exclude the repetitive ele-
ments firstly. Homologous-gene-based annotation was 
the second method. The protein sequences of California 
sea hare (A. californica), a freshwater snail (B. glabrata) 
[119], roundworm (C. elegans) [120], Eastern oyster 
(Crassostrea virginica) [121], Pacific oyster (C. gigas) 
[122], fruit fly (Drosophila melanogaster) [123], owl 
limpet (L. gigantea) [124], Yesso scallop (M. yessoen-
sis) [125], California two-spot octopus O. bimaculoides 
[126] and golden apple snail P. canaliculata [35] were 
downloaded from the NCBI database. The TBLASTN 
in Basic local alignment search tool (BLAST) v2.2.26 
program [127] was used to search for best-hit align-
ments of these proteins in the assembled P. buccinoides 
genome with E-value cutoff of  10–5. Then the potential 
gene structure of each best-hit alignment was identi-
fied with GENEWISE v2.4.1 [128]. The transcriptomic 
data generated from mantle, ctenidium and 6 tissues 
were mapped onto the assembly to aid gene annotation. 
The final resultant was obtained using MAKER v2.31.8 
[129].

By using BLAST v2.2.26 [127], the functional motifs 
and domains were identified by searching the predicted 
genes of P. buccinoides in NCBI non-redundant protein 
sequences (NCBI-Nr) [130], Swiss-Prot [131], Interpro 
[132], Clusters of Orthologous Groups (COG) [133], 
TrEMBL, KEGG [134] and GO [135] public functional 
databases. By using BLAST software v2.7.1 [127] under a 
threshold E-value ≤ 1e-5, corrected isoforms of long read 
transcripts were searched against NCBI-Nr [130], NCBI-
Nt, Swiss-Prot [131], KOG/COG [136, 137] and KEGG 
v2015_10_10 [134]. The Protein family (Pfam) database 
[138] was searched by HMMER v3.1 [139], and the Pfam 

accession numbers were converted to GO terms by using 
‘pfam2go’ mapping [135].

Phylogenetic analysis of the genome
The complete gene set of P. buccinoides and other 
10 representative species including A. californica 
(GCF_000002075.1), B. glabrata (GCF_000457365.1) 
[140], C. gigas (GCF_000297895.1) [122], D. mela-
nogaster (GCF_000001215.4) [123], Helobdella 
robusta (GCF_000326865.1) [124], Lingula anatina 
(GCF_001039355.2) [37], L. gigantea (GCF_000327385.1) 
[124], M. yessoensis (GCF_002113885.1) [125], O. bimac-
uloides (GCF_001194135.1) [126], and P. canaliculata 
(GCF_003073045.1) [35] were downloaded from NCBI. 
To check the homology and generate a sequence simi-
larity matrix, the whole-genome gene sets were aligned 
with BLAST v2.6.0 [127]. ORTHOMCL v1.4 [141] with 
1.5 inflation index was employed to distinguish gene 
families from the sequence similarity matrix. MUS-
CLE v3.8.31 [142] was used to determine homologous 
genes and identified single-copy orthologs. By using 
PHYML v3.0 [143], the phylogenetic topology with the 
maximum likelihood (ML) method was estimated with 
gamma distribution across aligned sites and HKY85 
substitution model to construct the phylogenetic tree. 
D. melanogaster was used as the outgroup. To estimate 
divergence times among the P. buccinoides and the other 
molluscan species, the MCMCTREE in PAML v4.4 [144] 
was employed. The neutral evolutionary rate and species 
divergence time were estimated by adopting the Bayesian 
molecular dating [145]. Five reference divergence time 
points retrieved from the TimeTree database [146] were 
used to calibrate the phylogenetic tree [147–151].

Expansion and contraction of gene families
The program CAFÉ v2.1 [152] was adopted by determin-
ing the evolutionary dynamics of gene families to iden-
tify gene family changes between the deep-sea gastropod 
P. buccinoides and shallow sea gastropod L. gigantea, 
especially expansion and contraction of gene ortholog 
clusters. The gene families presented uniquely in P. bucci-
noides were also screened. Venn diagram was drawn with 
VENNPAINTER v1.2.0 [153]. KEGG and GO analysis of 
the gene families exclusively presented and specifically 
expanded and contracted in the P. buccinoides were con-
ducted as that in functional annotation [127, 134, 135].

Network and other analysis
By using 6 transcriptome datasets of different tis-
sues (hepatopancreas, foot, mantle, ctenidium, gonad, 
and osphradium) with WGCNA v1.70–3 [154], co-
expression gene networks were constructed. Cytoscape 
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software v3.9.1 was used to visualize the networks [155]. 
Block-wise network construction and consensus mod-
ule detection methods were adopted, with the param-
eters of soft-thresholding power = 14, maximum block 
size = 2000 and minimum module size = 30. Module 
eigengene E was calculated to identify the tissue-related 
modules. The hub genes in a given module was measured 
by its connection strength with other genes in the mod-
ule, and was determined by intramodular connectivity 
[154].

By using MIcroSAtellite identification tool (MISA) v1.0 
[156], the microsatellites as well as compound microsat-
ellites were identified and localized. The Animal Tran-
scription Factor Data Base v2.0 (animalTFDB) [157] were 
used to predict the transcription factors. The analysis 
methods of long non-coding RNA (lncRNA) were per-
formed with Coding Potential Calculator (CPC) v0.9 
[158], Coding-Non-Coding Index (CNCI) v2.0 [159], pre-
dictor of long non-coding RNAs and messenger RNAs 
based on an improved k-mer scheme (PLEK) v1.2 [160] 
and Pfam v1.6 [138].
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