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Abstract 

Gene similarity networks play important role in unraveling the intricate associations within diverse cancer types. 
Conventionally, gauging the similarity between genes has been approached through experimental methodolo-
gies involving chemical and molecular analyses, or through the lens of mathematical techniques. However, in our 
work, we have pioneered a distinctive mathematical framework, one rooted in the co-occurrence of attribute values 
and single point mutations, thereby establishing a novel approach for quantifying the dissimilarity or similarity 
among genes. Central to our approach is the recognition of mutations as key players in the evolutionary trajec-
tory of cancer. Anchored in this understanding, our methodology hinges on the consideration of two categorical 
attributes: mutation type and nucleotide change. These attributes are pivotal, as they encapsulate the critical vari-
ations that can precipitate substantial changes in gene behavior and ultimately influence disease progression. Our 
study takes on the challenge of formulating similarity measures that are intrinsic to genes’ categorical data. Taking 
into account the co-occurrence probability of attribute values within single point mutations, our innovative math-
ematical approach surpasses the boundaries of conventional methods. We thereby provide a robust and comprehen-
sive means to assess gene similarity and take a significant step forward in refining the tools available for uncovering 
the subtle yet impactful associations within the complex realm of gene interactions in cancer.
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Introduction
Similarity measure play a crucial role in discerning the 
likenesses between entities within interaction networks. 
Within these networks, entities are symbolized as nodes, 
and the connections between nodes are designated as 
edges, determined by a particular similarity measure. 
Such measures find utility across various interaction net-
works, encompassing gene similarity networks, patient 
similarity networks, protein-to-protein interaction net-
works, social networks, and beyond.

The study of gene interaction profile similarity 
includes two primary approaches. First, association 
indices emerge as pivotal metrics that leverage statisti-
cal and mathematical modeling to quantitatively gauge 
the similarity between genes. Second, the study delves 
into epistatic interactions, which are elucidated through 
experimental definition and investigation. These interac-
tions manifest in networks represented as graphs, where 
genes are nodes and edges depict the inter-gene similar-
ity. The process of establishing similarity between gene 
profiles involves experimental specifications based on 
gene interactions within the genome. Consequently, 
network edges connect pairs of genes that interact with 
analogous gene sets. Notably, the choice of similarity 
measure employed between gene vectors wields a dis-
cernible influence over network properties and the detec-
tion of gene modules within these networks. Glazko et al. 
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[1] undertook an examination of various distance meas-
ures between binary vectors, revealing their character-
istic properties and performance across diverse genome 
analysis tasks. Barido-Sottani [2], meanwhile, applied 
four distinct similarity measures to yeast genetic interac-
tions, yielding unique gene modules for each measure. In 
a distinct investigation [3], gene similarity networks were 
meticulously constructed based on the proteomes of 
eukaryotes, prokaryotes, viruses, and plasmids.

Numerous techniques have emerged, primarily within 
patient similarity networks, aimed at uncovering the simi-
larities inherent in patients’ profiles. These networks are 
constructed through the aggregation of diverse patient data 
(features), culminating in a unified framework that embod-
ies the essence of patient similarity. Each node within these 
networks symbolizes an individual patient, while the edges 
are emblematic of the pairwise likeness between patients 
with regard to a specific feature. One of the widely adopted 
techniques is Similarity Network Fusion (SNF), an innova-
tive technique in genomic data integration introduced by 
Wang et  al. [4]. SNF pioneers the construction of patient 
similarity networks for individual data types, subsequently 
iteratively integrating them until convergence is achieved, 
resulting in a consolidated, fused network. Delving into 
advanced methodologies, Navaz et  al. [5] propounded a 
deep learning-centric approach that leverages convolu-
tional neural networks for the construction of patient simi-
larity networks. In a complementary perspective, Gliozzo 
et al. [6] offered insights into a range of integration meth-
ods for patient similarity networks.

The applications of patient similarity networks extend 
to patient clustering [7, 8], wherein patients sharing simi-
lar characteristics are grouped together. Additionally, 
techniques abound for the prioritization of disease genes 
through protein–protein interaction (PPI) networks. 
Within these networks, proteins are nodes, and the edges 
signify interactions between them. Notably, Tian et  al. 
[9] harnessed SNF [4] to craft an integrated gene simi-
larity network from individual gene (protein) similarity 
networks, enabling the identification of disease genes. 
Kovacs et al. [10], on the other hand, introduced a node 
(protein) similarity metric grounded in shared neigh-
bors, emphasizing that proteins with common neighbors 
exhibit akin interaction interfaces. Through these multi-
faceted methodologies, the exploration of patient or gene 
similarity and the identification of disease-related genes 
acquire new dimensions of depth and insight.

The exploration of molecular modules within genetic 
networks is notably influenced by the approach used to 
measure the similarity between profiles of gene inter-
actions within a cell. Given the absence of a definitive 
method for selecting the optimal measure, it is advisable 
to embrace various measures with distinct mathematical 

properties, which may identify different sets of connec-
tions between genes [2]. Over the past decade, statistical 
and mathematical techniques aimed at identifying asso-
ciations between genes have garnered significant atten-
tion. Bass et  al. [11] offer a comprehensive overview of 
frequently employed association indices, encompassing 
noteworthy measures like the Jaccard index and the Pear-
son correlation coefficient. Further, the performance of 
various association indices across a spectrum of biological 
network analyses is described in their work. This compre-
hensive investigation outlines how different indices fare in 
diverse types of analyses within biological networks.

Genetic association analysis using somatic mutations 
is an effective methodology to understand the functional 
impact of somatic mutations and to reveal the potential 
impact of somatic mutations on molecular or clinical 
features [12]. Mutation plays an important role in can-
cer evolution as it alters the gene function in ways that 
may lead to cellular transformation and immortalization. 
The most common type of DNA mutation is the single 
alteration of a nucleotide by substitution of another one 
which is known as point mutation [13]. Point mutations 
can lead to twelve distinct types of base substitutions, 
involving the four bases: T, C, G, and A. In this study, we 
focus on two categorical attributes of mutations: muta-
tion types (such as nonstop, silent, etc.) and nucleotide 
transformations, described as follows.

Mutations are categorized into various types based on 
the impact they exert on the sequence of the translated 
protein. A mutation that results in the substitution of 
one amino acid with another within a protein’s sequence 
is termed a missense mutation, also referred to as non-
synonymous mutation. In contrast, if a mutation in the 
DNA sequence does not lead to any alteration in the 
amino acid sequence, it is termed a synonymous muta-
tion or silent mutation. As an illustrative example, con-
sider a C → T mutation. This alteration would cause the 
codon CTT, which normally codes for the amino acid 
leucine, to be changed to ATT, leading to the encod-
ing of isoleucine instead [13]. This type of mutation can 
have diverse effects on the protein’s structure and func-
tion, ranging from negligible impact to significant func-
tional alterations, depending on the specific amino acids 
involved and their roles within the protein’s three-dimen-
sional structure and interactions. The nonsynonymous to 
synonymous ratio is significantly lower in cancer-related 
genes compared to that in other genes. This suggests that 
most nonsynonymous substitutions drastically affect the 
function of a gene [14, 15].

A point mutation can also change a codon for an amino 
acid into one of the terminations, or STOP codons, 
namely TAG, TAA, and TGA. Terminating mutations, 
also known as nonsense mutations, cause the truncation 
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of the open reading frame. Nonstop or stop-loss muta-
tions convert a stop into a sense codon, resulting in 
translation into the 3′ untranslated region as a nonstop 
extension mutation to the next in-frame stop codon or 
as a readthrough mutation into the poly-A tail [16]. A 
genetic alteration in the DNA sequence that occurs in 
the specific site at which splicing  takes place during the 
processing of  precursor messenger RNA  into  mature 
messenger RNA, is called splice-site mutation. The splice 
site is the boundary of an exon and an intron, in which 
mutation can disrupt RNA splicing resulting in the loss 
of exons or the inclusion of introns and an altered pro-
tein-coding sequence.

The nucleotide transformation or nucleotide change 
refers to a substitution, deletion, or insertion of a sin-
gle nucleotide (A, T, C, or G) within a DNA or RNA 
sequence. Nucleotides are the building blocks of DNA 
and RNA, and the sequence of these nucleotides encodes 
genetic information. A change in a single nucleotide can 
lead to alterations in the genetic code, potentially result-
ing in changes to the corresponding protein or RNA mol-
ecule. For example, transformation from Adenine (A) to 
Thymine (T). If a DNA sequence originally contained 
the nucleotide “A” at a specific position and it undergoes 
a mutation, resulting in the nucleotide at that position 
being changed to “T”, then it’s a transition mutation from 
adenine (A) to thymine (T).

The degree of similarity between two entities, par-
ticularly genes in this context, inherently hinges on the 
proximity of their attribute values. While gauging this 
proximity is straightforward for numeric attributes, it 
becomes challenging to capture this notion for categori-
cal attributes. Unlike numeric attributes, categorical 
attributes encompass features that manifest across vary-
ing levels or categories, rather than being quantifiable 
numbers. This challenge becomes particularly promi-
nent in gene similarity networks grounded in mutations, 
where categorical attributes are prevalent. Consider, for 
instance, mutation types such as missense, nonsense, 
and splice site. These attributes cannot be directly com-
pared in the manner that we contrast numerical values. 
This encapsulates a significant hurdle encountered in 
the construction of gene similarity networks that rely on 
categorical attributes. The task of calculating similarity 
between categorical entities poses a critical data mining 
problem, particularly within the domain of unsupervised 
learning.

A prevalent limitation in many existing distance meas-
ures is their failure to consider the distribution of val-
ues within a dataset when assessing similarity between 
categorical attribute values. Unlike numeric attributes 
where calculating distance takes into account the inher-
ent values, this natural consideration is not extended to 

categorical attributes. In unsupervised learning domain, 
numerous distance measures have been proposed, aiming 
to quantify similarity between categorical objects. Some 
notable examples include the Hamming distance, Jaccard 
coefficient, and Sokal-Michner (M-coefficient) similar-
ity measure [17]. Ichina and Yaguchi [18] assert that the 
distance between two categorical values remains a con-
stant, regardless of the specific categorical values being 
compared. However, this approach’s effectiveness as a 
measure of distance is questionable, as it disregards the 
inherent disparities among categorical values. In recogni-
tion of these limitations, Sulc and Rezankova [19] made 
strides by providing a comparison of similarity meas-
ures specific to categorical data, particularly tailored to 
hierarchical clustering. Moreover, they introduced novel 
similarity measures rooted in variable entropy and vari-
able mutability, effectively adapting the measures to the 
categorical data domain.

In this paper, we introduce a novel similarity meas-
ure tailored for gene association based on mutation. 
Our method is an extension of the co-occurrence simi-
larity measure initially proposed by Ahmed and Dey 
[20]. Building upon their foundational work, we have 
expanded their framework to accommodate gene associ-
ations, capitalizing on two distinct attributes intrinsic to 
gene mutations: mutation type (such as missense or non-
sense mutations) and nucleotide change (for instance, 
A > C or C > T alterations). To validate the efficacy of 
our approach, we applied it to construct gene similarity 
networks in the context of ovarian cancer. Through this 
process, we have created association networks that illu-
minate the complex interplay of genes in the context of 
mutation-driven associations. Moreover, we extended 
our methodology to a case study involving lung cancer, 
thereby reinforcing its applicability and potential.

It’s noteworthy that the versatility of our approach 
allows for seamless extensions to other cancer types, as 
well as the inclusion of additional attributes, all without 
altering the core algorithm. By offering a robust frame-
work for comprehending gene interactions, our work not 
only advances our understanding of cancer genetics but 
also paves the way for broader applications in the study of 
diverse biological systems.

Materials and methods
Methodology
The proposed gene similarity measure hinges on the con-
cept of co-occurrence of attributes, as outlined in [20]. 
This approach is rooted in the understanding that the 
similarity between two attribute values is intricately tied 
to their interactions with other attributes. Notably, these 
attributes can encompass both numerical and categorical 
data.
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Qualitative variables, denoted as Y  , is called categorical 
if their range, represented as γ , lacks any inherent internal 
structure. Consequently, when dealing with two catego-
ries x and y within Y  ( x, y ∈ Y ) , a distinction can be made 
between x = y (indicating equality) and x  = y (indicating 
inequality). It is important to acknowledge that quantifying 
the similarity between categorical data proves challenging 
using existing measures primarily designed for numerical 
data, such as Jaccard or Hamming distance.

Our methodology involves computing the distance 
between gene attributes of the same type with respect to 
other attributes. This property is fundamental in the calcu-
lation of gene similarity measures, as it takes into consider-
ation the intricate relationships between attributes. Table 1 
illustrates the two specific attributes we utilize for the com-
putation of gene similarity measures. This comprehensive 
approach enriches our understanding of the multifaceted 
nature of gene interactions and the role attributes play in 
defining their relationships.

Similarity between attributes
Let’s consider two values x, y ∈ Ai , where Ai is i th categori-
cal attribute. The distance between x and y are computed 
by taking into account the overall distribution of these two 
values across the dataset along with their co-occurrence 
with values from other attributes. In our analysis, we con-
sider two categorical attributes denoted as Ai and Aj . The 
similarity δ(x, y,Aj) between pair (x, y) with respect to j th 
attribute is defined as:

where w represents a subset of Aj ( j th attribute) values 
over the mutation set,(∼ w) is the complementary set of 
values occurring for attribute Aj , and Px

i (w) is the con-
ditional probability that the output class is one of the 
classes of w given that i th attribute has the valuex . Given 
a set with cardinalitym , the number of possible subsets 
generated from the set is2m , thus there are 2|Ai| value pos-
sible forw.

Let for subset w , Px
i (w)+ P

y
i (∼ w)− 1 has maximum 

value and assuming that ω is subset of classes, ω ⊂ w , that 
maximize the value of Eq. 1. If (x,ω) and (y,ω) are similarly 
connected, then x and y are similar to each other and value 
of Px

i (w)+ P
y
i (∼ w)− 1 will be small. We can say that sim-

ilarity between x and y with respect to Aj depends upon co-
occurrence probabilities of (x,ω) and (y,ω) [20].

(1)δ
(

x, y,Aj

)

= max
(

Px
i (w)+ P

y
i (∼ w)

)

− 1

The similarity/dissimilarity between two categori-
cal values are computed with respect to every other 
attribute of dataset. The average value of distances will 
give the distance δ(x, y) ( x, y belong to i th attribute) 
between two categorical values in that dataset. A sub-
stantial distance between two attribute values suggests 
their significance within the dataset. Furthermore, this 
observation implies a high probability that data objects 
possessing these attribute values belong to distinct 
clusters. The similarity measure is computed as:

where δi,j
(

x, y
)

 is the similarity measure between pair 
(x, y) in regard to both attributes i , j , and m is total num-
ber of attributes.

Consider the definitions, these properties will be 
upheld:

1 0 ≤ δ x, y ≤ 1  
2 δ

(

x, y
)

= δ
(

y, x
)

3 δ(x, x) = 0

The algorithm for calculating the distance between 
every pair of attribute values across all attributes is 
detailed in Algorithm1.

We consider two attributes for gene similarity net-
work (mutation type, nucleotide change). Let us con-
sider the example of mutations dataset in Table  1. 
Procedure to compute the similarity between the two 
genes FAM171B and ABCA6, are shown in Tables  2 
and 3.

Algorithm 1. Gene Distance/Similarity

(2)δ
(

x, y
)

=
1

m− 1

∑

j=1,...m,i �=j

δi,j
(

x, y
)

Table 1 Attributes and corresponding categorical values used in gene similarity measure

Mutation type Missense Nonsense RNA Silent Splice_Site Nonstop

Nucleotide change C > A T > A A > G C > T G > T G > A T > G C  > G A > C T > C G > C A > T
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According to Tables 2 and 3, and Eq. 1, the similarity in 
respect to mutation type is as:

This formula is calculated based on the following 
procedure:

Similarly, according to Tables 2 and 4, and Eq. 1, the simi-
larity in respect to nucleotide change is as:

δ1(FAM171B,ABCA6) = max
(

Px
i (w)+ P

y
i (∼ w)

)

− 1 =
4

3
− 1 =

1

3

δ11(FAM171B,ABCA6) = P1(missense|FAM171B)

+ P1(nonsense|ABCA6)

=
2

3
+ 0 =

2

3

δ12(FAM171B,ABCA6) = P1(missense|ABCA6)

+ P1(nonsense|FAM171B)

= 1+
1

3
=

4

3

δ1(FAM171B,ABCA6) = max(δ11(FAM171B,ABCA6), δ12(FAM171B,ABCA6))− 1

= max(
2

3
,
4

3
)− 1 =

4

3
− 1 =

1

3

Finally, the overall similarity/distance between the two 
genes are computed based on Eq. 2, as follows:

Results and discussion
The proposed similarity network based on co-occurrence 
probability is performed on the ovarian cancer data-
set. The dataset is obtained from TCGA (The Cancer 
Genome Atlas) [21] (https:// www. cancer. gov/ tcga) using 
TCGA Assembler R package [15]. The dataset contains 
4638 genes and 6231 samples. The computation of the 
similarity measure and subsequent construction of the 
network are conducted within the Python 3 program-
ming environment. For visual representation, the graphs 
are generated using Gephi 9 [22], a popular graph visu-
alization tool. We derived the similarity network matrix 
with dimensions 4638× 4638 , wherein each element si,j 
(0 < i, j < 4638) corresponds to the similarity between 

genes i and j . The computed similarity measure is confined 
to a range between 0 and 1, where 0 denotes similarity 
withδ(x, y) = 1 , and 1 signifies similarity withδ(x, y) = 0 . 
This setup reflects that genes exhibiting a similarity value 

δ2(FAM171B,ABCA6) = max
(

Px
i (w)+ P

y
i (∼ w)

)

− 1 =
5

3
− 1 =

2

3

δ(FAM171B,ABCA6) =
1

2
(δ1(FAM171B,ABCA6)

+δ2(FAM171B,ABCA6)) =
1

2

Table 2 An example of mutation dataset

Gene Mutation type Nucleotide change

FAM171B Missense AA → AC

FAM171B Nonsense GG → GT

FAM171B Missense GG → GA

ABCA6 Missense GG → GT

Table 3 Computation of δ(FAM171B, ABCA6) with respect to mutation type

Table 4 Computation of δ(FAM171B, ABCA6)with respect to nucleotide change

https://www.cancer.gov/tcga
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of 0 are the closest, and as the genetic distance between 
genes increases, the associated probability approaches 
1. Given the substantial dataset volume involving 4638 
genes, a graphical representation depicting all gene asso-
ciations is impractical. Instead, we focused on construct-
ing local networks of genes, with particular emphasis on 
genes recognized as drivers in ovarian cancer.

Several genetic factors, such as BRCA1, BRCA2, P53 
(TP53), KRAS, PIK3CA, CTNNB1, and PTEN, have 
been correlated with ovarian cancer in genetics studies 
[23]. These genes assume a pivotal role in enhancing our 
comprehension of the genetic bedrock of ovarian cancer, 
thereby meriting focused attention. Given their para-
mount importance, our study places focused emphasis 
on three of these genetic factors (BRCA1, BRCA2, and 
KRAS). In addition to our focused investigation of three 
driver genes, we also extend our scrutiny to non-driver 
genes (AIFM1, LRRC30). Recognizing that both driver 

and non-driver genes may harbor concealed proper-
ties that contribute to gene interactions, this inclusive 
approach enriches our analysis. By examining the inter-
play of both types of genes, we aim to uncover hidden 
relationships and interactions that could wield significant 
influence on the complex landscape of gene interactions.

Figure 1 shows the genes’ associations within the local 
network of BRCA1. All genes present in this network 
exhibit a similarity measure 0 ( δ(x, y) = 1) with BRCA1, 
indicating a high degree of similarity in terms of both 
nucleotide change and mutation type, so called very simi-
lar. In fact, all genes within this network (such as BRCA1, 
KAT7, ALG8, etc.) possess one mutation characterized as 
missense (GG > GC). Conversely, genes absent from this 
network display no discernible similarity with BRCA1. 
For instance, ACAN is absent from this network and it 
is marked by a silent mutation (AA > AG), while BRCA1’s 
mutation is classified as missense (GG > GC). Similarly, 

Fig. 1 Gene similarity network for BRCA1. All genes in this network have similarity with δ(x , y) = 1 which indicates the very similar genes to BRCA1 
in terms of mutation type and nucleotide change in Ovarian cancer based on co-occurrence mutation
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Figs. 2 and 3 show the association within local networks 
of KRAS and BRCA2, respectively. The trends observed 
in these networks mirror the insights derived from the 
BRCA1 network. Figure 4 provides an insight into gene 
associations in the local network of AIFM1, a gene not 
deemed a driver in ovarian cancers. Notably, this figure 
also highlights the specific associations between distinct 
genes and AIFM1. Similarly, Fig. 5 lays out the local net-
work of LRRC30, with a detailed zoom-in view shown in 
Fig. 6.

In order to further validate our findings, we extended 
our analysis to another case study involving LUAD (Lung 
adenocarcinoma). Our investigation encompassed the 
examination of co-occurrence similarity networks for 
both driver and non-driver genes within the context 
of this subtype. Specifically, we focused on three genes: 
BRCA1, BRCA2, and KRAS where KRAS established 
as a driver gene, and BRCA1, BRCA2 are identified as 

non-driver genes in LUAD. By conducting this analysis 
on both driver and non-driver genes, we aimed to unravel 
the intricate relationships that contribute to the complex 
molecular landscape of LUAD. To provide a clearer visual 
representation, we present Figs. 7, 8, and 9, which illus-
trate the respective local similarity networks for BRCA1, 
BRCA2, and KRAS, respectively. These figures highlight 
the intricate connections and correlations these genes 
form with others, both within their own driver/non-
driver category and across categories. The visualization 
of these networks not only deepens our understanding 
of gene interactions but also aids in identifying potential 
candidates for further exploration as therapeutic targets 
or prognostic markers. One interesting observation is 
driver gene KRAS is linked to a greater number of genes, 
in contrast to non-driver genes (BRCA1 and BRCA2), 
which exhibit fewer associations in their respective 
networks.

Fig. 2 Gene similarity network for KRAS. All genes in this network have similarity with δ(x , y) = 1 which indicates the very similar genes to KRAS 
in terms of mutation type and nucleotide change in ovarian cancer based on co-occurrence mutation
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Conclusion
In this work, we have introduced a novel mathematical 
model designed to quantify the likeness between pairs 
of genes by harnessing the co-occurrence probabilities 
of gene attributes. Specifically, our model delves into 
two pivotal mutation attributes—nucleotide change and 
mutation type—although its applicability extends to 
accommodating an array of additional attributes. Given 
the paramount role of mutations in cellular transforma-
tion and the evolution of cancer, they emerge as influ-
ential determinants in establishing connections among 
genes. This, in turn, forms the bedrock of our model’s 
foundation, as it seeks to illuminate the intricate asso-
ciations that genes foster.

Our approach culminates in the creation of similar-
ity networks, a fundamental representation of genes’ 
mutation data. This innovative framework was not 
only applied to ovarian cancer mutation data but also 
extended to encompass a comprehensive case study 

centered around lung cancer. As a further advancement, 
we devised local networks, offering a deeper compre-
hension of inter-gene associations for both driver and 
non-driver genes within a confined neighborhood. Ana-
lyzing both driver and non-driver genes enabled us to 
explore potential cross-talk and functional connections 
that might not be immediately evident. This comprehen-
sive approach provided insights into whether non-driver 
genes, while not primarily linked to cancer initiation, 
could still play roles in modulating pathways or processes 
related to the disease’s progression.

An integral facet of our research was address-
ing the intricacies of quantifying categorical data, 
namely nucleotide change and mutation type. While 
we addressed these challenges in our current scope, 
the model’s versatility paves the way for future exten-
sions to encompass a broader spectrum of attributes 
and domains. Our proposed gene similarity measure 
bears potential for application in unsupervised learning, 

Fig. 3 Gene similarity network for BRCA2. All genes in this network have similarity with δ(x , y) = 1 which indicates the very similar genes to BRCA2 
in terms of mutation type and nucleotide change in ovarian cancer based on co-occurrence mutation
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wherein it can be harnessed to cluster akin genes based 
on their shared mutation co-occurrences. Beyond 
the realms of genomics, our model’s utility extends to 

diverse interaction networks encompassing realms such 
as social networks, collaboration networks, and intri-
cate biological networks encompassing protein–protein 

Fig. 4 Gene similarity network of AIFM1. The similarity measure is based on co-occurrence mutation based on nucleotide change and mutation 
type. (a) similarity with δ(x , y) > 0 (b) similarity with δ(x , y) = 1 (c) The gene similarity network for AIFM1 with respect to ADSS2. All genes in this 
network are similar to both AIFM1 and ADSS2 with δ(x , y) = 1 (d) The gene similarity network for AIFM1 with respect to KIDDINS220. All genes 
in this network are similar to both AIFM1 and KIDDINS220 with δ(x , y) = 1 (e) The gene similarity network for AIFM1 with respect to NTM. All genes 
in this network are similar to both AIFM1 and NTM with δ(x , y) = 1 (f) The gene similarity network for AIFM1 with respect to SYNJ1. All genes in this 
network are similar to both AIFM1 and SYNJ1 with δ(x , y) = 1 (g) The gene similarity network for AIFM1 with respect to ADSS2. All genes in this 
network are similar to both AIFM1 and ADSS2 with δ(x , y) = 1 (h) The gene similarity network for AIFM1 with respect to TNPO3. All genes in this 
network are similar to both AIFM1 and TNPO3 with δ(x , y) = 1 (i) The gene similarity network for AIFM1 with respect to OR5M1. All genes in this 
network are similar to both AIFM1 and OR5M1with δ(x , y) = 1
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interactions, gene/transcriptional regulatory networks, 
and even the complex chromosomal reengagement net-
work [24].

The current study’s limitations stem from its focus 
on interrelated attributes, assuming that similarity 
between attribute values is intricately linked to their 
interactions with other attributes. Yet, there could 
be numerous other attributes without associations. 
Another constraint lies in the study’s concentration on 
single point mutations. This disregards the possibility 
of sequential mutations or causal relationships between 

them. The method in the manuscript solely examines 
attribute value co-occurrences and single point muta-
tions, making it unable to directly infer such relation-
ships. Future users of this method should acknowledge 
these limitations and explore supplementary analyses 
or approaches to accommodate these intricacies within 
their datasets.

Crucially, the mathematical framework we have intro-
duced transcends its current domain and can be seam-
lessly adapted to unearth associations across varied 
entities within multifaceted networks. The potency of 

Fig. 5 Gene similarity network for LRRC30. In (a), the network emphasizes gene similarity with LRRC30, while in (b) the network highlights 
the similarity among all the genes within the network

Fig. 6 Zoom-in view of Gene similarity network
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Fig. 7 Gene similarity network for BRCA1. All genes in this network have similarity with δ(x , y) = 1 which indicates the very similar genes to BRCA1 
in terms of mutation type and nucleotide change in lung cancer (LUAD) based on co-occurrence mutation

Fig. 8 Gene similarity network for BRCA2. All genes in this network have similarity with δ(x , y) = 1 which indicates the very similar genes to BRCA2 
in terms of mutation type and nucleotide change in lung cancer (LUAD) based on co-occurrence mutation
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our work lies in its capacity to uncover the latent con-
nections that bind disparate entities, even as these 
entities sport a tapestry of attributes. In essence, our 
mathematical model serves as a torchbearer for unveil-
ing the underlying associations interwoven within intri-
cate networks, fostering a deeper understanding of 
complex systems and phenomena.

Acknowledgements
The author thanks Dr. Ruben Petreaca, associate professor of Molecular Genet-
ics at the Ohio State University, Marion campus for his valuable comments.

Authors’ contributions
Author was solely responsible for developing the model, coding, and drafting 
the article.

Authors’ information
Author solely was the responsible for developing the idea, code, and analysis, 
and writing the article.

Funding
Not Applicable.

Availability of data and materials
The code underlying this article are available in Github and can be accessed 
with https:// github. com/ gm932/ gsno. The raw data used in this article can be 
accessed from COSMIC dataset for Ovarian cancer.

Declarations

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 10 January 2023   Accepted: 1 November 2023

References
 1. Glazko G, Gordon A, Mushegian A. The choice of optimal distance meas-

ure in genome-wide datasets. Bioinformatics. 2005;21(Suppl_3):iii3–11. 
https:// doi. org/ 10. 1093/ bioin forma tics/ bti12 01.

 2. Barido-Sottan J, Chapman SD, Kosman E, et al. Measuring similarity 
between gene interaction profiles. BMC Bioinformatics. 2019;20:435. 
https:// doi. org/ 10. 1186/ s12859- 019- 3024-x.

 3. Alvarez-Ponce D, Lopez P, Bapteste E, McInerney JO. Gene similarity 
networks provide tools for understanding eukaryote origins and evolution. 
Proc Natl Acad Sci U S A. 2013;110(17):E1594-603. https:// doi. org/ 10. 1073/ 
pnas. 12113 71110. Epub 2013 Apr 1. PMID: 23576716; PMCID: PMC3637751.

Fig. 9 Gene similarity network for KRAS. All genes in this network have similarity with δ(x , y) = 1 which indicates the very similar genes to KRAS 
in terms of mutation type and nucleotide change in lung cancer (LUAD) based on co-occurrence mutation

https://github.com/gm932/gsno
https://doi.org/10.1093/bioinformatics/bti1201
https://doi.org/10.1186/s12859-019-3024-x
https://doi.org/10.1073/pnas.1211371110
https://doi.org/10.1073/pnas.1211371110


Page 13 of 13Mirzaei  BMC Genomics          (2023) 24:697  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 4. Wang B, Mezlini A, Demir F, et al. Similarity network fusion for aggregat-
ing data types on a genomic scale. Nat Methods. 2014;11:333–7. https:// 
doi. org/ 10. 1038/ nmeth. 2810.

 5. Navaz AN, El-Kassabi HT, Serhani MA, Oulhaj A, Khalil K. A novel Patient 
Similarity Network (PSN) framework based on multi-model deep learning 
for precision medicine. J Pers Med. 2022;12(5):768. https:// doi. org/ 10. 
3390/ jpm12 050768. PMID: 35629190; PMCID: PMC9144142.

 6. Gliozzo J, Mesiti M, Notaro M, Petrini A, Patak A, Puertas-Gallardo A, Pacca-
naro A, Valentini G, Casiraghi E. Heterogeneous data integration methods 
for patient similarity networks. Brief Bioinform. 2022;23(4):bbac207. https:// 
doi. org/ 10. 1093/ bib/ bbac2 07. PMID: 35679533; PMCID: PMC9294435.

 7. Pai S, Bader GD. Patient similarity networks for precision medicine. J Mol 
Biol. 2018;430(18 Pt A):2924–38. https:// doi. org/ 10. 1016/j. jmb. 2018. 05. 
037. Epub 2018 Jun 1. PMID: 29860027; PMCID: PMC6097926.

 8. Pai S, Hui S, Isserlin R, Shah MA, Kaka H, Bader GD. netDx: interpretable 
patient classification using integrated patient similarity networks. Mol 
Syst Biol. 2019;15(3):e8497. https:// doi. org/ 10. 15252/ msb. 20188 497. PMID: 
30872 331; PMCID: PMC64 23721.

 9. Tian Z, Guo M, Wang C, et al. Constructing an integrated gene similar-
ity network for the identification of disease genes. J Biomed Semant. 
2017;8(Suppl 1):32. https:// doi. org/ 10. 1186/ s13326- 017- 0141-1.

 10. Kovács IA, Luck K, Spirohn K, et al. Network-based prediction of protein 
interactions. Nat Commun. 2019;10:1240. https:// doi. org/ 10. 1038/ 
s41467- 019- 09177-y.

 11. Bass J, Diallo A, Nelson J, et al. Using networks to measure similarity 
between genes: association index selection. Nat Methods. 2013;10:1169–
76. https:// doi. org/ 10. 1038/ nmeth. 2728.

 12. Liu Y, He Q, Sun W. Association analysis using somatic mutations. PLoS 
Genet. 2018;14(11):e1007746. https:// doi. org/ 10. 1371/ journ al. pgen. 10077 
46. Errat um. In: PLoSG enet. 2018D ec6; 14(12): e1007 848. PMID: 30388 102; 
PMCID: PMC62 35399.

 13. Bunz F. Principles of cancer genetics. Dordrecht: Springer; 2008.
 14. Chu D, Wei L. Nonsynonymous, synonymous and nonsense mutations 

in human cancer-related genes undergo stronger purifying selections 
than expectation. BMC Cancer. 2019;19:359. https:// doi. org/ 10. 1186/ 
s12885- 019- 5572-x.

 15. Wei L, Jin Z, Yang S, Xu Y, Zhu Y, Ji Y. TCGA-assembler 2: software 
pipeline for retrieval and processing of TCGA/CPTAC data. Bioinformat-
ics. 2018;34(9):1615–7. https:// doi. org/ 10. 1093/ bioin forma tics/ btx812. 
PMID: 29272 348; PMCID: PMC59 25773.

 16. Dhamija S, Yang CM, Seiler J, et al. A pan-cancer analysis reveals nonstop 
extension mutations causing SMAD4 tumour suppressor degradation. Nat 
Cell Biol. 2020;22:999–1010. https:// doi. org/ 10. 1038/ s41556- 020- 0551-7.

 17. Irani J, Pise N, Phatak M. Clustering techniques and the similarity meas-
ures used in clustering: a survey. Int J Comput Appl. 2016;134(7):9–14.

 18. Ichino M, Yaguchi H. Generalized Minkowski metrics for mixed feature-
type data analysis. IEEE Trans Syst Man Cybern. 1994;24(4):698–708. 
https:// doi. org/ 10. 1109/ 21. 286391.

 19. Sulc Z, Rezanková H. Comparison of similarity measures for categorical 
data in hierarchical clustering. J Classif. 2019;36:58–72. https:// doi. org/ 10. 
1007/ s00357- 019- 09317-5.

 20. Ahmad A, Dey L. A method to compute distance between two categori-
cal values of same attribute in unsupervised learning for categorical data 
set. Pattern Recogn Lett. 2007;28(1):110–8. https:// doi. org/ 10. 1016/j. 
patrec. 2006. 06. 006.

 21. Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, 
Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM. The can-
cer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–
20. https:// doi. org/ 10. 1038/ ng. 2764. PMID: 24071849; PMCID: PMC3919969.

 22. Bastian M, Heymann S, Jacomy M. Gephi: an open source software for 
exploring and manipulating networks. International AAAI Conference on 
Weblogs and Social Media. 2009;3(1). https:// doi. org/ 10. 1609/ icwsm. v3i1. 
13937.

 23. Lech A, Daneva T, Pashova S, Gagov H, Crayton R, Kukwa W, et al. Ovarian 
cancer as a genetic disease. Front Biosci. 2013;18:543–63. https:// doi. org/ 
10. 2741/ 4119.

 24. Mirzaei G. GraphChrom: a novel graph-based framework for cancer clas-
sification using chromosomal rearrangement endpoints. Cancers (Basel). 
2022;14(13):3060. https:// doi. org/ 10. 3390/ cance rs141 33060. PMID: 35804 
833; PMCID: PMC92 65123.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1038/nmeth.2810
https://doi.org/10.1038/nmeth.2810
https://doi.org/10.3390/jpm12050768
https://doi.org/10.3390/jpm12050768
https://doi.org/10.1093/bib/bbac207
https://doi.org/10.1093/bib/bbac207
https://doi.org/10.1016/j.jmb.2018.05.037
https://doi.org/10.1016/j.jmb.2018.05.037
https://doi.org/10.15252/msb.20188497.PMID:30872331;PMCID:PMC6423721
https://doi.org/10.15252/msb.20188497.PMID:30872331;PMCID:PMC6423721
https://doi.org/10.1186/s13326-017-0141-1
https://doi.org/10.1038/s41467-019-09177-y
https://doi.org/10.1038/s41467-019-09177-y
https://doi.org/10.1038/nmeth.2728
https://doi.org/10.1371/journal.pgen.1007746.Erratum.In:PLoSGenet.2018Dec6;14(12):e1007848.PMID:30388102;PMCID:PMC6235399
https://doi.org/10.1371/journal.pgen.1007746.Erratum.In:PLoSGenet.2018Dec6;14(12):e1007848.PMID:30388102;PMCID:PMC6235399
https://doi.org/10.1371/journal.pgen.1007746.Erratum.In:PLoSGenet.2018Dec6;14(12):e1007848.PMID:30388102;PMCID:PMC6235399
https://doi.org/10.1186/s12885-019-5572-x
https://doi.org/10.1186/s12885-019-5572-x
https://doi.org/10.1093/bioinformatics/btx812.PMID:29272348;PMCID:PMC5925773
https://doi.org/10.1093/bioinformatics/btx812.PMID:29272348;PMCID:PMC5925773
https://doi.org/10.1038/s41556-020-0551-7
https://doi.org/10.1109/21.286391
https://doi.org/10.1007/s00357-019-09317-5
https://doi.org/10.1007/s00357-019-09317-5
https://doi.org/10.1016/j.patrec.2006.06.006
https://doi.org/10.1016/j.patrec.2006.06.006
https://doi.org/10.1038/ng.2764
https://doi.org/10.1609/icwsm.v3i1.13937
https://doi.org/10.1609/icwsm.v3i1.13937
https://doi.org/10.2741/4119
https://doi.org/10.2741/4119
https://doi.org/10.3390/cancers14133060.PMID:35804833;PMCID:PMC9265123
https://doi.org/10.3390/cancers14133060.PMID:35804833;PMCID:PMC9265123

	Constructing gene similarity networks using co-occurrence probabilities
	Abstract 
	Introduction
	Materials and methods
	Methodology
	Similarity between attributes

	Results and discussion
	Conclusion
	Acknowledgements
	References


