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Abstract 

Background Advances in sequencing technology and cost reduction have enabled an emergence of various statisti-
cal methods used in RNA-sequencing data, including the differential co-expression network analysis (or differential 
network analysis). A key benefit of this method is that it takes into consideration the interactions between or among 
genes and do not require an established knowledge in biological pathways. As of now, none of existing softwares 
can incorporate covariates that should be adjusted if they are confounding factors while performing the differential 
network analysis.

Results We develop an R package PRANA which a user can easily include multiple covariates. The main R func-
tion in this package leverages a novel pseudo-value regression approach for a differential network analysis in RNA-
sequencing data. This software is also enclosed with complementary R functions for extracting adjusted p-values 
and coefficient estimates of all or specific variable for each gene, as well as for identifying the names of genes that are 
differentially connected (DC, hereafter) between subjects under biologically different conditions from the output.

Conclusion Herewith, we demonstrate the application of this package in a real data on chronic obstructive pulmo-
nary disease. PRANA is available through the CRAN repositories under the GPL-3 license: https:// cran.r- proje ct. org/ 
web/ packa ges/ PRANA/ index. html.
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Background
The RNA-sequencing (RNA-Seq) leverages the rapid 
breakthroughs of the next-generation sequencing platform 
for profiling high-quality gene expression. Over the span of 
years, the RNA-Seq has emerged as an alternative to other 
gold standard techniques in transcriptomes [1, 2]. In con-
trast to microarrays, RNA-Seq achieves a higher resolu-
tion and lower technical variability [2–4] which leads to a 
higher reproducibility [5]. Another advantage of RNA-Seq 
relative to previously developed transcriptomic sequenc-
ing methods is that it has the ability to track transcriptomic 
dynamics (or gene expression changes) of tissues during 
physiological changes [5, 6], which thus allows a compari-
son of biological samples from patients with or without a 
specific disease or condition.

In response to these advantages, a vast number of statis-
tical methods have become available to elucidate the genes 
or biological pathways associated with biological condi-
tions or health outcomes, such as differential expression 
(DE) analysis [7, 8] and pathway enrichment (PE) analysis 
[9–11] of read counts (or gene expression) of an RNA-Seq 
data. However, it can be argued that results of DE analysis 
may provide limited information with the increased evi-
dence that genes work in conjunction each other [12, 13]. 
The PE analysis appears to be a useful complement to the 
analysis of DE. The fundamental hypothesis in a PE analy-
sis is that genes are regulated under common biological 
processes and clustered as a ‘pathway’ [13, 14], which bor-
rows a priori pathway knowledge from the public reposi-
tories, namely, Gene Ontology [15], Kyoto Encyclopedia 
of Genes and Genomes [16], or Reactome [17]. To put it 
another way, PE analysis is primarily restricted to its use 
in a reference collection of well-studied biological pro-
cesses only. Thereby, the idea of ‘network’ is introduced to 
pursue the veiled information that are obscured in those 
well-defined pathways [18].

The differential network (DN) analysis provides novel 
insights for identifying changes in gene-gene interactions 
under different biological conditions [19]. In theory, such 
changes are assessed through a comparison in characteris-
tics of a network structure (i.e., network topology) between 
two or more networks that are perturbed by a specific bio-
logical condition such as the development of cancer.

Despite the growing popularity, none of existing meth-
ods [20–22] fully addresses how to adjust for additional 
covariates (e.g. patient-age, patient-reported family his-
tories, and other comorbidities) that may be associated 
with network topology.

Recently, we have adopted a pseudo-value regression 
[23] that allows covariate adjustment for the DN analy-
sis while maintaining a high precision and recall values 
via a Monte Carlo simulation comparing with other 
methods available in R packages such as DINGO [20] and 

dnapath [22]. In addition, the computation time of this 
approach was shown competitive. To date, this is the first 
attempt of statistical method for the DN analysis with the 
inclusion of additional covariates.

In this article, we describe the software built as an 
R package, namely PRANA (Pseudo-value Regression 
Approach in Network Analysis). PRANA is tailored to 
incorporate additional covariates information that may 
be associated with measures of connectivity of a gene (i.e. 
centrality) and a binary group indicator. This differs from 
previous statistical framework (or softwares) in DN anal-
ysis such as dnapath and DINGO.

Implementation
Algorithm
The algorithm below summarizes how the pseudo-value 
regression approach is embedded in a function named 
with PRANA. Briefly, the association measures are mar-
ginal quantities, such as degree centralities of each gene. 
Through the use of jackknife pseudo-values [24], we find 
the contribution of each individual data point to these 
quantities. Therefore, we could regress them on addi-
tional covariates as shown in studies with multi-state 
survival data [25, 26]. More details on methodological 
aspects are fully described elsewhere [23].

Algorithm  1 PRANA: Pseudo-value Regression Approach in 
Network Analysis

Input: nz samples (in rows) × p expression levels of genes 
(in columns) RNA-Seq expression data and nz × q 
phenotype data for each group z = 1, 2.

Output: A vector of adjusted p-values (and coefficient  
estimates and p-values) of the group variable for each 
gene k with a covariate adjustment.

1: Estimate p × p association matrix (a matrix form 
of a network) via ARACNE [27] from the nz ×  
p expression data for each group z = 1, 2.

2: Obtain the group-specific degree centrality by taking 
the marginal sums of association matrix of each  
taxa k ∈ {1, · · · , p}.

3: Repeat the first two steps above but using the  
association matrix that is re-estimated from the 
expression data without the i ∈ {1, · · · , nz } individual 
of nz × p data.

4: Calculate a group-specific jackknife pseudo-value 
for each gene k and individual i based on summary 
measures of degree centrality from Steps 2 and 3.

5: For each gene k, a robust regression is fitted 
with a binary group variable and additional  
covariates to obtain the p-values of the group  
variable. In the regression, a binary group  
variable is the main predictor to declare a gene is  
DC between two groups under different conditions 
(or phenotypes).

6: Lastly, a vector of gene-specific adjusted p-values 
[28] of the group variable is returned. See the Results 
section for more demonstration.
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Details of functions in PRANA
Main function
The main R function to perform the pseudo-value regres-
sion for the DN analysis with additional covariates is 
PRANA. The PRANA function imports two R scripts for 
the calculation of (1) total connectivity of an association 
matrix estimated from an observed expression data (as in 
thetahats function) and (2) adjusted p-values with the 
empirical Bayes screening procedure (as in EBS function) 
[28]. A list of three data.frame objects (coefficient 
estimates, p-values, and adjusted p-values of each predic-
tor variable included in the regression for each gene) are 
returned upon the execution of PRANA function.

Supporting functions
For user convenience, we provide six additional R func-
tions for extracting adjusted p-values (adjpval, 
adjpval_specific_var), coefficient estimates (coeff, 
coeff_specific_var), and genes that are significantly 
DC (sigDCGnames, sigDCGtab) from the output 
from PRANA function.

Dependencies
The PRANA package is fully implemented in R statis-
tical programming language. The package depends on 
the base R packages (parallel, stats) and other R 
packages from the Comprehensive R Archive Network 
library (CRAN; dnapath, dplyr, robustbase) and 
Bioconductor (minet). Of important note, minet 
package should be directly installed from Bioconduc-
tor for a full utilization of PRANA package. This can 
be done by executing the code below in the R console.

Results
In this section, we illustrate how PRANA can be applied 
in practice using the sample dataset available from the 
package. This case study is the same as the one analyzed 
in our methodology paper [23].

Sample dataset
The PRANA package includes a sample dataset named 
combinedCOPDdat_RGO with 406 samples. com-
binedCOPDdat_RGO consists of an RNA-Seq expres-
sion data for 28 genes that were spotlighted as associated 
with the chronic obstructive pulmonary disease (COPD) 
from a genome-wide association study [29]. It is a subset of 

the original study stored in the Gene Expression Omnibus 
(GEO) database with the accession number GSE158699 
[30]. In this sample dataset, a phenotype data on six clinical 
and demographic variables is also available: current smok-
ing status (main grouping variable), smoking pack years, 
age, gender, race, and FEV1 percent. The user can call the 
sample data into R by executing the following code:

Alternatively, the user can also assign the data to an 
object by running the code below:

Data processing
The PRANA function requires a user to provide each 
expression and phenotype data separately. 

The main predictor variable in this example analysis is 
the current smoking status. As discussed in the Algorithm 
subsection, the estimation of association matrices (or net-
works) and the calculation of jackknife pseudo-values 
are carried out for each group separately. Hence, we add 
another step that locates the indices of subjects from each 
‘current’ vs. ‘non-current smokers’ group. These indices are 
used to dichotomize expression dataset into ‘non-current 
smokers (Group A)’ and ‘current (Group B).’ 

Apply PRANA function for DN analysis with additional 
covariates
Once the data processing is complete, a user can per-
form a DN analysis with additional covariates. PRANA 
function takes an expression and phenotype data, sepa-
rately, in which a user specifies each for RNASeqdat 
and clindat, respectively. To be more specific, the 
variables included in phenotype data are included in 
the regression. In addition, the group-specific indices 
for the main binary indicator variable are provided as 
groupA and groupB within the function. 
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The output of the PRANA function is a list containing 
three data.frame objects for coefficient estimates, p-val-
ues, and adjusted p-values of all covariates included in the 
fitted model for each gene. Results are shown as following:

Some supporting functions
The package offers some auxiliary features. A user can 
get a table of adjusted p-values and coefficient estimates 
for all variables with adjptab and coeff functions as 
following:

Suppose, for instance, we are interested in looking 
at the adjusted p-values for the current smoking status 
variable instead of a table with all variables. adjpval_
specific_var function is available for that purpose:

Similarly, coeff_specific_var function can be exe-
cuted to return a coefficient estimate for a specific vari-
able (current smoking status in the example below). A 
cautionary note is that the user must provide the name 
of a variable as in varname within each adjpval_
specific_var or coeff_specific_var functions.
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Additionally, sigDCGtab and sigDCGnames func-
tions take a data.frame object as an input, defined 
by adjpval function earlier, to output the names of 
DC genes (i.e. NCBI Entrez gene IDs in the first col-
umn) for the main binary grouping variable utilized 
for the DN analysis, as well as corresponding adjusted 
p-values. sigDCGnames returns the names of DC 
genes only. A user may adjust the level of significance 
(alpha), which is set to 0.05 by default. Please see the 
following commands below:

As a result, PRANA identified 23 genes that are signifi-
cantly DC between current and non-current smokers 
while accounting for additional covariates such as smok-
ing pack years, age, gender, race, and FEV1 percent.

As an additional step, a user can utilize rename_
genes function from the dependency package (dna-
path) to rename results with Entrez gene IDs into gene 
symbols. See below for the demonstration in R console. 
Results are summarized in Table 1.

Discussion
The R package PRANA has been published in the CRAN 
(https:// cran.r- proje ct. org/ web/ packa ges/ PRANA/ index. 
html). This package has no operating system dependencies. 
A vignette is available on this package at https:// cran . r- 
project. org/ web/ packa ges/ PRANA/ vigne ttes/ UserM anual 
PRANA. html or can be accessed by typing in an R console 
(browseVignettes(package="PRANA")). In this 

package, the sample dataset is provided with COPD-related 
genes, as well as clinical and demographic variables. The 
source code of the package can be found in GitHub: https:// 
github. com/ sjahnn/ PRANA.
PRANA has some plans for future development. Firstly, 

although a user may attempt a classical regression-based 
variable selection such as stepwise selection, we have not yet 
validated this through a statistical simulation experiment. 
Secondly, the names of genes provided in the sample dataset 
are Entrez gene IDs. Further extension will include a func-
tion that convert from these gene IDS to gene symbols (i.e. 
10370 to CITED2) and vice versa for user convenience.

In conclusion, PRANA is a user-friendly and novel 
regression-based method that accounts for additional 
covariates along with the main binary grouping variable 
for the DN analysis.

Conclusions
The differential network analysis identifies changes in 
measures of associations between genes under different 
biological conditions. Although there has been increas-
ing volume of work in this subject, overall covariate 

Table 1 Results of DC genes obtained from PRANA. The sample 
dataset contains the NCBI Entrez gene IDs, so does the resulted DC 
genes (first column). dnapath::rename_genes is utilized to 
rename Entrez gene IDs to gene symbol (second column)

Entrez ID Gene symbol

10370 CITED2

10420 TESK2

155185 AMZ1

1653 DDX1

1762 DMWD

23389 MED13L

253461 ZBTB38

27436 EML4

3308 HSPA4

3696 ITGB8

374739 TEPP

3842 TNPO1

406 BMAL1

56986 DTWD1

57188 ADAMTSL3

7067 THRA

7871 SLMAP

79961 DENND2D

79991 STN1

8224 SYN3

8853 ASAP2

8870 IER3

9258 MFHAS1

https://cran.r-project.org/web/packages/PRANA/index.html
https://cran.r-project.org/web/packages/PRANA/index.html
https://cran.r-project.org/web/packages/PRANA/vignettes/UserManualPRANA.html
https://cran.r-project.org/web/packages/PRANA/vignettes/UserManualPRANA.html
https://cran.r-project.org/web/packages/PRANA/vignettes/UserManualPRANA.html
https://github.com/sjahnn/PRANA
https://github.com/sjahnn/PRANA
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adjustment remains underexplored. In this paper, we pre-
sent PRANA, the first R package that adjusts for additional 
covariates for the differential network analysis. As a brief 
note on the usage, PRANA takes RNA-sequencing and phe-
notype data (metadata) as inputs and in return tables con-
taining DC gene names and their corresponding adjusted 
p-values are produced for a main binary grouping variable 
to be adjusted with the presence of additional covariates. 
This software is easy to install and user-friendly.

Availability and requirements
Project name: PRANA

Project home page: https:// cran.r- proje ct. org/ web/ 
packa ges/ PRANA/ index. html

Operating system(s): Platform independent
Programming language: R
Other requirements: Install dnapath, dplyr, 

robustbase, and minetR packages
License: GNU GPL-3
Any restrictions to use by non-academics: No 

restrictions

Abbreviations
COPD  Chronic obstructive pulmonary disease
DC  Differentially connected
DN  Differential network
GEO  Gene Expression Omnibus
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