
R E S E A R C H Open Access

© The Author(s) 2023, corrected publication 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit 
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. 
If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to 
the data made available in this article, unless otherwise stated in a credit line to the data.

Li et al. BMC Genomics          (2023) 24:718 
https://doi.org/10.1186/s12864-023-09788-2

BMC Genomics

*Correspondence:
Yao Liu
doctorliuyao@126.com
Huaichen Li
lihuaichen@163.com

Full list of author information is available at the end of the article

Abstract
Background  Two-component systems (TCSs) play a crucial role in the growth of Mycobacterium tuberculosis (M. 
tuberculosis). However, the precise regulatory mechanism of their contribution remain to be elucidated, and only 
a limited number of studies have investigated the impact of gene mutations within TCSs on the transmission of 
M. tuberculosis. Therefore, this study aims to explore the relationship between TCSs gene mutation and the global 
transmission of M. tuberculosis.

Results  A total of 13531 M.tuberculosis strains were enrolled in the study. Most of the M.tuberculosis strains belonged 
to lineage4 (n=6497,48.0%), followed by lineage2 (n=5136,38.0%). Our results showed that a total of 36 single 
nucleotide polymorphisms (SNPs) were positively correlated with clustering of lineage2, such as Rv0758 (phoR, 
C820G), Rv1747(T1102C), and Rv1057(C1168T). A total of 30 SNPs showed positive correlation with clustering of 
lineage4, such as phoR(C182A, C1184G, C662T, T758G), Rv3764c (tcrY, G1151T), and Rv1747 C20T. A total of 19 SNPs 
were positively correlated with cross-country transmission of lineage2, such as phoR A575C, Rv1028c (kdpD, G383T, 
G1246C), and Rv1057 G817T. A total of 41 SNPs were positively correlated with cross-country transmission of lineage4, 
such as phoR(T758G, T327G, C284G), kdpD(G1755A, G625C), Rv1057 C980T, and Rv1747 T373G.

Conclusions  Our study identified that SNPs in genes of two-component systems were related to the transmission 
of M. tuberculosis. This finding adds another layer of complexity to M. tuberculosis virulence and provides insight into 
future research that will help to elucidate a novel mechanism of M. tuberculosis pathogenicity.
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Background
Tuberculosis is a serious global health problem caused by 
Mycobacterium tuberculosis (M. tuberculosis), a patho-
gen that lives and thrives inside human cells [1]. It is a 
highly contagious and often fatal disease that affects mil-
lions of people worldwide, making it a significant burden 
on public health systems and societies. However, despite 
its enormous global burden, the factors that contribute 
to tuberculosis transmission are still poorly understood. 
Therefore, developing a better understanding of M. 
tuberculosis transmission is critical for guiding effective 
tuberculosis control strategies and reducing the disease’s 
burden on society.

Bacterial two-component systems (TCSs) are the most 
important sensing mechanisms that respond to a diverse 
range of ligands, including ions, gases, and metabo-
lites. In pathogenic bacteria, TCSs play a crucial role in 
promoting pathogenesis by regulating bacterial gene 
expression in response to hostile host environments or 
metabolic stresses [2, 3]. The traditional two-component 
sensing system comprises a sensor kinase located in the 
cell membrane, which detects an extracellular ligand and 
subsequently activates through autophosphorylation on a 
cytoplasmic histidine residue. The M. tuberculosis H37Rv 
genome contains 190 transcriptional regulators, includ-
ing 12 pairs of TCSs and 4 orphan proteins that belong 
to the two-component system family. These regulators 
play a role in regulating various aspects of M. tuber-
culosis, such as virulence, dormancy, persistence, and 
drug resistance. Some studies have suggested that TCSs 
may regulate the spread of M. tuberculosis through vari-
ous pathways [4, 5]. For example, they can influence the 
growth, metabolism and environmental adaptation of 
the bacterium by regulating cell wall synthesis and deg-
radation, maintaining intracellular redox balance, and 
modulating metabolic pathways [6, 7]. However, further 
research is needed to determine the specific regulatory 
mechanisms of TCSs in the process of M. tuberculosis 
transmission.

Whole genome sequencing (WGS) technology has sig-
nificant implications for the study and treatment of M. 
tuberculosis [8]. This technique provides comprehensive 
information on the M. tuberculosis genome, including 
gene structure, function, regulation, and mutations. Such 
information can provide critical insights into the biologi-
cal characteristics of the bacterium, its transmission pat-
terns, drug resistance mechanisms, and new therapeutic 
targets. Additionally, WGS can help us understand M. 
tuberculosis evolution by identifying genetic differences 
and correlations between different strains, studying 
human-host co-adaptation and coevolution, and discov-
ering new drugs and treatments for tuberculosis [9, 10]. 
In our research, WGS was used to study the influence 
of gene mutations in two-component systems on the 

worldwide transmission of M. tuberculosis. Specifically, 
the genome cluster was used to represent the transmis-
sion of M. tuberculosis.

Results
Characteristics of study samples
A total of 13,531 strains were used in this study includ-
ing 5136(38.0%) strains belonged to lineage2 and 
6497(48.0%) belonged to lineage 4. Lineage 2.2.1 was the 
dominant sub-lineage, accounting for 41.9%, followed by 
lineage 4.3 (16.6%), lineage 4.1 (13.9%) and lineage 4.8 
(9.4%). The highest clustering rate observed within the 
lineage was lineage 4 at 0.704, while within sub-lineages, 
lineage 4.3 exhibited the greatest number of clustered 
strains. Among the clustered strains, lineage 4 had the 
most strains of cross-country and cross-regional distri-
bution, while within sub-lineages, lineage 2.2.1 had the 
highest number of such strains (Table 1).

Relationship between TCSs gene mutation and lineage 
transmission
We studied the relationship of gene mutation in the two-
component system and lineage transmission. The ran-
dom forest and gradient boosting decision tree models 
of lineage 1 were successfully established. For further 
details see Additional file 2: Table S9 and Additional file 
1: Fig. S6. Subsequently, a generalized linear mixed model 
was established to analyze 60 variables that represented 
the intersection of random forest and gradient boosting 
decision tree (Additional file 2: Tables S4 and S5). A total 
of 31 SNPs showed a positive correlation with cluster-
ing of lineage1(P < 0.05), including 15 synonymous SNPs 
and 16 nonsynonymous SNPs, such as Rv3764c (tcrY, 
T1354C, OR,1.975; 95%CI,1.456–2.680), Rv1747(C980T, 
OR, 2.344; 95%CI,1.723–3.19), Rv1057(C177T, OR,1.539, 
95%CI, 1.24–1.91), and Rv3245c (mtrB, C831T, G300T) 
(Additional file 2: Table S24). The results showed that 
31 SNPs increased the risk of lineage1 transmission. For 
lineage2, the random forest and gradient boosting deci-
sion tree models were successfully established (Table  2; 
Fig.  1). Subsequently, a generalized linear mixed model 
was established to examine 60 variables that contributed 
to the gradient boosting decision tree and random for-
est models (Additional file 2: Tables S4 and S5). A total of 
36 SNPs showed a positive correlation with clustering of 
lineage2(P < 0.05), including 12 synonymous SNPs and 24 
nonsynonymous SNPs, such as Rv0758 (phoR, C820G), 
Rv1747 T1102C, Rv1057 C1168T, Rv3764c (tcrY, C284A), 
Rv0982(mprB, G910A), Rv2247(accD6, G567A, T600C), 
Rv1027c (KdpE, G178A, C626A), Rv3245c (mtrB, A971G, 
G1110A), and Rv3765c (tcrX, G293C) (Additional file 2: 
Table S25). The results showed that 36 SNPs increased 
the risk of lineage2 transmission. For lineage3, the ran-
dom forest and gradient boosting decision tree models of 
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lineage 3 were successfully established (Additional file 2: 
Table S10 and Additional file 1: Fig. S7). Subsequently, a 
generalized linear mixed model was established to ana-
lyze 60 variables that represented the common features 
from both gradient boosting decision tree and random 
forest models (Additional file 2: Tables S4 and S5). A total 
of 29 SNPs showed a positive correlation with clustering 
of lineage3(P < 0.05), including 11 synonymous SNPs and 
18 nonsynonymous SNPs, such as Rv0758 (phoR, G448T, 
G694T), Rv3764c (tcrY, C278T), Rv1747(G2188A, 
C460T), Rv3765c (tcrX, G415A), Rv1057 G186A, 

Rv0982(mprB, G1477A), Rv1032c (trcS, T946C), Rv1027c 
(KdpE, C45T), and Rv3245c (mtrB, C24T) (Additional file 
2: Table S23). The results showed that 29 SNPs increased 
the risk of transmission of lineage3. For lineage4, the ran-
dom forest and gradient boosting decision tree models of 
lineage 4 were successfully established (Additional file 2: 
Table S11 and Additional file 1: Fig. S8). Subsequently, a 
generalized linear mixed model was established to ana-
lyze a total of 60 variables that represented the intersec-
tion of random forest and gradient boosting decision 
tree (Additional file 2: Tables S4 and S5). A total of 30 
SNPs showed a positive correlation with clustering of 
lineage4(P < 0.05), including 15 synonymous SNPs and 
15 nonsynonymous SNPs, such as Rv0758(phoR, C182A, 
C1184G, C662T, T758G), Rv3764c (tcrY, G1151T), 
Rv1747 C20T, Rv3765c (tcrX, C45G), Rv1057 C585A, 
Rv1032c (trcS, G977T), Rv2247(accD6, G957A), and 
Rv3245c (mtrB, T33C) (Additional file 2: Table S7). The 
results showed that 30 SNPs increased the risk of trans-
mission of lineage4.

Relationship between TCSs gene mutation and sub-lineage 
transmission
The random forest and gradient boosting decision tree 
models of lineage 2.2.1, lineage 2.2.2, lineage 4.1, lineage 
4.2, lineage 4.4 and lineage 4.8 were successfully estab-
lished (Additional file 2: Tables S4, S5, S12–S18) (Addi-
tional file 1: Figs. S9–S15). The results of the generalized 
linear mixed model showed that 30 SNPs were posi-
tively correlated with clustering of lineage2.2.1(P < 0.05), 
including 10 synonymous SNPs and 20 nonsynonymous 
SNPs, such as Rv2027c (dosT, T874C), Rv1028c (kdpD, 
G2453A), Rv1057 C29G, Rv0982 (mprB, G1477A), 
Rv1032c (trcS, T946C), Rv1027c (KdpE, G178A, C626A), 
Rv3245c (mtrB, A971G), and Rv2247(accD6, G567A) 
(Additional file 2: Table S28). The results showed that 30 
SNPs increased the risk of transmission of lineage2.2.1. 
For lineage2.2.2, a total of 16 SNPs showed a positive 
correlation with clustering (P < 0.05), including 8 syn-
onymous SNPs and 8 nonsynonymous SNPs, such as 
Rv2027c (dosT, C215T), Rv1028c (kdpD, G2085), Rv0982 
(mprB, G910A), and Rv3245c (mtrB, T33C) (Table 3). The 
results showed that 16 SNPs increased the risk of trans-
mission of lineage2.2.2.

For lineage4.1, a total of 22 SNPs showed a positive 
correlation with clustering (P < 0.05), including 12 syn-
onymous SNPs and 10 nonsynonymous SNPs, such 
as Rv1028c (kdpD, G943A, G2136A), Rv2027c (dosT, 
G1256A), Rv1032c (trcS, G857A), and Rv1747 C20T 
(Additional file 2: Table S29). Our results showed that 
these 22 SNPs increased the risk of transmission of lin-
eage4.1. For lineage4.2, the result of the generalized linear 
mixed model showed that 7 SNPs were positively corre-
lated with clustering (P < 0.05), including 2 synonymous 

Table 1  Fundamental information of Mycobacterium tuberculosis
Characteristic Number (%)
Lineage Lineage1 851(6.3)

Lineage2 5136(38.0)
Lineage3 970(7.2)
Lineage4 6497(48.0)
Lineage5 38(0.3)
Lineage6 10(0.1)
Lineage7 29(0.2)

Sub-lineage Lineage2.1 46(0.4)
Lineage2.2.1 4832(41.7)
Lineage2.2.2 258 (2.2)
Lineage4.1 1614(13.9)
Lineage4.2 427(3.7)
Lineage4.3 1919(16.6)
Lineage4.4 626(5.4)
Lineage4.8 1086(9.4)
Other 
sub-lineage4

781(6.7)

Clustered strains Lineage1 Clustered strains 319(37.5)
No-clustered strains 532(62.5)

Lineage2 Clustered strains 2999(58.4)
No-clustered strains 2137(21.6)

Lineage3 Clustered strains 468(48.2)
No-clustered strains 502(51.8)

Lineage4 Clustered strains 4574(70.4)
No-clustered strains 1923(29.6)

Clustered strains 
_size

Lineage2 Large clustered strains 663(22.1)
Medium clustered 
strains

1264(42.1)

Small clustered strains 1072(35.7)
Lineage4 Large clustered strains 1361(29.8)

Medium clustered 
strains

2017(44.1)

Small clustered strains 1196(26.1)
Cross country Lineage2 Cross country 330(11.0)

Within country 2669(89.0)
Lineage4 Cross country 374(8.2)

Within country 4200(91.8)
Cross regional Lineage2 Cross regional 321(10.7)

Within regional 2678(89.3)
Lineage4 Cross regional 338(7.4)

Within regional 4236(92.6)
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SNPs and 5 nonsynonymous SNPs, such as Rv0758 
(phoR, C182A), Rv0930(pstA1, G895T, C913T), Rv3245c 
(mtrB, C1113A), and Rv2247(accD6, G957A, T600C) 
(Additional file 2: Table S30). The results showed that 
7 SNPs increased the risk of transmission of lineage4.2. 
For lineage4.4, the result of the generalized linear mixed 
model showed that 18 SNPs were positively correlated 
with clustering (P < 0.05), including 9 synonymous SNPs 
and 9 nonsynonymous SNPs, such as Rv0982(mprB, 
G901A, G230C), Rv1028c (kdpD, C1102T), Rv0758 
(phoR, C662T, T758G, A341C), Rv0982 (mprB, G901A. 
G230C), and Rv3245c (mtrB, C1083T), (Additional file 
2: Table S31). The results showed that 18 SNPs increased 
the risk of transmission of lineage4.4. For lineage4.8, the 
result of the generalized linear mixed model showed 
that 15 SNPs were positively correlated with clustering 
(P < 0.05), including 5 synonymous SNPs and 10 nonsyn-
onymous SNPs, such as Rv1028c (kdpD, C643T), Rv3764c 
(tcrY, G1151T), Rv1032c (trcS, C1375G), Rv0758(phoR, 
T148G), and Rv2247(accD6, T600C), (Additional file 2: 
Table S32). The results showed that 15 SNPs increased 
the risk of transmission of lineage4.8.

Relationship between TCSs gene mutation and cluster size
For analyzing the relationship of gene mutation in the 
two-component system and cluster size, the random for-
est and gradient boosting decision tree models for lin-
eage2 and lineage4 were successfully established.

The random forest and gradient boosting decision tree 
models of lineage 2 and lineage4 were successfully estab-
lished. (Additional file 2: Tables S6, S19, and S20). The 
results of the generalized linear mixed model indicated 

that 25 SNPs were positively correlated with cluster size 
of lineage2(P < 0.05), including 14 synonymous SNPs and 
11 nonsynonymous SNPs, such as Rv0758(phoR, C820G), 
Rv1747 C696A, Rv1028c (kdpD, G383T), Rv1057 C653T, 
Rv1032c (trcS, C1202T), Rv2247(accD6, G567A), Rv3245c 
(mtrB, A1660G), Rv0982(mprB, G910A, C780T), and 
Rv1027c (KdpE, C626A) (Additional file 2: Table S33). 
The results showed that 25 SNPs increased the risk of 
small clusters, medium clusters, and large clusters of lin-
eage2. The results of the generalized linear mixed model 
indicated that a total of 30 significant SNPs were posi-
tively correlated with cluster size of lineage4(P < 0.05), 
including 13 synonymous SNPs and 17 nonsynony-
mous SNPs, such as Rv0758(phoR, C182A, C1184G, 
C662T), Rv1028c(kdpD, C2320T, A1982T, G943A, 
A214G), Rv3132c(devS,C552G), Rv0982(mprB, G901A), 
Rv3764c(tcrY, G1151T), Rv1747 C20T, Rv0982(mprB, 
G910A, C1191G), Rv1032c (trcS, G977T, C1445T), 
Rv2247(accD6, G957A, T600C), and Rv3245c (mtrB, 
A778G) (Additional file 2: Table S34). The results showed 
that 30 SNPs increased the risk of small clusters, medium 
clusters, and large clusters of lineage4.

Relationship between TCSs gene mutation and cross-
country transmission
Random forest and gradient boosting decision tree 
models were successfully implemented to analyze the 
cross-country transmission of M. tuberculosis via gene 
mutations in TCSs, specifically focusing on lineage2 and 
lineage4. (Additional file 2: Tables S7, S2, and S22; Addi-
tional file 1: Figs. S16 and S17)

Table 2  The performance of various models for discriminating clustered strains from non-clustered strains in the lineage2 cohort
Parameters Training set

(n = 3595, 2081 clustered strains,
1514 non-clustered strains)

Test set
(n = 1541, 918 clustered strains,
623 non-clustered strains)

Random Forest Gradient Boosted Classification Tree Random Forest Gradient Boosted Classification Tree
Kappa 0.641 0.613 0.454 0.442
AUC
(95% CI)

0.908
(0.899, 0.917)

0.877
(0.866, 0.888)

0.791
(0.771, 0.811)

0.778
(0.757, 0.799)

Sensitivity
(95% CI)

0.873
(0.862, 0.884)

0.836
(0.824, 0.848)

0.786
(0.766, 0.806)

0.807
(0.787, 0.827)

Specificity
(95% CI)

0.762
(0.748, 0.776)

0.779
(0.765, 0.793)

0.666
(0.642, 0.690)

0.628
(0.604, 0.652)

PPV
(95% CI)

0.837
(0.825, 0.849)

0.845
(0.833, 0.857)

0.771
(0.750, 0.792)

0.741
(0.719, 0.763)

NPV
(95% CI)

0.811
(0.798, 0.824)

0.767
(0.753, 0.781)

0.686
(0.663, 0.709)

0.712
(0.689, 0.735)

PLR
(95% CI)

4.437
(4.415, 4.459)

3.625
(3.597, 3.653)

2.451
(2.402, 2.50)

2.571
(2.528, 2.614)

NIR
(95% CI)

0.225
(0.15, 0.30)

0.276
(0.198, 0.354)

0.408
(0.313, 0.503)

0.389
(0.301, 0.477)

Accuracy
(95% CI)

0.827
(0.815, 0.839)

0.813
(0.8, 0.826)

0.737
(0.715, 0.759)

0.730
(0.708, 0.752)

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood ratio; CI, confidence



Page 5 of 12Li et al. BMC Genomics          (2023) 24:718 

The results of the generalized linear mixed model 
showed that a total of 19 SNPs were positively correlated 
with cross-country transmission of lineage2(P < 0.05), 
including 6 synonymous SNPs and 13 nonsynonymous 
SNPs, such as Rv0758(phoR, A575C), Rv1028c (kdpD, 
G383T, G1246C), Rv1057 G817T, Rv0982(mprB, G910A), 
Rv1747 T373G. Rv0982(mprB, G910A, C1317G), 
Rv1027c (KdpE, G178A) (Additional file 2: Table S35). 
The results showed that 19 SNPs increased the risk of 
cross-country transmission of lineage2. A total of 41 

SNPs were positively correlated with cross-country 
transmission of lineage4 (P < 0.05), including 20 syn-
onymous SNPs and 21 nonsynonymous SNPs, such as 
Rv0758(phoR, T758G, T327G, C284G), Rv1028c(kdpD, 
G1755A, G625C), Rv1057 (C980T, Rv1747 T373G), 
Rv3764c T736C, Rv0982(mprB, G1323A), Rv2247(accD6, 
G181A, C700T, G36A), Rv1027c (KdpE, G381A), Rv1032c 
(trcS, T188G, G977T, G571A),and Rv3245c(mtrB, T354C, 
G1011A) (Additional file 2: Table S36). The results 

Fig. 1  ROC curve analysis was conducted to evaluate the performance of models for cluster analysis within lineage 2. (A) ROC analysis showing the 
performance of the random forest model. (B) ROC analysis showing the performance of the gradient boosting decision tree
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showed that 41 SNPs increased the risk of cross-country 
transmission of lineage4.

Relationship between TCSs gene mutation and cross-
regional transmission
The random forest and gradient boosting decision tree 
models were successfully established for analyzing the 
cross-regional transmission of M. tuberculosis through 
gene mutations in TCSs within lineage 2 and lineage 4. 
(Table 4, Additional file 2: Tables S8 and S23) (Additional 
file 1: Figs. S18 and S19).

The results of the generalized linear mixed model 
showed that a total of 22 SNPs were positively correlated 
with cross-regional transmission of lineage2(P < 0.05), 
including 9 synonymous SNPs and 13 nonsynonymous 
SNPs, such as Rv0758(PhoR, C385A), Rv1057(G817T, 
A1136G), Rv2027c (dosT, C1343T), Rv1028c (kdpD, 
G383T), Rv1747(T373G). Rv0982(mprB, G910A, 

C1317G), Rv1027c (KdpE, G178A), and Rv1032c (trcS, 
A886G, G748A, G561A) (Additional file 2: Table S37). 
The results showed that 22 SNPs increased the risk of 
cross-regional transmission of lineage2. A total of 34 
SNPs were positively correlated with cross-regional 
transmission of lineage4(P < 0.05), including 13 syn-
onymous SNPs and 21 nonsynonymous SNPs, such as 
Rv0758(phoR, T758G, C805T, C294A, C1184G), Rv1057 
C980T, Rv1028c (kdpD, G1755A, G1266C, G625C), 
Rv1747 C2112T, Rv2247(accD6, G36A), Rv1027c (KdpE, 
G381A), Rv1032c (trcS, T188G, G977T, G571A), and 
Rv3245c (mtrB, G390A), (Additional file 2: Table S38). 
The results showed that 34 SNPs increased the risk of 
cross-regional transmission of lineage4.

The above findings revealed that synonymous SNPs 
and nonsynonymous SNPs in PhoR, mprB and Rv1747 
were significantly related to the transmission of various 
lineages of M.tuberculosis, including cross-country and 

Table 3  Generalized linear mixed model analysis on clustered and non-clustered strains in the lineage2.2.2 cohort
Gene Position SNP Amino acid changes P value OR(95%CI)
Rv0982 1,098,417 G910A Asp304Asn < 0.001 2.092(1.958,2.234)
Rv1743 1,969,405 G402A Gly134Gly < 0.001 2.063(1.808,2.354)
Rv2027c 2,274,294 C215T Thr72Ile < 0.001 2.442(1.952,3.056)
Rv1747 1,973,911 C282T Pro94Pro < 0.001 2.442(2.081,2.866)
Rv1626 1,828,320 C141T Gly47Gly < 0.001 1.853(1.637,2.098)
Rv0014c 16,352 C1119T Ala373Ala < 0.001 2.098(1.815,2.425)
Rv2247 2,520,964 G222A Thr74Thr 0.009 0.436(0.317,0.6)
Rv0758 852,994 G599T Gly200Val 0.005 0.414(0.302,0.566)
Rv0014c 16,465 G1006C Val336Leu < 0.001 2.462(1.968,3.08)
Rv0845 942,450 C1261T Leu421Leu < 0.001 2.524(2.014,3.165)
Rv1266c 1,414,305 C1536G Asp512Glu < 0.001 2.535(2.022,3.177)
Rv0490 580,362 C1014G Ala338Ala 0.004 0.402(0.293,0.55)
Rv3132c 3,498,065 C1201A Arg401Arg < 0.001 2.43(1.943,3.04)
Rv1028c 1,151,173 G514C Asp172His 0.001 0.492(0.399,0.608)
Rv1028c 1,149,602 G2085A Ser695Ser < 0.001 2.838(2.199,3.662)
Rv3765c 4,211,244 A541C Ser181Arg 0.051 0.526(0.378,0.731)
Rv0981 1,096,890 T69C Asn23Asn 0.006 0.51(0.399,0.651)
Rv1675c 1,900,608 G368A Gly123Glu < 0.001 2.442(1.952,3.056)
Rv1743 1,969,938 C935T Pro312Leu 0.008 1.505(1.289,1.758)
Rv1743 1,970,586 C1583T Ala528Val 0.024 0.469(0.335,0.656)
Rv0845 941,473 T284A Phe95Tyr < 0.001 2.032(1.684,2.452)
Rv0602c 699,629 T171C His57His 0.001 1.855(1.542,2.232)
Rv2984 3,339,998 C145G Pro49Ala 0.031 0.487(0.349,0.679)
Rv0845 942,410 T1221C Val407Val 0.214 1.357(1.062,1.733)
Rv1027c 1,148,482 C626A Ser209* 0.095 0.838(0.754,0.931)
Rv1027c 1,148,459 G649T Glu217* 0.188 1.166(1.038,1.311)
Rv0601c 698,968 C27T Gly9Gly < 0.001 0.532(0.452,0.626)
Rv0758 853,066 G671T Gly224Val 0.377 1.115(0.986,1.261)
Rv0014c 16,119 G1352T Arg451Leu 0.042 1.379(1.177,1.614)
Rv1813c 2,055,937 G176A Gly59Glu 0.701 1.063(0.908,1.245)
Rv1747 1,974,919 C1290T Arg430Arg 0.556 0.898(0.747,1.079)
Rv1368 1,541,426 G407T Arg136Leu 0.538 0.893(0.743,1.074)
Rv0981 1,097,238 G417A Pro139Pro 0.254 0.86(0.754,0.981)
OR, odds ratio; CI, confidence interval
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cross-regional transmission. In addition, missense muta-
tions in KdpD and trcS, as well as synonymous mutations 
in Rv3245c (mtrB), Rv2247 (accD6) and Rv1027c (KdpE), 
were also significantly related to the transmission of vari-
ous lineages of M.tuberculosis, including cross-country 
and cross-regional transmission (Fig. 2). These mutations 
increased the risk of transmission of M.tuberculosis.

Discussion
The transmission factors of pathogenic bacteria have 
always been elusive, and the transmission factors of M. 
tuberculosis were also very complicated. Until now, there 
has been no research on whether the gene mutation in 
TCSs is related to the transmission of M. tuberculosis. 
Our research showed that there were SNPs in the genes 
of the two-component system, which increased the risk 
of the transmission of M. tuberculosis. With the continu-
ous discovery of new two-component systems, these 
findings showed that the gene mutation of TCSs has uni-
versal and extensive significance for the transmission of 
M. tuberculosis.

Our study revealed that SNPs in PhoR increased the 
risk of transmission of M. tuberculosis, including C820G, 
G448T, G694T, C182A, C1184G, C662T, T758G, C820G, 
C182A, C1184G, and C662T. PhoP, part of the two-com-
ponent system PhoR-PhoP, is the response regulator pro-
tein that activates or represses the genes of the regulon 
[11]. The PhoR gene encodes a kinase and is considered 

one of the main signaling pathways involved in regulat-
ing phosphate metabolism in M. tuberculosis. This gene 
senses changes in extracellular phosphate concentra-
tion, activating the PhoP-PhoR two-component system to 
regulate the adaptive response of M. tuberculosis [12, 13]. 
The increased risk of M. tuberculosis transmission asso-
ciated with multiple SNPs in PhoR can be attributed to 
their impact on gene expression, thereby influencing cru-
cial cellular processes including metabolism, virulence, 
and adaptation in M. tuberculosis [14]. Furthermore, sev-
eral studies have indicated that mutations occurring at 
specific sites in the PhoR gene can affect various biologi-
cal aspects of M. tuberculosis, such as growth, metabo-
lism, and drug resistance, thus indirectly influencing the 
pathogen’s survival rate and infectivity within the host 
[15, 16].

The Rv1027c-Rv1028c genes in M. tuberculosis are 
predicted to encode the kdpDE two-component system, 
which exhibits a high degree of conservation among bac-
terial species [17]. This system has been extensively stud-
ied and found to regulate virulence and stress resistance 
in various human pathogens. Our results reveal that mul-
tiple SNPs in kdpD increase the risk of transmission of 
M. tuberculosis. These SNPs may change the function of 
kdpD protein by affecting the domain of kdpD, and trig-
ger the expression regulation of kdpD. This regulation of 
gene expression further promotes the adaptive response 
of kdpDE system [18]. Additionally, research has 

Table 4  The performance of various models for discriminating cross-regional from within-regional in the lineage4 cohort
Parameters Training set

(n = 3201, 245 cross-regional 
strains,2956 within-regional trains)

Test set
(n = 1373, 93 cross-regional 
strains,
1280 within-regional strains)

Random Forest Gradient Boost-
ed Classification 
Tree

Random Forest Gradient 
Boosted 
Classifica-
tion Tree

Kappa 0.649 0.553 0.472 0.435
AUC
(95% CI)

0.954
 (0.947, 0.961)

0.941
(0.933, 0.949)

0.927
(0.913, 0.941)

0.922
(0.908, 0.936)

Sensitivity
(95% CI)

0.981
(0.976, 0.986)

0.458
(0.441, 0.475)

0.971
(0.962, 0.980)

0.363
(0.338, 0.388)

Specificity
(95% CI)

0.981
(0.976, 0.986)

0.990
(0.987, 0.993)

0.971
(0.962, 0.980)

0.984
(0.977, 0.991)

PPV
(95% CI)

0.732
(0.717, 0.747)

0.783
(0.769, 0.797)

0.543
(0.517, 0.569)

0.649
(0.624, 0.674)

NPV
(95% CI)

0.969
(0.963, 0.975)

0.958
(0.951, 0.965)

0.962
(0.952, 0.972)

0.951
(0.940, 0.962)

PLR
(95% CI)

23.808
(23.802, 23.814)

18.728
(18.721, 18.735)

14.323
(14.315, 14.331)

13.142
(13.131, 
13.153)

NIR
(95% CI)

0.042
(-0.017, 0.101)

0.053
(-0.014, 0.120)

0.070
(0.006, 0.134)

0.076
(0, 0.152)

Accuracy
(95% CI)

0.954
(0.947, 0.961)

0.951
(0.944, 0.958)

0.937
(0.924, 0.950)

0.938
(0.925, 0.951)

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood ratio; CI, confidence
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demonstrated the essential role of kdpD in the pathogen’s 
survival within the host, and a mutant strain with kdpDE 
exhibited a hyper-virulent phenotype in SCID mice [19, 
20]. The expression of the trcR-trcS two-component 

system is induced upon the adaptation of the organism 
to the intracellular milieu and potentially during extracel-
lular replication of M. tuberculosis within the liquefac-
tion cavity after rupture of the wall granuloma [21]. Our 

Fig. 2  The effect of two-component system gene mutations on various lineages. (A) The effect of missense mutations in two-component system genes 
on various lineages. (B) The effect of synonymous mutations in two-component system genes on various lineages
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results revealed that multiple SNPs in trcS increased the 
risk of transmission of M. tuberculosis. The trcS gene in 
M. tuberculosis serves multiple functions, acting as a reg-
ulatory gene encoding a sensor kinase protein involved 
in the two-component signal transduction system. This 
system enables the bacterium to detect and respond to 
environmental changes. Moreover, studies have demon-
strated that deletion of the trcS gene in this bacterium 
reduces its survival rate in mouse lungs and increases 
host clearance [22, 23]. Furthermore, mutations in the 
trcS gene may be associated with drug resistance in M. 
tuberculosis by regulating intracellular metabolic and vir-
ulence processes.

Moreover, our research also elucidates the association 
between SNPs in other two-component system genes 
and the dissemination of M.tuberculosis. These genetic 
mutations have the potential to alter diverse physiologi-
cal functions of the bacterium that are intricately linked 
to its transmission. Mutations of these gene may change 
various physiological functions of the bacterium related 
to their transmission. It is worth noting that although we 
have confirmed the impact of these SNPs on the trans-
mission of M. tuberculosis, further research is still needed 
to determine how these mutations affect the function of 
the TCSs and the mechanism through which they influ-
ence the transmission of M. tuberculosis. Additionally, it 
should be noted that factors influencing the transmission 
of M. tuberculosis are highly complex, involving not only 
genetic mutations but also various aspects such as the 
environment, host immune system, and genotype. There-
fore, in formulating prevention and treatment strategies, 
it is necessary to comprehensively consider all possible 
factors, objectively evaluate their contributions to disease 
transmission, and thus more effectively control and pre-
vent the occurrence and transmission of tuberculosis.

Conclusion
The two-component system is a widely distributed signal 
transduction system in bacteria that regulates a variety 
of biological processes, including metabolism, virulence, 
pathogenicity, and adaptation. The SNPs in TCSs gene 
increase the risk of transmission of M.tuberculosis, which 
reflects the important role of TCSs in the life activities of 
M.tuberculosis. Therefore, in-depth research on the func-
tion and regulatory mechanism of these genes can help 
us better understand the molecular biology characteris-
tics of M. tuberculosis, providing new ideas and methods 
for the prevention and control of tuberculosis. In sum-
mary, this study provides new clues for us to understand 
the transmission mechanism of M. tuberculosis and also 
serves as a reference for related research. In the future, 
we will further deepen research in this area to provide 
more effective means for controlling tuberculosis.

Method
Sample Collection
A total of 1550  M. tuberculosis culture-positive cases 
were collected from two medical institutions from 
2011 to 2018 in China: Shandong Public Health Clini-
cal Research Center (SPHCC) and Weifang Respiratory 
Clinical Hospital (WRCH). The study did not include 
M. tuberculosis culture-positive cases who had previ-
ously undergone evaluation and were subsequently being 
treated.

DNA extraction and sequencing
Genomic DNA was extracted from 1447 strains using 
Cetyltrimethylammonium Bromide (CTAB) and 
underwent quality control (QC). In total, 103 strains 
of M.tuberculosis were excluded because of improper 
handling during the DNA extraction and poor qual-
ity of extracted DNA. The genomes were sequenced 
using the Illumina HiSeq 4000 system, and the result-
ing sequence data were deposited in the National Center 
for Biotechnology Information (NCBI) under BioPro-
ject PRJNA1002108. In addition, this study included 
13,267 strains of M. tuberculosis from 52 countries and 
18 regions around the world [24–32]. We utilized BWA-
MEM (version 0.7.17-r1188) to accurately map the ref-
erence genome of the standard isolate M. tuberculosis 
H37Rv. Our analysis only included samples exhibiting a 
coverage rate of 98% or higher and a minimum depth of 
at least 20% [33]. Finally, a total of 13,531 genomes were 
analyzed, please refer to Additional file 2: Tables S1-S2 
for the specific sample numbers.

Single nucleotide polymorphism (SNP) analysis
After variant calling using Samclip (version 0.4.0) and 
SAMtools (version 1.15), we applied further filtering to 
the resulting variants via Free Bayes (version 1.3.2) and 
Bcftools (version 1.15.1). We excluded Single Nucleotide 
Polymorphisms (SNPs) located within repeat regions, 
including polymorphic GC-rich sequences (PE/PPE 
genes) and direct repeat SNPs, as well as repeat bases 
identified through the use of Tandem Repeat Finder (ver-
sion 4.09) and RepeatMask (version 4.1.2-P1) [34, 35]. 
Finally, SNP annotation was conducted via SnpEff v 4.1 l, 
with the resulting output obtained utilizing the Python 
programming language [36].

Phylogenetic analysis
The strains were classified into different lineages accord-
ing to Coll et al. [37](Additional file 2: Tables S1-S2). 
Construction of the maximum likelihood phylogenetic 
tree was conducted through the IQ-TREE software pack-
age (version 1.6.12), utilizing the JC nucleotide substitu-
tion model and gamma model of rate heterogeneity, with 
100 bootstrap replicates included [38]. Mycobacterium 
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canettii CIPT140010059 was deemed to be an outlier. 
The resultant phylogenetic tree was visualized through 
the utilization of iTOL (https://itol.embl.de/) (Fig.  3, 
Additional file 1: Figs. S1–S7).

Propagation analysis
Cluster analysis was utilized to investigate the influence 
of two-component system gene mutations on the trans-
mission of M. tuberculosis [39]. Based on a previous study 
[40], we applied clustering to define transmission clusters 
and used a threshold of less than 25 SNPs. In addition, 
we chose the threshold of 25 SNPs because our isolates 
were spread in terms of location and time (1991–2019) 
and because we were probably missing several interme-
diary isolates (and cases) in our collection. (Additional 
file 2: Tables S1-S2). Additionally, according to the clas-
sification of transmission clusters by scholars, we also 
divided transmission clusters into large, medium, or 
small (large, over 75th percentile; medium, between 25th 
and 75th percentile; and small, under 25th percentile) 
[14]. To enhance understanding of the global distribution 
patterns and conduct an extensive analysis of the trans-
mission dynamics of M.tuberculosis strains, we classified 
them into cross-country and within-country clusters. 
Furthermore, we categorized the M. tuberculosis strains 
into cross-regional and within-regional clusters based on 
geographic location utilizing the United Nations stan-
dard regions (UN M.49).

Acquisition of two-component system genes
A total of 45 two-component system genes were obtained 
according to NCBI and literature search [2, 7, 41]. Python 

was utilized to detect mutations in genes associated with 
TCSs (Additional file 2: Table S3).

Modeling and statistical analysis
Prediction models including gradient boosting decision 
tree and random forest were established by machine 
learning using the Scikit-learn Python package. We ran-
domly divided all samples into training and test sets at a 
ratio of 7:3. Each of the models was evaluated with the 
metrics of Kappa, sensitivity, specificity, accuracy, posi-
tive predictive value (PPV), negative predictive value 
(NPV), positive likelihood ratio (PLR), negative likeli-
hood ratio (NLR) and area under curve (AUC) [42]. After 
the model was fitted, we evaluated the importance of the 
input variables on the model. To enhance the precision 
of predicting risk factors, we utilized the score to assess 
the influence of each input feature of the models, and 
take the intersection of both conditions and obtain the 
top-performing accessions as the important features [43, 
44]. Subsequently, we established the generalized linear 
mixed model by using the statsmodels.api Python pack-
age to further analyze the important features and obtain 
the final influencing factors. All statistical analyses were 
performed using SPSS 26.0. All statistical tests were two-
tailed, and P values less than 0.05 were considered statis-
tically significant.
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Fig. 3  The phylogenetic tree analysis of lineage2.2. (A) the phylogenetic tree analysis of lineage2.2.1. (B) the phylogenetic tree analysis of lineage2.2.2
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