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Abstract
Background High oncogene expression in cancer cells is a major cause of rapid tumor progression and drug 
resistance. Recent cancer genome research has shown that oncogenes as well as regulatory elements can 
be amplified in the form of extrachromosomal DNA (ecDNA) or subsequently integrated into chromosomes 
as homogeneously staining regions (HSRs). These genome-level variants lead to the overexpression of the 
corresponding oncogenes, resulting in poor prognosis. Most existing detection methods identify ecDNA using whole 
genome sequencing (WGS) data. However, these techniques usually detect many false positive regions owing to 
chromosomal DNA interference.

Results In the present study, an algorithm called “ATACAmp” that can identify ecDNA/HSRs in tumor genomes using 
ATAC-seq data has been described. High chromatin accessibility, one of the characteristics of ecDNA, makes ATAC-seq 
naturally enriched in ecDNA and reduces chromosomal DNA interference. The algorithm was validated using ATAC-
seq data from cell lines that have been experimentally determined to contain ecDNA regions. ATACAmp accurately 
identified the majority of validated ecDNA regions. AmpliconArchitect, the widely used ecDNA detecting tool, was 
used to detect ecDNA regions based on the WGS data of the same cell lines. Additionally, the Circle-finder software, 
another tool that utilizes ATAC-seq data, was assessed. The results showed that ATACAmp exhibited higher accuracy 
than AmpliconArchitect and Circle-finder. Moreover, ATACAmp supported the analysis of single-cell ATAC-seq data, 
which linked ecDNA to specific cells.

Conclusions ATACAmp, written in Python, is freely available on GitHub under the MIT license: https://github.com/
chsmiss/ATAC-amp. Using ATAC-seq data, ATACAmp offers a novel analytical approach that is distinct from the 
conventional use of WGS data. Thus, this method has the potential to reduce the cost and technical complexity 
associated ecDNA analysis.
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Background
Extrachromosomal DNA (ecDNA), a specific type of cir-
cular DNA, is found in tumor cells [1–3]. EcDNAs com-
prise DNA fragments ranging from hundreds of kilobases 
to several megabases that originate from one or multiple 
chromosomal regions [4]. Of note, ecDNAs lack a centro-
mere and often harbor sequences that confer cell survival 
advantages [5]. Through unequal division, ecDNAs can 
rapidly accumulate in daughter cells (Fig. 1A), and under 
unfavorable conditions, they can integrate into chromo-
somes and form homogeneously staining regions (HSRs) 
[6]. An HSR is a tumor-specific structure that contains 
areas that display uniform brightness after Giemsa 

staining, rather than the bright and dark interlacing 
regions of normal chromosomal regions. These regions 
have been shown to amplify oncogenes [7].

EcDNA/HSR detection is challenging owing to its 
large size and complex composition. The technical limi-
tations of DNA extraction make it difficult to directly 
extract complete DNA fragments sized > 100 Kb. More-
over, unlike gene copy number detection, ecDNA/HSR 
detection algorithms must consider the synergistic 
amplification of different fragments rather than a focal 
amplicon. Some algorithms detect ecDNA/HSR using 
whole genome sequencing (WGS) data. For example, 
AmpliconArchitect (AA) has been specifically designed 

Fig. 1 Schema of ecDNA/HSR formation and the pipeline of ATACAmp. (A) Fragments on the chromosome form ecDNA, which is then reintegrated into 
the chromosome to form HSR. (B) The ATACAmp analysis starts from the BAM file, extracts and processes abnormal reads to determine the breakpoint 
position, and then considers the sequencing depth near the breakpoint to determine the amplification region

 



Page 3 of 10Cheng et al. BMC Genomics          (2023) 24:678 

to detect large extrachromosomal circular DNA in tumor 
cells using short-read WGS data [8]. However, AA pre-
diction results often include false-positive regions, neces-
sitating manual annotation and selection to obtain a 
more accurate ecDNA sequence. Experimental methods 
are now available to obtain information about ecDNA. 
CRISPR-Cas can accurately determine the sequence and 
epigenetic modifications of ecDNA via the following 
steps: ecDNA cutting using the CRISPR-cas9 method, 
fragment separation via pulsed-field electrophoresis, and 
sequencing with second- or third-generation sequenc-
ing methods [9]. However, CRISPR-Cas requires prior 
knowledge of the ecDNA sequence and a complex exper-
imental protocol. Therefore, more effective methods are 
needed to study ecDNA/HSRs.

Although ATAC-seq was designed to detect open chro-
matin regions, it is suitable for identifying ecDNA/HSRs 
[10]. Many studies have found that chromatin accessibil-
ity in ecDNA/HSRs is higher than that in normal chro-
mosomal regions [11, 12]. This may be attributed to 
lower compression in ecDNA/HSRs as they are formed 
outside of chromosomes. The accumulation of intracel-
lular ecDNA is detected as an increased copy number of 
the corresponding genomic segments in WGS data and 
as a contiguous high signal in ATAC-seq data. In recent 
years, the scATAC-seq technology has emerged, facili-
tating chromatin accessibility detection at the single-cell 
scale and expanding the existing knowledge on the het-
erogeneity of chromatin accessibility between cells [13]. 
ATAC-seq data is primarily used to study the accessi-
bility of genomic regions, despite ATAC-seq also being 
genome-wide DNA-seq data [14]. The ATAC-seq of tis-
sues or single cells can provide information about some 
types of genomic variation in the sample.

Although circle-hunter, a pipeline that helps pre-
dict ecDNA using ATAC-seq data, has appeared in the 
recent past, but it cannot be used for single-cell ATAC-
seq data [15]. Therefore, a new tool, called ATACAmp, 
was developed herein for detecting ecDNA/HSRs. ATA-
CAmp exploits the unique characteristics of ecDNA/
HSRs in ATAC-seq data and enables the detection of 
these genomic variations in a more streamlined and effi-
cient manner (Fig.  1B). By taking the advantage of the 
potential of ATAC-seq data in genomic variant detec-
tion, researchers can gain a deeper understanding of the 
complex interplay between chromatin accessibility and 
genomic structure in the context of certain diseases, such 
as cancer.

Implementation
ATACAmp is currently supported on the Linux system 
only, as it relies on the availability of the Pysam pack-
age. Before using ATACAmp, users need to install the 
Python modules of Pysam, Multiprocessing, Argparse, 

Subprocess, and Interval. Users can obtain informa-
tion about the relevant parameter settings using the “-h” 
parameter in the ATACAmp program.

To use ATACAmp, users should first pre-process their 
sequencing data, which involves quality control, align-
ment, sorting, and filtering. High-quality reads are criti-
cal for obtaining reliable results. Once the sorted BAM 
file and the corresponding BAI index are obtained, users 
can operate ATACAmp. Users can optionally utilize soft-
ware such as Samblaster to identify abnormal reads, and 
ATACAmp permits users to initiate analysis from differ-
ent stages. This can be specified using the “mode” param-
eter, which indicates whether to start from the BAM file 
or from abnormal reads.

Users have the option to choose between single-cell 
mode and bulk mode. The single-cell mode provides the 
barcodes of supported cells for each ecDNA/HSR region. 
ATACAmp employs multiprocessing to accelerate cal-
culations, and users can specify the number of cores to 
be used via the “threads” parameter. It is recommended 
to set the thread parameter to 24 to attain the maximum 
processing speed.

Users can upload a corresponding GTF file for anno-
tating the amplification region. The threshold value for 
detecting abnormal read segments is user-defined and 
recommended to be set at 1000. The threshold value can 
be adjusted as per the specific library preparation meth-
ods. While a lower threshold value will generally yield 
more abnormal read segments, necessitating additional 
subsequent calculations, an excessively high threshold 
value may lead to the loss of some abnormal read seg-
ment information. A minor adjustment to the threshold 
value, however, will not significantly affect the results.

Users have the flexibility to set the interval size for the 
extended amplification region introduced in the Methods 
section; the default interval size is set to 1000. A smaller 
interval can detect finer amplification regions but will 
take longer to analyze. After testing, it was determined 
that an interval size of 1000 bp is optimal.

During the run, ATACAmp provides updates on the 
progress and time taken for the analysis. For bulk data, 
executing a BAM file with 100 million lines(about 2.5Gb) 
typically takes approximately 30 min. For single-cell data, 
the processing time is approximately 1.5-fold longer than 
that for bulk data with the same amount of data.

The results of the run comprise multiple files, including 
a BAM file that contains abnormal read segments and a 
file that shows the breakpoint locations, with final infor-
mation on the amplification regions. These files are pro-
vided to enable users to customize their analysis.
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Results
ATACAmp results for bulk-cell ATAC-seq dataset
In samples with ecDNA or HSRs, variant structures will 
be expressed as continuous high signal areas in ATAC-
seq analysis (Fig.  2A). The ATAC-seq MACS results of 
HSRs in the COLO320HSR cell line and ecDNA regions 
in the COLO320DM cell line indicated that these regions 
had high chromatin accessibility. Of note, such contigu-
ous open regions that span millions of base pairs are not 
observed in normal cells [4]. Bulk ATAC-seq data for 
COLO320DM, SNU16, and PC3 cells were then exam-
ined (Table S1). The fragment length threshold used 
to identify discordant reads was set to 1000 bp, and the 
range of merging neighboring breakpoints was set to 
1000  bp on both sides. All other parameters were set 
to default. The detected amplified regions and affected 
genes are shown in supplementary Table S2.

Figure  2B shows that ATACAmp detected the high-
est scoring co-amplified regions in COLO320DM. 
“Co-amplified” refers to a region of the genome that 
undergoes simultaneous amplification because of some 
cellular event or mechanism, which in this paper is a gen-
eral term for ecDNA and HSRs. In the current study, co-
amplified regions were genomic regions that amplified 
together with other regions, suggesting a common mech-
anism or cause for their amplification. The score is deter-
mined by abnormal reads in these regions. In general, 
the higher is the abnormal mapping of reads, the higher 
is the score. Each node in the graph is an independent 
amplified region, and the connection between regions is 
determined via breakpoint pairs. All the interconnected 
regions have high sequencing depth and are therefore 
considered as co-amplified regions.

In the PC3 cell line, ATACAmp accurately identi-
fied all experimentally validated ecDNA/HSRs. In the 
COLO320DM and SNU16 cell lines, however, ATA-
CAmp detected 84.34% and 99.92% of the experimentally 
validated ecDNAs, respectively. These results indicate 
that ATACAmp has a high sensitivity (Table S3).

AA is currently the most accurate software for predict-
ing ecDNA and HSRs in tumor cells. WGS data have the 
advantage of containing the entire genome information, 
enabling AA to detect break-fusion-bridge and com-
plex rearrangements as well as predict ecDNA/HSRs. 
In ATAC-seq, the Tn5 transposase has difficulty insert-
ing itself into the condensed heterochromatin region, 
thereby reducing the interference of a large section of the 
regional sequence on the linear chromosome.

The accuracy and recall of three methods, i.e., AA, 
ATACAmp, and Circle-finder, were assessed using exper-
imentally validated ecDNA regions from three cell lines 
as reference standards [16]. The results, as depicted in 
Fig.  2C, indicated that AA, with WGS data, achieved 
a predicted recall of 1 for ecDNA regions. By contrast, 

ATACAmp exhibited a slightly lower recall of 0.948 using 
ATAC-seq data, indicating a potentially small number 
of missed amplified regions. Nevertheless, this still rep-
resents a high score. Of note, ATACAmp demonstrated 
significantly higher precision than AA. As a result, the 
final combined F1 score of ATACAmp surpassed that of 
AA. As mentioned above, the intrinsic characteristics of 
ecDNA because of its open nature render ATAC-seq data 
more suitable for the precise identification of ecDNA 
regions. Meanwhile, the results also showed that Circle-
finder did not detect experimentally validated ecDNA 
regions in both PC3 and COLO320DM cells and only 
partially predicted them in SNU16 cells. However, there 
were significant false positive regions, which almost 
masked the real ecDNA region information, which can 
be attributed to the Circle-finder algorithm being based 
on split reads without considering the copy number. We 
believe that Circle-finder is more suitable for eccDNA 
detection of a few hundred bp to a few Kb.

These results support the rationale that compared with 
experimental data, AA identifies a larger region of ampli-
fication in the same cell line, including false positives not 
present on the ecDNA (Fig.  2D and E). By comparison, 
the ecDNA regions from ATACAmp prediction overlap 
more with experimental validation data and annotate all 
oncogenes.

ATACAmp results for single-cell ATAC-seq dataset
The ATAC-seq technology has been widely used for sin-
gle cells, but few tools are available to analyze their data. 
ATACAmp supports the analysis of single-cell ATAC-seq 
data, thereby offering researchers with more options for 
subsequent analysis, including identifying and annotat-
ing ecDNAs to cell populations. Of note, ATACAmp 
can extract the barcode of the supporting cells with the 
amplified region.

Single-cell ATAC-seq data for COLO320DM cells were 
examined (Table 1). The fragment length threshold used 
to identify discordant reads was set to 1000 bp, and the 
range of merging neighboring breakpoints was set to 
1000 bp on both sides.

ATACAmp extracted the barcode of supporting cells 
containing the amplified regions obtained from the ATA-
CAmp assay of COLO320DM cells. The corresponding 
cells in the scATAC data of COLO320DM with MYC 
gene expression were labeled, and the data are displayed 
in Fig.  3A. The distribution of the MYC gene scores is 
displayed in different colors, with cells carrying ecDNA 
containing MYC having higher MYC scores (Fig. 3B C). 
This suggests that cells in the COLO320DM cell line har-
bor different ecDNAs and that ATACAmp can identify 
cells that carry a certain co-amplified region.
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Fig. 2 ATAC-seq features of ecDNA/HSR and performance of ATACAmp. (A) ATAC-seq profile of ecDNA regions in the COLO320DM and COLO320HSR cell 
line. (The upper two tracks are ecDNA-forming regions in the COLO320DM cell line and the lower two tracks are HSR-forming regions in the COLO320HSR 
cell line) (B) The links of the highest scoring co-amplified regions in the COLO320DM cell line. (C) The performances of different ecDNA calling softwares. 
(D) Comparison of total length of ecDNA detected by different software. (E) Heatmap of Sequencing Depths for False-Positive and Validated AA Regions
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Discussion
Current research suggests that ecDNA is derived from 
chromosomal DNA, although the exact mechanism of 
its formation remains unclear [4]. It may either result 
from a continuous segment of chromosome breaking and 
cyclizing to form circular DNA or from chromothripsis 
or other events that produce various DNA fragments that 
are subsequently joined and cyclized to form circular 
DNA [17, 18]. The latter is more common in tumor cells 
and likely contains a higher proportion of ecDNA, as it is 
too large to be formed from a single region and because 
≥ 100 kb linear DNA is prone to breakage.

In accordance with this property, structural variations 
are frequently identified by comparing WGS data to the 
reference genome data. ecDNA, formed by a specific 
region, manifests in the comparison results as a read 
segment that spans two regions. This suggests that the 
read segment contains breakpoints, whereas the other 
read segment of the pair is located near the junction of 
the circular DNA. Owing to the substantial physical dis-
tance between these regions on the reference genome, 
the two read segments of such read segment pairs have 
abnormal distances. AA can detect ecDNA from WGS 
data, as it also uses the whole genome copy number 
variation information to determine amplification regions 
based on considering abnormal read segments described 
above and includes structural variation integration to 

determine amplification types. However, because WGS 
data are subject to several interfering factors, the false-
positive regions obtained are large and need to be judged 
by a researcher with relevant experience. In the pres-
ent study, ATACAmp was developed to predict ecDNA/
HSRs in ATAC-seq data by taking advantage of the open 
DNA feature of the ecDNA/HSR itself and demonstrated 
its similar sensitivity and lower false-positive rate than 
AA with regard to experimental validation data. Users 
can adjust the parameters as needed to get the desired 
results, such as modifying the length threshold for deter-
mining discordant reads, initial interval size for detect-
ing the sequencing depth, and step size of each moving 
interval.

ATACAmp has good analysis capabilities for single-cell 
data, and cell populations harboring different ecDNA 
can be obtained for subsequent analysis. The MYC gene 
was selected for analysis owing to its well-established 
role as an oncogene and its presence on the ecDNA of 
COLO320DM cells. Furthermore, other genes on ecDNA 
were randomly selected, and it was observed that all 
these genes exhibited increased expression in ecDNA-
positive cells (Figure S1, S2). These results are consistent 
with previous studies that showed gene amplification 
and high expression on ecDNA. Moreover, these find-
ings suggest the presence of heterogeneity in the ecDNA 
content among different cell lines. The use of ATACAmp 
can help researchers consolidate the scope of ecDNA 
investigations.

Conclusion
The current lack of research methods remains a sig-
nificant concern for researchers studying ecDNA. ATA-
CAmp, using ATAC-seq data, offers a novel analytical 
approach that is distinct from the conventional use of 
WGS data. This approach has the potential to reduce the 
cost and technical complexity associated with studying 
ecDNA. ATACAmp was validated in PC3, COLO320DM, 
and SNU16 cell lines where ecDNA sequences have been 
experimentally determined, and it showed a high recall 
similar to traditional predictions using WGS data, with a 
higher precision. The widespread adoption of single-cell 
ATAC-seq, compared with single-cell genomes, holds 
promise for investigating ecDNA within smaller cell 
populations.

Despite its advantages, ATACAmp has several limita-
tions. These include the lack of validation with simulated 
data and the need for further clinical sample testing. In 
addition, certain blacklisted regions of the genome are 
temporarily unfiltered, possibly resulting in the identi-
fication of false-positive regions. In the future, black-
listed regions and conserved chromatin open regions will 
be integrated into ATACAmp to improve its accuracy. 

Table 1 Composition of ecDNA detected in single cell ATAC 
data from COLO320DM cell line
Chr_
name

Start_site End_site Length Gene

16 33,344,230 33,431,230 87,000 TP53TG3,TP53TG3C

LOC105369266

TP53TG3F,TP53TG3E

TP53TG3B,LOC102723655

8 130,277,390 130,287,390 10,000 ASAP1

8 128,206,232 128,325,232 119,000

8 127,997,937 128,120,937 123,000 MIR1207,PVT1

MIR1206

16 33,293,089 33,296,089 3000

6 256,190 383,190 127,000 DUSP22

8 128,121,842 128,204,842 83,000 MIR1208

16 32,296,519 32,301,519 5000

8 127,816,213 127,993,213 177,000 PVT1,TMEM75,MIR1205

16 32,349,447 32,371,447 22,000

8 135,017,057 135,020,057 3000

16 33,239,097 33,242,097 3000

8 127,437,402 127,813,402 376,000 PVT1,MYC,CASC11,CASC8

MIR1204

22 24,665,296 24,668,296 3000

8 128,332,468 128,392,468 60,000

15 20,459,784 20,462,784 3000 HERC2P3

8 128,393,562 129,010,562 617,000 LINC00976,LINC00824

13 28,381,083 28,555,083 174,000 FLT1
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Fig. 3 MYC expression heterogeneity in the colo320dm cell line. (A)The distributions of ecDNA positive cells in two-dimensional UMAP space. (B) MYC 
accessibility scores were visualized on the ATAC–seq UMAP, showing cell-level heterogeneity in MYC ATAC-seq signals in COLO320DM. (C) Differences in 
accessibility scores of MYC gene between ecDNA positive and negative cells
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Furthermore, more data will be gathered and analyzed to 
optimize this tool for improved performance.

Methods
Data collection
The bulk ATAC-seq and WGS data of PC3, 
COLO320DM, and SNU16 cells and single cell ATAC-
seq data of COLO320DM cells were collected with the 
source and ID numbers (Table S1). These cell lines have 
been validated for ecDNA regions (Table S2) [3, 9, 19].

Data pre-processing
The sequence files in the fastq format were pre-processed 
and indexed using fastp [20], BWA [21], and SAMtools 
[22].

ATACAmp pipeline
The ATACAmp workflow is shown in Fig. 1B and com-
prises the following steps.

Extracting abnormal reads
ATACAmp first transforms the BAM file obtained from 
the data pre-processing step into a Pysam object. Each 
read pair is interpreted to find the following abnormal 
reads.

(1) Split reads: Several parts of a read segment map to 
different reference genome regions, indicating that it may 
contain circular DNA breakpoints.

(2) Discordant reads: In paired-end sequencing, the 
sample DNA is first broken into fragments that are sev-
eral hundred base-pairs in length and then sequenced 
from both ends of a fragment. In general, the length of 
the fragments will be in a limited range. Read pairs that 
map to a larger than normal region may indicate that 
certain structural variations, such as genomic rearrange-
ments, have occurred in that region. For extrachromo-
somal circular DNA, the sequencing of fragments that 
covers the breakpoint from both ends can also result in 
abnormal intervals between paired reads. ATACAmp 
outputs these two types of reads into two types of BAM 
files.

Handling abnormal read segments
Based on the principle described above, split reads may 
contain circular DNA breakpoints, which can help locate 
the breakpoints. Discordant reads may also contain cir-
cular DNA breakpoints between them, thus containing 
a region that may contain breakpoints. ATACAmp pro-
cesses the split and discordant reads obtained in the pre-
vious step separately as follows.

(1) In split reads, the circular DNA breakpoints include 
two positions on the reference genome. Based on the 
cigar value of a line in split BAM and the starting posi-
tion compared with the reference genome, the breakpoint 

position on its side can be judged. BWA, when generat-
ing the comparison results, will compare two regions for 
a read segment in the “SA” tag, providing the information 
of the other comparison result. Using this information, 
the position of the other breakpoint side can be obtained 
from the “SA” tag and the orientation of the sequences 
on both breakpoint sides can be calculated. ATACAmp 
constructs a dictionary data structure with the chromo-
some and breakpoint position to save this information, 
and the breakpoint at the same position increases its sup-
port number, which can be a type of evidence of its real 
existence.

(2) For discordant reads, although the exact breakpoint 
position cannot be obtained, the number of discordant 
reads is much higher than that of split reads because it is 
not limited by the sequencing read length. For each read 
segment of an abnormal read segment pair, an interval of 
500  bp upstream and downstream is constructed using 
the start site of their mapping to the reference genome. 
Once the construction is finished for all abnormal read 
segment pairs, any pairs wherein both segments are in 
the same interval are merged to create a new interval. 
This new interval is then used to move forward. After 
iteration, the construction of genome-wide region break-
point pairs is complete, finally extracting the results to a 
file.

Finding amplification regions containing breakpoints
Because of the higher chromatin accessibility on circular 
DNA and multiple copies of circular DNA within the cell, 
ecDNA sequences should behave as contiguous regions 
of higher sequencing depth on ATAC-seq data. There-
fore, ATACAmp was used to analyze the breakpoint 
pair regions identified from the abnormal read segments 
combined with their sequencing depths.

(1) First, the average sequencing depth is estimated 
for the whole genome using the Pysam package and the 
original BAM file; the subsequent threshold for deter-
mining whether to amplify is the “covt”. The breakpoint 
pairs identified from the discordant reads in the previous 
step are used as input and the breakpoint pairs are repre-
sented as an interval at both positions at this point. For 
this interval, the midpoint value is considered, and with 
this position as the starting point, the coverage upstream 
and downstream is slide-checked at 1000-bp intervals 
until both the total average coverage and average cover-
age of the new window are lower than the set threshold 
(covt), thereby completing the analysis of the continu-
ous amplification region. These amplification regions are 
numbered, and the amplification region and length of the 
amplification region where each breakpoint position is 
located are marked in the breakpoint pair information. 
The breakpoint pairs where the amplification region is 
< 3000 are excluded.
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(2) For the exact breakpoint location obtained from 
split reads, whether it is on the amplification region 
found in (1) is first determined. If so, it is marked directly, 
and if not, the same detection method as used in (1) is 
employed to find the amplification region where the 
breakpoint is located. If the amplification region length 
meets the condition, it is added to the breakpoint pair 
information obtained in (1).

(3) (1) and (2) breakpoint pairs are merged with the 
same amplification region at both locations in the break-
point file.

Building a genome-wide collaborative amplification map
Using the above steps, ATACAmp obtains the amplifi-
cation regions containing breakpoints across the whole 
genome. These regions are then used as nodes in a graph 
structure and the relationships between the break-
point pairs form the edges. ATACAmp uses the Net-
workx package [23] to construct the graph structure and 
extracts different connected graphs within it, i.e., the co-
amplified regions interconnected via breakpoints, using 
the graph theory algorithm of Networkx. For each con-
nected graph, the loop structure may indicate that these 
structures are connected to form a circular DNA. If loops 
exist, ATACAmp outputs the loop nodes, identifies the 
maximum circle available to the user, and provides a 
visual structure of this connected graph via the Matplot-
lib module.

Annotating amplification region
ATACAmp employs an embedded functionality to anno-
tate the amplification regions by integrating user-pro-
vided annotation files in the GTF format. This process 
involves associating annotations to the amplification 
regions that overlap with the corresponding gene regions 
specified in the GTF file.

Extracting cellular barcode in single-cell mode
Cells with abnormal read segments originating from the 
breakpoints on the amplification region were collected. 
Then, each cell was associated with the specific break-
points on the amplification region that corresponded to 
its abnormal read segments.

Single-cell ATAC clustering and labeling
A custom reference package for hg19 was established 
using cellranger-arc mkref. The ATAC-seq data were 
analyzed using ArchR [24]. Doublets were identified and 
excluded using ArchR. The ATAC-seq data dimensional-
ity was reduced using iterative latent semantic indexing 
(LSI) with the addIterativeLSI function in ArchR. To esti-
mate the accessibility gene scores, impute weights were 
incorporated using the addImputeWeights function and 
scores were visualized using the plotEmbedding function. 

Cell barcodes were used to mark the cells corresponding 
to the co-amplified region extracted from ATACAmp. 
The difference in MYC gene accessibility scores was cal-
culated for this group of cells and the remaining cells. 
P-values were calculated using the Wilcoxon test.

AmpliconAritect
The downloaded Fastq file is filtered for low quality 
Reads and bases using fastp software to remove splice 
sequences. Remove the Reads with length less than 50, 
and get the high quality Reads after filtering.

The reads from the previous step were compared to 
the reference genome hg38 using BWA software, and 
then converted into BAM files using the SAMtools view 
module. module to convert the generated SAM file into 
BAM format, and then use the SAMtools sort module 
to sort the reads according to their position in the refer-
ence genome. Use SAMtools sort module to sort the files 
according to the position of Reads comparison to the ref-
erence genome, and then get the sorted BAM files. Run 
PrepareAA in Docker and call AmpliconArchitect with 
default parameters.

Circle-finder
After fastp preprocessing of ATAC-seq data for PC3, 
COLO320DM, SNU16 cell lines, the sequencing files 
were compared to the reference genome hg38 using BWA 
mem to obtain SAM files, and subsequently these BAM 
files were run Circle_finder-pipeline-bwa-mem-sam-
blaster. sh with default parameters.
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