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Abstract 

Background Isabel Island is a Mexican volcanic island primarily composed of basaltic stones. It features a maar 
known as Laguna Fragatas, which is classified as a meromictic thalassohaline lake. The constant deposition of guano 
in this maar results in increased levels of phosphorus, nitrogen, and carbon. The aim of this study was to utilize 
high‑quality genomes from the genus Halomonas found in specialized databases as a reference for genome min‑
ing of moderately halophilic bacteria isolated from Laguna Fragatas. This research involved genomic comparisons 
employing phylogenetic, pangenomic, and metabolic‑inference approaches.

Results The Halomonas genus exhibited a large open pangenome, but several genes associated with salt metabo‑
lism and homeostatic regulation (ectABC and betABC), nitrogen intake through nitrate and nitrite transporters (nasA, 
and narGI), and phosphorus uptake (pstABCS) were shared among the Halomonas isolates.

Conclusions The isolated bacteria demonstrate consistent adaptation to high salt concentrations, and their nitrogen 
and phosphorus uptake mechanisms are highly optimized. This optimization is expected in an extremophile environ‑
ment characterized by minimal disturbances or abrupt seasonal variations. The primary significance of this study lies 
in the dearth of genomic information available for this saline and low‑disturbance environment. This makes it impor‑
tant for ecosystem conservation and enabling an exploration of its biotechnological potential. Additionally, the study 
presents the first two draft genomes of H. janggokensis.

Keywords Genome mining, Halomonas, Halophilic lake, Metabolic capacities, Mexican lake

Introduction
Isabel Island (or Isabela Island) has a volcanic origin and 
is mainly composed of basaltic stone [1]. Its geographic 
location is 21.846621 N, 105.883377 W, and it is consid-
ered a continental island, although it is located ~30 km 
from San Blas port in Nayarit, Mexico [2]. Within the 
exposed surface, there are numerous scattered craters 
that originated from ancient explosions [3]. The most 
remarkable and well-preserved one hosts a small circu-
lar (maar) lake called ’Lago Crater’ or ’Laguna Fragatas’ 
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[4]. This lake has a diameter of 160 m. It’s classified as a 
meromictic thalassohaline lake [5], with some fluctua-
tions in its water levels depending on the rains and less 
probably related to the communication through porous 
rocks with seawater [5]. The lake does not appear to have 
a direct connection to the ocean, as it does not display 
fluctuations corresponding to marine tides [6]. As with 
most thalassohaline lakes, the dominant ions found in 
Laguna Fragatas are sodium and chloride, similar to 
those found in the ocean [7]. The exposed rocks lining 
the walls of the lake have likely undergone alterations as 
a result of the annual fluctuations in water levels or due 
to the chemical effects of guano. Isabel Island is home 
to numerous marine birds, and their excrement, plays a 
significant role in the lake’s ecosystem. The guano serves 
as the primary source of carbon, nitrogen, and phospho-
rus for the lake community [8, 9]. Due to the significant 
presence of seabirds and the ecological importance of the 
island, the Mexican government declared Isabel Island a 
National Park (Ecological Reserve) in 1980 [10]. As part 
of an environmental management plan implemented in 
2006, human activities on the island were restricted to 
ecotourism and responsible fishing [11] . These measures 
further diminished the already minimal human impact 
on the lacustrine ecosystem of Laguna Fragatas, ensuring 
its preservation and protection.

Hypersaline environments have salt concentrations 
higher than regular seawater (greater than 0.6 M). Halo-
philes organisms are microorganisms capable of live in 
hypersaline environments and often require a high salt 
concentration for their growth [12]. In 1978, Kushner 
[13] proposed an internal division based on the amount 
of salt they required for proper development, categoriz-
ing them as slight, moderate, and extreme halophiles. 
These microorganisms can be found in all three domains 
of life and are distinguished by their requirement of high 
salinity conditions for growth [14, 15]. Halophiles, halo-
tolerant, and non-halophilic organisms can be closely 
related in phylogenetic trees. Despite this heterogene-
ity, some phylogenetically coherent groups include only 
halophile organisms. Archaea belonging to the class 
Halobacteria and Bacteria in the order Halanaerobiales, 
or family Halomonadaceae are examples of taxonomic 
groups comprising only these organisms. Halomonas is 
the type genus of the family Halomonadaceae, and H. 
elongata is the type species of the genus [16]. It is not 
monophyletic and comprises two separated phylogenetic 
groups containing many species [17]. It was proposed 
as a genus in 1980 [18]. The members of this genus have 
been used as models for studies of halophily. They grow 
better aerobically, but some species can grow using 
nitrate, nitrite, or fumarate as an electron acceptor in the 
presence of glucose [19]. Some of their representatives 

are highly halophilic bacteria [20], adapted to a wide 
range of saline concentrations [21]. Despite these com-
mon characteristics, the genus has other heterogeneous 
features shared among its members, and some of its spe-
cies have promising industrial uses, as the production of 
betaine, ectoine, polyhydroxyalkanoates, biosurfactants, 
among others and the bioremediation of industrial 
wastes [22]. The mining of complete genomes from iso-
lated halophile organisms allows for the identification 
of previously uncharacterized biosynthetic gene clus-
ters within the genomes of sequenced organisms [23] 
and facilitates the understanding of the environmen-
tal dynamics within those halophilic sites. This process 
involves not only the computational prediction of bio-
synthesis-related genes but also functional interrogation, 
ideally leading to a comprehensive understanding of the 
related chemistry [24].

The main relevance of this study lies in the lack of 
genomic information from organisms isolated from this 
low disturbed hypersaline environment. The analysis 
utilizes high-quality genomes from Halomonas strains 
deposited in the NCBI database, with KEGG database 
serving as a guide (due to its thorough curation, substan-
tial number of entries, and citations) for genome min-
ing of the moderate halophilic strains genomes (Hven4, 
Hven7, Hven9, Hven10, Hjan13, and Hjan14) isolated 
from Laguna Fragatas by Aguirre [25] between 2016 and 
2020 for this. This work also reports the first two draft 
genomes of strains from H. janggokensis.

Materials and methods
The genomic material used in this study came from bac-
teria isolated by Aguirre-Garrido et  al. [26] (H. venusta 
strains Hven4, Hven7, Hven9, H. janggokensis Hjan13, 
and Hjan14), H. venusta Hven10 was isolated specifically 
for this study. The genome from H. venusta DSM  4347 T 
was originally isolated from marine water in Hawaii, and 
its genome was assembled and annotated by Martinez-
Abarca, et al. [27]. Briefly, the strains were cultivated in 
LBS10 medium and were identified by 16S rRNA gene 
Sanger sequencing to [26].

Genome sequencing
Whole-genome shotgun sequencing of genomic DNA 
was done at the Integrated Microbiome Resource (IMR) 
from Dalhousie University, Canada. The libraries were 
prepared using the Illumina Nextera Flex Kit for the 
MiSeq platform (150 + 150 bp PE) [28]. The quality of the 
obtained sequences was checked using Fastqc 0.11.9 [29]. 
Reads with qualities lower than Phred 20 and lengths 
smaller than 280  bp were removed using Trimmomatic 
0.38 [30]. Genome assemblies were done with Unicycler 
[31] enhancing SPAdes [32]. The quality of the assembled 
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genomes was calculated using QUAST [33]. Contigs 
smaller than 1000 bp were discarded as they could lead 
to mismatched assemblies, and bigger ones were mapped 
to the same species reference genome against H. venusta 
DSM  4743  T, Hjan strains have no reference genome 
available using Geneious mapper [34]. Contigs were visu-
alized with Mauve to check the order of the genomes due 
to its capability to leverage synteny to facilitate the analy-
sis of genome alignments [35]. The genomes assembled 
and the database obtained were graphically represented 
utilizing BRIG [36].

Functional annotation and pangenome analysis
The assembled genomes from our isolates were com-
pared against a set of complete genomes of Halomonas 
spp. downloaded from the NCBI database [37] using 
KEGG (Kyoto Encyclopedia of Genes and Genomes) 
database as a guide for selecting genomes with known 
metabolic pathways (Table  1). The annotation of our 
assembled genomes was carried out using the NCBI’s 
Prokaryotic Genome Annotation Pipeline (PGAP) [38]. 
Annotated genomes were used as input to obtain the 
pangenome with Roary 3.13.0 [39, 40] and Anvio 7.1 
[41] by a Diamond alignment [42]. Anvi’o was also used 
for inferring the metabolic pathways modules compared 
against KEGG [43–45]. Data was organized, visualized, 
and plotted using R [46], Tidyverse [47], and ggplot2 
[48]. TRIBE-MCL algorithm, based on Markov cluster-
ing [49] for the assignment of proteins into families based 
on pre-computed sequence similarity information is the 
approach used by Roary and Orthofinder-tools package 
[39, 50], for calculating the relationships between true 
orthologs genes (OG). Roary makes a classification into 
core and accessory genomes. The core genes present in 
the genomes are further divided into hard-core (present 
in > 99% of genomes) and soft-core (present in 95–99% 
of genomes) genes. Additionally, there are shell genes 
(found in 15–95% of genomes) and cloud genes (present 
in less than 15% of genomes) that comprise the accessory 
genome [51]. For the phylogenetic analyses, ANI values 
were calculated using Anvi’o 7.1 [52] via pyANI [53, 54]. 
OrthoANI was used for comparing the genomic similar-
ity between the coding regions of the genomes [55].

Results and discussion
Genome sequencing of five Halomonas isolates
The six genomes got assembled successfully, getting 
complete genomes for Hven4, Hven7, Hven10, and 
Hven9; and draft genomes for Hjan13 and Hjan14. Qual-
ity parameters of all the assembled genomes are show in 
Table 1. N50 values are less than 5 contigs, and the gotten 
coverages oscillated from 56 × to 94x. The length of the 
genomes was around 4 Mb (Table 1), coinciding with the 

length of the Halomonas genomes, which fluctuated from 
3.5 to 5 Mb. The genomes are graphically represented in 
Supplementary Fig. 1 indicating the GC distribution and 
GC skew. The focus was specially directed towards H. 
janggokensis due to the lack of previous records regard-
ing the complete genome sequencing of the type strain 
 M24T [56] This study marks the initial stride in offering 
genomic information concerning H. janggokensis.

Phylogenetic analysis of Halomonas spp. reveals major 
subdivisions inside the genus
Halomonas genomes obtained and assembled were com-
pared against the highest quality genomes available in 
databases to assure the reliability of the comparations. 
This was particularly important to improve the genomic 
mining necessary for further comparisons. Members of 
the genus Halomonas exhibit moderate halophilicity. 
While certain individuals within this genus may employ 
metabolisms involving nitrate, nitrite, and other elec-
tron acceptors, the majority of their species demonstrate 
a chemoorganotrophic metabolism [15]. Conversely, in 
other saline lakes, microbial communities are dominated 
by other Arthrospira [57], Burkholderia [58], and Pseu-
doalteromonas [59]. Halomonas has also been identi-
fied as a significant source of carbohydrate-degrading 
enzymes from soda lakes in Ethiopia [60]. Sorokin et al. 
[61] suggest that several members of the genus Halo-
monas are the most metabolically diverse in soda lakes, 
in addition to having the capability to fully mineralize 
Glycine Betaine, which is one of the most widely used 
osmolytes by halophilic bacteria.

An average nucleotide identity (ANI) tree was con-
structed showing the phylogenetic relationship of Laguna 
Fragatas among the Halomonas selected genomes 
(Fig.  1a). The tree has two main clades with six differ-
ent phylogroups. Phylogroup I, include H. alkaliphila, 
H. campaniensis, all the group of H. venusta isolated in 
this study, and its type strain DSM  4743 T. Phylogroup II 
includes H. axialensis, H. meridiana, and H. piezotoler-
ans, and H. hydrothermalis well known for sharing the 
capability of living in high deep oceans dealing with high 
pressures in salty environments [62–64]. Phylogroup III 
relates H. olivaria, H. titanicae, H. sulfidaeris, and the 
pair of H. janggokensis isolated from Isabel Island Lake; 
in this comparison level, those isolates seem to be more 
related to each other than to H. venusta from phylogroup 
II. Phylogroup IV showed a closed relationship between 
H. campisalis, H. sulfidivorans, H. sulfidivorans, H. chro-
matireducens and H. sulfidoxydans strains reported to 
have metabolisms specialized in sulfur bioconversion 
[65]. Finally, H. huangheensis and did not fully integrate 
into its own phylogroup. In addition, the phylogenetic 
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tree showed distant species, including H. aestuari, H. bei-
meninsis, and H. elongata.

Within the phylogroup isolated from the crater, H. 
venusta strains Hven4 and Hven9 showed a closer rela-
tionship based on average nucleotide identity, comparing 
similarity between the coding regions of the genomes. 
Despite belonging to the same species, strains Hven9 and 
Hven10 have a slightly divergence. Hjan strains are com-
pletely related each other and the discrepancy against 
Hven strains is notable (Fig. 1b).

The Halomonas pangenome is large and open
This analysis defined the size of the pangenome increases 
steadily with the addition of each other genome suggest-
ing Halomonas has a large, open pangenome. This was 
based on the translated amino acid sequence comparison 
of the 24 analyzed genomes. The pangenome comprises 
100,043 genes gathered in 7479 orthogroups (OGs), 
representing 95% of the total. From those, 1565 OGs 
are present in the hard-core and 286 in the soft-core, a 
conservative portion of the pangenome. Meanwhile, the 
shell genome has 3162 OGs, and the cloud genome has 
2466 (Fig. 2a). Hven isolates and the type strain showed 
a robust core genome having slight changes located 
mainly in the cloud genome. Meanwhile, despite the 
lack of information, Hjan13 and Hjan14 showed specific 
metabolic signatures in the cloud genome and some con-
cordance between the core genomes (Fig. 2b). The iden-
tified signatures are depicted in the metabolic pathways 

involved in the biosynthesis of terpenes and isoprenoids 
with chain lengths ranging from 5 to 20 carbons, as illus-
trated in Fig. 7.

Halomonas genomes have substantial and diverse 
biosynthetic potential
The metabolic functions assigned according to the 
KEGG modules are shown in Fig. 3. There are differences 
between species and completeness of the modules show-
ing the calculated metabolic capabilities of each one; 
those capabilities are closely related to the developed 
mechanisms for adaptation to the environmental selec-
tion pressures present in their natural environments.

Osmotic regulation
Most Halomonas species in this study presented a simi-
lar osmotic regulation strategy mediated by producing 
compatible solutes, with betaine and ectoine being the 
main osmoprotectants (Fig.  4). These molecules can be 
synthesized de novo or captured from the environment 
[66, 67]. Despite the clusters of genes involved in ectoine 
synthesis, ectABC, and betaine, betABC, were present 
in most of the studied genomes. The ectoine transporta-
tion system TeaABC was also detected in the Halomonas 
genomes. This transporter allows cells to accumulate 
suitable solutes when they are available in their medium 
[68]. Halomonas strains from Isabel Island showed a 
salt-out strategy related to the presence of the ectABC 
and betABC gene cassettes. Although the biosynthesis of 

Fig. 1 a Phylogenetic tree of the 24 Halomonas strains studied whose genomes are available in metabolic pathways studies in KEGG. 
The tree was generated using the average nucleotide identity (ANI) values. It shows the phylogenetic relationships of the isolated strains 
among the Halomonas genus. b Average nucleotide sequence identity analysis shows them to belong to the same species. Identity percentages 
above 70% indicates affiliation to the same genus; and 95 to 100% identity to the same species
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compatible solutes is energetically more expensive than 
other strategies [69, 70], it is not a problem in an environ-
ment that has a significant amount of nutrients available 
for intake, allowing the members of the community to 
deal with the annual changes in salinity mediated by the 
evaporation of water levels [6].

Strains in this study that did not present ectABC nor 
betABC operons possessed the trk system that encodes 
Trk proteins responsible for K + ion intake. The Trk sys-
tem requires ATP and drives potassium uptake through 
the transmembrane electrochemical proton gradient 
[71, 72], a mechanism of adaptation to higher saline lev-
els [73]. Other mechanisms include the presence of the 
operon mrpABCDEF, related to adaptation to osmotic 
pressures and pH homeostasis by changing salinity and 
pH via the efflux of monovalent cations such as K + , 
Na + , and protons) [74, 75].

Nitrogen metabolism
Halomonas is known because of its variation in the 
inventory of denitrification genes [65]. Besides this, dis-
similatory nitrate reduction is widely spread among the 
genus (Fig.  5a). A set of genes required for denitrifica-
tion was found in the H. venusta strains, including mem-
brane-associated nitrate reductase genes narGH, nitrite 
reduction genes (either nirK or nirS) were not detected, 
but Isabel Island Halomonas have nirD presence, gene 
implied in that metabolism. The gene encoding periplas-
mic nitrate reductase napA and its chaperone napD were 
identified in some of the genomes. Assimilatory nitrate 
reduction is less present among the genus, but it could be 
detected. Nitrate reductase nasA was identified, but the 
genes encoding assimilatory nitrite reduction to ammo-
nia (NIT-6 and nirA) were not identified in the genome. 

The inorganic nitrogen compounds acquisition and regu-
lator gene amtB was present in only one of the genomes 
sets. The presence of this metabolic set can be related to 
the constant intake of seabird guano [1, 76]. Guano is rich 
in nitrogen in nitrate form [77]; the rapid action of the 
native bacteria explains the low levels of nitrate and high 
ammonia [6]. The presence of complete cassettes implied 
in dissimilatory nitrate reductions reinforces the impor-
tance of this compound for the metabolism of nitrogen in 
these domaining species (Fig. 5b).

Phosphate metabolism
The intake of phosphorus by many bacteria is mediated 
by an ABC–transport complex, Pst (phosphate-specific 
transport), coupled to PhoU (a phosphate-specific trans-
port system accessory protein) (Ma et al., 2016). It is an 
active transport system with a high affinity to Pi and has 
been well-characterized in Bacteria [78–80]. The Pst sys-
tem is coded by the pstSCAB-phoU operon [81]. This 
system was detected in 15 of the genomes preserving the 
cassette in almost all of them, demonstrating the impor-
tance of facilitating and controlling phosphorus intake, as 
it is a limiting element, the genes implied in the intake of 
phosphorous are shown in Table 2.

As with nitrogen cycling, the seabird feces in Isa-
bel Island form a eutrophic system with a large amount 
of available phosphorus in different forms. H. venusta 
strains have all the operon; meanwhile, H. janggokensis 
only some of the genes implied in the intake.

The utilization of phosphorus by specific members of 
the genus has been previously documented. Employ-
ing this capability for bioremediation to address highly 
eutrophicated waters, with a distinct emphasis on 
the removal of nitrogen and phosphorus, has yielded 

Fig. 2 The Pangenome of Halomonas genus. A A pie chart representation of the pangenome of 24 Halomonas strains is cited in Table 1. The 
chart shows the proportion of genes classified according to their presence within the genus. Core genes are found in > 99% of genomes, soft 
core genes are found in 95–99% of genomes, shell genome are found in 15–95%, and cloud genome are present in less than 15% of genomes. B 
Gene presence/absence matrix from pangenome analysis of 24 Halomonas strains. Each row shows each isolate’s gene profile and how conserved 
the Halomonas core genome is
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promising outcomes [82–84]. For this removal process, 
halophilic conditions and an alkaline pH (above 8.3) were 
necessary, which is consistent with Laguna Fragatas due 
to its alkaline pH [85].

Differences between H. venusta and H. janggokensis
Other notable differences between H. venusta and H. 
janggokensis are associated with dTDP-L-rhamnose 

biosynthesis (Fig.  6), previously identified in a strain 
of H. beimeninsis [72]. Although this compound has 
been linked to the motility of pathogens, neither of the 
two species (H. venusta or H. beimeninsis) has been 
reported as pathogenic. However, it is worth noting 
that dTDP-L-rhamnose can serve as a substrate for the 
synthesis of rhamnolipids, which have biosurfactant 
capabilities [86]. H. janggokensis strains show complete 

Fig. 3 Heatmap showing KEGG modules categories and subcategories found in the complete genomes. Each row represents one KEGG 
Orthologous module. Completeness higher than 0.70 is necessary to assume that the module has the number of genes to be considered 
functional. Darker squares show more density of genes
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cassettes related to C10-C20 isoprenoids, these com-
pounds have been synthetized using microorganisms 
because of higher efficiency and more environmen-
tal friendliness than traditional plant extraction and 
chemical synthesis methods, improving the imple-
mented for isoprenoid production in industry in the 
past few decades [87].

Hven4 and Hven10 show some interesting biosynthetic 
capabilities related to aromatics compounds (Fig. 7) like 
the genes related to the biotransformation of anthra-
nilate into catechol. These have been reported in E. coli 
expressing P. aeruginosa genes [88].

Conclusions
In many saline environments members of the genus 
Halomonas are considered minor components of 
the community [89, 90] the study of Laguna Fraga-
tas, an environment dominated by this family [26] 
gives a novel approach towards a non-typical hyper-
saline environment and its community dynamics; 
highlighting its capacity as a genetic, and biotechno-
logical reservoir. This report compares the relation-
ships between high-quality genomes of Halomonas 

and genomes of strains isolated from Laguna Fragatas 
using genomic, phylogenomic, pangenomic, and meta-
bolic approaches, revealing spread similarities in met-
abolic adaptations and differences related to aromatic 
compounds metabolisms, isoprenoid biochemistry and 
phosphorous intake that make the genus highly adapt-
able to halophilic environments.

This analysis allows us to conclude that several genes 
are associated with metabolism and homeostatic reg-
ulation shared by all the species of Halomonas stud-
ied. This fact, particularly in Laguna Fragatas isolates, 
indicates that the adaptation to high concentrations 
of salt, nitrogen, and phosphorus uptake are highly 
optimized, as could be expected from an extremo-
phile environment characterized by no disturbances 
or abrupt variations in the values of ecosystem param-
eters. Therefore, it is a result consistent with the pres-
ence of stable microbial communities, as has already 
been reported in other works for archaea, viruses, and 
bacteria [91, 92].

In addition, this study is the first to analyze complete 
genomes of isolated bacteria from Isabel Island maar. 
It provides exploratory results about its metabolic 

Fig. 4 Heatmap of gene presence (black) and absence (white) of genes associated with the metabolism and homeostatic regulation of salt (ectABC, 
betABC, and trkAHI), intake of nitrogen as nitrate and nitrite transporters (nasA, and narGI), phosphorus uptake (pstABCS, and phoBRU), transporters 
(mrpABCDEF) and production of polyhydroxyalkanoates (phaABC)
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Fig. 5 A Heatmap showing KEGG modules implied in the metabolism of nitrogen found in the complete genomes. Each row represents one KEGG 
Orthologous module. B Closeup to the nitrate metabolism among Halomonas isolated. Completeness higher than 0.70 is necessary to assume 
that the module has the number of genes to be considered entirely functional. Darker squares show more density of genes

Table 2 Genes implied in the phosphorous intake found in the strains Hven and Hjan

Gene Function Strain

phoU Phosphate‑specific transport system accessory protein PhoU Hven4, Hven7, Hven9, Hven10

pstS_3 Phosphate‑binding protein PstS precursor Hven4, Hven7, Hven9, Hven10

pstS_2 Phosphate‑binding protein PstS precursor Hven4, Hven7, Hven9, Hven10

pstS_1 Phosphate‑binding protein PstS precursor Hven7, Hven9, Hven10

pstC_1 Phosphate transport system permease protein PstC 1 Hven7, Hven9, Hven10

pstC_3 Phosphate transport system permease protein PstC Hven4, Hven7, Hven9, Hven10, Hjan13, Hjan14

pstA1 Phosphate transport system permease protein PstC Hven4, Hven7, Hven9, Hven10, Hjan13, Hjan14

pstA Phosphate transport system permease protein PstA Hven4, Hven7, Hven9, Hven10, Hjan13, Hjan14

pstB3 Phosphate import ATP‑binding protein PstB 3 Hven4, Hven7, Hven9, Hven10, Hjan13, Hjan14

pstB Phosphate import ATP‑binding protein PstB Hven4, Hven7, Hven9, Hven10
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potential, encouraging further preservation of the 
area and future research related to the production of 
metabolites of biotechnological interest, such as PHAs 
production. In this sense, the results of this study are 
consistent with other works where the relevance of the 
diversity of enzymes and metabolic pathways with bio-
technological interest is found in this type of extreme 
environment. Finally, this work also reports the first 
two draft genomes of H. janggokensis strains.
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