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Abstract 

Background The prevalence of obese children in China is increasing, which poses a great challenge to public 
health. Gut microbes play an important role in human gut health, and changes in gut status are closely related 
to obesity. However, how gut microbes contribute to obesity in children remains unclear. In our study, we performed 
shotgun metagenomic sequencing of feces from 23 obese children, 8 overweight children and 22 control children 
in Chengdu, Sichuan, China.

Results We observed a distinct difference in the gut microbiome of obese children and that of controls. Compared 
with the controls, bacterial pathogen Campylobacter rectus was significantly more abundant in obese children. In 
addition, functional annotation of microbial genes revealed that there might be gut inflammation in obese chil-
dren. The guts of overweight children might belong to the transition state between obese and control children due 
to a gradient in relative abundance of differentially abundant species. Finally, we compared the gut metagenomes 
of obese Chinese children and obese Mexican children and found that Trichuris trichiura was significantly more abun-
dant in the guts of obese Mexican children.

Conclusions Our results contribute to understanding the changes in the species and function of intestinal microbes 
in obese Chinese children.
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Background
Obesity has become a serious public health problem 
globally [1]. As the largest developing country and the 
second largest economy, China has the world’s larg-
est number of people with obesity or overweight. Based 
on the newly released 2020 Report on Chinese Resi-
dents Chronic Diseases and Nutrition, approximately 
50% of adults and 20% of school-age children are over-
weight or obese in China. Recent research has projected 
that by 2030, approximately 65.3% of adults and 31.8% 
of school-age children and adolescents in China could 
become overweight or obese if no effective interventions 
are implemented [2]. Childhood is a critical period for 
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growth and development. Now, more than ever before, 
it has become clear that obese children are prone to 
becoming obese adults, with higher chances of develop-
ing severe comorbidities, such as dyslipidemia, metabolic 
syndromes, cardiovascular diseases, and type 2 diabe-
tes [3, 4]. Thus, the precise and effective prevention and 
treatment of childhood obesity as early as possible has 
significant socioeconomic benefits and is also an impor-
tant starting point for China’s national population health 
strategy.

Childhood obesity is a multifactorial disease that can 
be linked to suboptimal macronutrient composition in 
the diet, together with insufficient physical activity. At 
present, an increasing number of studies have shown that 
the gut microbiome is closely related to obesity, and gut 
microbes can affect human metabolism by producing 
metabolites [5–7].

Previous studies have shown that the composition of 
gut microbes varies from population to population. For 
example, the abundance of Bacteroides was reduced in 
obese Chinese adults [8], while in obese European adults, 
Bacteroides belonging to the inflammatory enterotype 
had an increased abundance [9]. Asian-Pacific Islanders 
possess significantly less Odoribacteriaceae and Odori-
bacter than both Hispanics and Caucasians, which also 
indicated that gut microbes varies from population to 
population [10]. Therefore, it is necessary to conduct tar-
geted research on obese children in China since there are 
few gut metagenomic studies on obese children in China. 
In addition, many studies were limited to the application 
of 16S rRNA sequencing technology; while metagenomic 
sequencing can be used to provide a more comprehen-
sive and in-depth understanding of the gut microbiome 
and carry out more functional annotation of microbial 
genes.

In this study, we performed fecal metagenomic 
sequencing on 23 obese children, 22 controls, and 8 over-
weight children to analyze the differences in their gut 
microbiomes. In addition, we compared the difference in 
the gut microbiome between obese children from China 
and 10 obese children from Mexico. This study revealed 
the characteristics of gut microbes in obese children in 
Chengdu, Sichuan, China.

Results
Clinical parameters and sequencing data
A total of 23 obese children (9 males/14 females), 8 over-
weight children (4 males/4 females), and 22 control chil-
dren (10 males/12 females) were enrolled in the study 
from August 2021 to April 2022. The basic characteristics 
of the participants are presented in Table 1 and Table S1 
(Additional file  1). The average months of age of the 
controls, overweight and obese children was 68.4 ± 7.2, 

106.1 ± 42.4 and 108.9 ± 36.9 respectively. We compared 
the gut microbiome of children with different ages based 
on the principal coordinate analysis (PCoA) plot, which 
showed that samples could not be separated by age (Fig. 
S1a-l; PERMANOVA test of Bray–Curtis dissimilar-
ity; p > 0.05). The average BMI of controls was 14.2 ± 1.1 
(kg/m2), while that of the obese children and overweight 
children was 23.8 ± 3.3 (kg/m2) and 20.3 ± 2.2 (kg/m2), 
respectively.

We obtained 54,319,772 ± 16,935,752 raw reads by 
Illumina NovaSeq 6000. The Q20 was 97.2% ± 0.5%, and 
the Q30 was 92.1% ± 1.2%, indicating that the quality of 
sequencing was reliable.

The gut microbiome of obese children, overweight 
children and controls
We compared the gut microbiota of obese children, 
overweight children and controls to characterize differ-
ences in gut microbial composition. The gut microbiota 
of controls, overweight children and obese children was 
dominated by Firmicutes (42.5% ± 20.1%), Bacteroidetes 
(34.1% ± 22.72%), Actinobacteria (5.7% ± 15.8%) and Pro-
teobacteria (5.5% ± 8.2%) at the phylum level (Fig.  1a). 
Furthermore, we calculated the Firmicutes/Bacteroidetes 
(F/B) ratio of obese children (1.98 ± 3.18), overweight 
children (2.91 ± 2.84) and controls (3.46 ± 3.22) and found 
that the controls had a significantly higher F/B ratio than 
obese children (Fig. 1b; Mann–Whitney U test; p < 0.01). 
Since F/B ratio can also be influenced by age, we calcu-
lated the F/B ratio in different age groups and found that 
age had no significant effect on F/B ratio (Mann–Whit-
ney U test; p > 0.05; Additional file 3).

We performed alpha‐diversity analysis by calculat-
ing the Shannon, Simpson, Chao1, ACE, observed_spe-
cies and Good’s coverage index at the species level. We 
detected no significant differences in the gut microbial 
richness or diversity among obese children, overweight 
children and controls (Fig. S1m; Mann–Whitney U test; 
p > 0.05). PCoA plot based on the species level relative 
abundance profile showed that PCoA1 explained 19.7% 

Table 1 The basic characteristics of Chinese participants

a Refer to the Fisher’s exact test
b Refer to the Kruskal–Wallis test

Controls Overweight Obese p value

Number of children, 
n (%)

22 (41.5) 8 (15.1) 23 (43.4) -

Male, n (%) 10 (45.5) 4 (50.0) 9 (39.1)  > 0.05a

Months of age (m) 
( X±SD)

68.4 ± 7.2 106.1 ± 42.4 108.9 ± 36.9 1.013e-04b

BMI (kg.m−2) ( X±SD) 14.2 ± 1.1 20.3 ± 2.3 23.8 ± 3.3 1.802e-09b
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of the variability and PCoA2 explained 12.4% of the 
variability (Fig.  1c). The PERMANOVA (Permutational 
multivariate analysis of variance) test of the Bray–Cur-
tis dissimilarity showed a significant difference in the 
samples between obese children and controls (PER-
MANOVA test of Bray–Curtis dissimilarity; p = 0.001), 
while there was no significant difference in the samples 
between obese children and overweight children (PER-
MANOVA test of Bray–Curtis dissimilarity; p = 0.381), 
nor between overweight children and controls (PER-
MANOVA test of Bray–Curtis dissimilarity; p = 0.162).

The top five genera in relative abundance in the 
gut microbiota of controls were Bifidobacterium 
(17.8% ± 17.1%), Bacteroides (15.2% ± 11.0%), Faecali-
bacterium (7.2% ± 6.3%), Blautia (7.1% ± 4.9%) and 
Anaerostipes (6.7% ± 7.4%) (Fig. S2a). There were five top 
genera in the guts of obese children, namely, Bacteroides 
(24.7% ± 15.0%), Phocaeicola (12.7% ± 12.4%), Bifidobac-
terium (7.8% ± 8.9%), Faecalibacterium (7.1% ± 4.2%) 
and Alistipes (5.8% ± 9.5%), while Bifidobacterium 
(19.4% ± 26.8%), Bacteroides (14.8% ± 11.8%), Phocaei-
cola (10.4% ± 11.1%), Faecalibacterium (8.4% ± 6.5%) and 
Blautia (4.6% ± 2.4%) were the top five genera in the guts 
of overweight children (Fig. S2a). At species level, Bifi-
dobacterium pseudocatenulatum (9.2% ± 9.4%), Faecali-
bacterium prausnitzii (7.2% ± 6.1%), Anaerostipes hadrus 
(6.7% ± 7.8%), Blautia sp. SC05B48 (5.5% ± 4.5%) and Pho-
caeicola vulgatus (5.0% ± 6.9%) were the top five species 
in relative abundance in the control group, while Bifido-
bacterium breve (9.3% ± 25.9%), Faecalibacterium praus-
nitzii (8.6% ± 6.5%), Phocaeicola vulgatus (8.2% ± 10.3%), 
Bifidobacterium longum (5.6% ± 10.0%) and Blautia_sp._
SC05B48 (4.0% ± 2.2%) were the top five species in the 
overweight group (Fig. 1d). In the obese group, Phocaei-
cola vulgatus (9.3% ± 10.9%), Faecalibacterium praus-
nitzii (7.3% ± 4.5%), Blautia sp. SC05B48 (5.0% ± 5.3%), 
Bacteroides fragilis (4.7% ± 7.5%) and Bacteroides uni-
formis (4.5% ± 3.7%) were the five most abundant species 
(Fig. 1d).

We also compared the relative abundance of gut 
microbes at the species level among obese children, over-
weight children and controls. Only Simiduia agarivorans, 
Campylobacter rectus and Burkholderia mayonis were 

significantly more abundant in the guts of obese chil-
dren than in controls (Fig.  1e; Mann–Whitney U test; 
FDR < 0.05). There was also a gradient in relative abun-
dance of these three species from the guts of obese chil-
dren to controls (Fig. 1e).

Functional annotation of genes of the gut microbiota 
can provide further insight into the functional differences 
in the gut microbiome among obese children, overweight 
children and controls. For Gene Ontology (GO) enrich-
ment analysis, GO terms associated with transporter 
(GO:0015562 for efflux transmembrane transporter activ-
ity; GO:0005215 for transporter activity; GO:0015031 for 
protein transport) and outer membrane (GO:0009279 
for cell outer membrane; GO:0019867 for outer mem-
brane) were more abundant in gut microbial genes in 
obese children than in controls (Fig.  2a; Kruskal–Wallis 
test; FDR < 0.05; LDA > 2). The genes associated with ser-
ine-type peptidase activity (GO:0008236), sulfuric ester 
hydrolase activity (GO:0008484), and lipid A biosynthetic 
process (GO:0009245) were also more abundant in the 
gut microbiome of obese children, while the genes asso-
ciated with kinase activity (GO:0016301) was more abun-
dant in the gut microbiome of control children (Fig. 2a; 
Kruskal–Wallis test; FDR < 0.05; LDA > 2). Microbial met-
abolic pathway enrichment analysis indicated that L-argi-
nine biosynthesis (PWY-5154), L-histidine degradation 
I (HISDEG-PWY), TCA cycle II (PWY-5690) and TCA 
cycle V (2-oxoglutarate synthase) (PWY-6969) pathways 
were enriched in the gut microbiota of obese children 
(Fig. 2b; Welch’s t-test; FDR < 0.05). Meanwhile, D-galac-
tose degradation V (Leloir pathway) (PWY66-422) and 
L-serine and glycine biosynthesis I (SER-GLYSYN-PWY) 
pathways were enriched in the gut microbiota of control 
group (Fig.  2b; Welch’s t-test; FDR < 0.05). Analysis of 
antibiotic resistance genes (ARGs) showed that the gut 
microbiota of obese children had more ARGs than that of 
overweight children and controls (Fig. 2c). Obese group 
contained totally 251 ARGs, while overweight group and 
control group contained 160 and 196 ARGs, respectively. 
Obese, overweight and control group shared 133 ARGs. 
From the heatmap (Fig.  2d), it can be seen that there 
was no obvious clustering of groups based on the abun-
dance of ARGs among the gut microbiota of obese and 

(See figure on next page.)
Fig. 1 The gut microbiota composition of obese children, overweight children and the control group. a The gut microbial structures of controls, 
overweight and obese children at the phylum level. b The differences among the intestinal F/B ratio of controls, overweight and obese children 
(Mann–Whitney U test; p values correspond to tests between groups in the following order: obese vs overweight, obese vs control, and overweight 
vs control). c Principal coordinate analysis of the gut microbiota at the species level in controls, overweight and obese children (PERMANOVA test 
of Bray–Curtis dissimilarity). d The gut microbial structures in controls, overweight and obese children at the species level. e The relative abundance 
of differentially abundant species in the guts of obese children, overweight children and controls (q values are shown above the corresponding 
boxplots)
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overweight children and controls. There were no signifi-
cantly differentially abundant ARGs, KEGG K numbers 
or CAZymes after FDR correction among obese children, 
overweight children and control children (Additional 
file 3).

The gut microbiome of obese children in China and Mexico
Mexico is a country with a high prevalence of obe-
sity (a combined prevalence of obesity and overweight 
of 33.2% in children; 2016) [11], and their eating habits 
might account for it [11, 12]. We compared the differ-
ences in the gut microbiome between obese Chinese 
children and obese Mexican children to explore how liv-
ing habits effect their gut microbiome. The data of Mexi-
can children was downloaded from a public database 
(see Methods). The average age of these obese Mexican 
children was 120.0 ± 2.4 (month), and their average BMI 
was 24.6 ± 0.8 (kg/m2). The basic characteristics of obese 
Mexican children were shown in Table 2.

We performed alpha diversity analysis (Fig.  3a) and 
found that the Shannon index of obese Mexican chil-
dren was significantly higher than that of obese Chi-
nese children (Mann–Whitney U test; p < 0.05). Obese 
Mexican children also had a higher Chao1, ACE and 
number of observed species than obese Chinese chil-
dren (Fig.  3a; Mann–Whitney U test; p < 0.001). The 
Good’s coverage of both Mexican and obese Chinese 
children was over 99.975% (Fig.  3a). Therefore, the 
guts of obese Mexican children had higher diversity 
and richness than those of obese Chinese children. 
The PERMANOVA test of Bray–Curtis dissimilar-
ity at the species level showed a significant difference 
in the samples between obese Chinese children and 

obese Mexican children (Fig.  3b; PERMANOVA test 
of Bray–Curtis dissimilarity; p = 0.002). Also, there was 
a significant difference in the samples between obese 
Mexican children and Chinese controls (PERMANOVA 
test of Bray–Curtis dissimilarity; p = 0.001), as well as 
obese Mexican children and overweight Chinese chil-
dren (PERMANOVA test of Bray–Curtis dissimilarity; 
p = 0.001).

The guts of obese children from Mexico were also 
dominated by Bacteroidetes (46.7% ± 11.7%), Firmi-
cutes (40.0% ± 14.2%), Proteobacteria (4.4% ± 3.2%) 
and Actinobacteria (3.1% ± 1.0%) at the phylum level 
(Fig. S2b). The relative abundance of Actinobacteria 
in the gut of obese Chinese children was significantly 
higher than that in Mexican children, while Nematoda, 
Platyhelminthes and Lentisphaerae were significantly 
more abundant in the gut of obese Mexican children 
(Kruskal–Wallis test; FDR < 0.05; LDA > 3). There was 
no significant difference in the F/B ratio between obese 
children in China (1.98 ± 3.18) and Mexico (0.98 ± 0.57) 
(Fig. S2c; Mann–Whitney U test; p > 0.05).

The top five genera in the guts of obese Mexican chil-
dren were Bacteroides (24.8% ± 8.6%), Faecalibacterium 
(12.7% ± 6.9%), Phocaeicola (11.2% ± 6.5%), Alistipes 
(8.8% ± 5.2%) and Prevotella (3.6% ± 5.8%) (Fig. S2d). 
Eggerthella, Enterocloster and Megasphaera were sig-
nificantly less abundant in the guts of obese Mexican 
children compared with obese Chinese children, while 
Faecalibacterium, Alistipes, Ruminococcus, Odorib-
acter, Caenorhabditis, Dialister, Trichuris and Mico-
letzkya were significantly more abundant in the guts 
of obese Mexican children (Fig.  3c; Kruskal–Wallis 
test; FDR < 0.05; LDA > 3). Odoribacter splanchnicus, 
Ruminococcus bicirculans, Bacteroides caccae, Alis-
tipes shahii and Trichuris trichiura were significantly 
more abundant in Mexican children, while Bifidobacte-
rium pseudocatenulatum, Enterocloster bolteae, Megas-
phaera elsdenii and Eggerthella lenta were significantly 
more abundant in Chinese children (Fig.  3d; Kruskal–
Wallis test; FDR < 0.05; LDA > 3). Also, there was a gra-
dient in relative abundance of Trichuris trichiura from 
the guts of Chinese controls to obese Mexican (Fig. 3e).

Table 2 The basic characteristics of obese Chinese children and 
obese Mexican children

a Refer to the Fisher’s exact test
b Refer to the Mann–Whitney U test

China (Obese) Mexico (Obese) p value

Number of children, n 23 10 -

Male, n (%) 9 (39.1) 5 (50)  > 0.05a

Months of age (m) ( X±SD) 108.9 ± 36.9 120 ± 2.9  > 0.05b

BMI (kg.m−2) ( X±SD) 23.8 ± 3.3 24.6 ± 0.8  > 0.05b

(See figure on next page.)
Fig. 3 The gut microbiota composition of obese children in China and Mexico. a Alpha‐diversity analysis of the gut microbiota at the species level 
(Mann–Whitney U test; p values are shown above the corresponding boxplots). b Principal coordinate analysis of the gut microbiota at the species 
level (PERMANOVA test of Bray–Curtis dissimilarity). c LEfSe analysis of gut microbiota in obese children in China and Mexico at the genus level 
(Kruskal–Wallis test; FDR < 0.05, LDA > 3). d LEfSe analysis of gut microbiota in obese children in China and Mexico at the species level (Kruskal–Wallis 
test; FDR < 0.05, LDA > 3). e The relative abundance of Trichuris trichiura in Chinese children and Mexican children (q value that we are focusing 
on is shown above the corresponding boxplots)
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Discussion
In this study, we observed a distinct difference in the 
gut microbiome between obese children and controls 
and further determined that the differential gut micro-
biota composition, microbial gene families and metabolic 
pathways might be related to the development of obesity. 
The intestinal F/B ratio was once thought to reflect dys-
biosis of the gut microbiota, such as obesity [13]. How-
ever, in recent years, the effect of the F/B ratio on obesity 
has produced conflicting results in different studies. A 
study in Nanjing City of China showed that there was 
no significant difference in the F/B ratio between obese 
children and controls [14], while another study in Guang-
zhou City of China showed that obese children had a 
higher F/B ratio than the control group [15]. Moreover, 
in a meta-analysis, obese patients had a lower F/B ratio 
than controls [16]. In our study, the F/B ratio of obese 
children was significantly lower than that in the control 
group. Based on the above conflicting results, we specu-
lated that the F/B ratio may be related to geography or 
individual lifestyle rather than BMI. The relatively small 
sample size of the studies on obese children also served 
as a limitation. Therefore, more research is required to 
define whether the F/B ratio can be used to identify obe-
sity in children.

In addition, there might be gut inflammation in obese 
children. Campylobacter rectus, a mobile gram-negative 
rod, is an oral pathogen commonly found in oral cavity 
and is associated with periodontitis [17], but it has also 
been reported to cause thoracic empyema [18, 19] and 
destructive osteomyelitis of the sternum [20]. An obese 
female who developed severe extensor tenosynovitis 
from Campylobacter rectus after a dog bite [21]. These 
cases confirmed the potential for invasive infections with 
oral pathogens, especially in people with poor immunity 
and oral hygiene. In our study, compared with the con-
trol group, the Campylobacter rectus increased signifi-
cantly in the gut of obese children, so it is speculated that 
obese children might have poor oral hygiene and a poten-
tial risk of infection in the gut. Moreover, serine-type 
peptidase activity, sulfuric ester hydrolase activity and 
lipid A biosynthetic process were more enriched in gut 
microbiome of obese children compared with controls. 
Serine-type peptidase activity, catalysis of the hydroly-
sis of peptide bonds in a polypeptide chain by a catalytic 
mechanism that involves a catalytic triad consisting of a 
serine nucleophile, was enriched in fecal microbiome of 
patients with ulcerative colitis [22], which implied that 
serine-type peptidase was associated with inflamma-
tion. The mucus secreted by the colon can form a bar-
rier between the microbes and the intestinal epithelium, 
while some bacteria are able to use mucus glycoproteins 
(the main components of mucus) as a source of nutrients 

through sulfuric ester hydrolase, and thus may cause 
inflammatory bowel diseases [23]. Lipid A is the main 
immunostimulatory part of the LPS (lipopolysaccha-
ride, a characteristic component of the cell wall of Gram-
negative bacteria), and is classed as a virulence factor due 
to its high  endotoxicity [24]. The enrichment of serine-
type peptidase activity, sulfuric ester hydrolase activity 
and lipid A biosynthetic process in the gut microbiome 
of obese children implied that obese children might have 
inflammation in their intestines. Obese patients are more 
likely to be infected [25] and may therefore receive more 
antibiotics, so the number of ARGs in the gut microbiota 
of obese children was much higher than that of control 
children. A healthy diet can lower ARGs in obese chil-
dren [26].

Also, there might be changes of gut microbial metabo-
lism in obese children. GO terms related to outer mem-
brane and transporter activity (cell outer membrane, 
efflux transmembrane transporter activity, transporter 
activity, outer membrane and protein transport) were 
more abundant in gut microbial genes in obese children 
than in controls, which implied an increased metabo-
lism of gut microbes. Also, TCA cycle II and TCA cycle 
V pathways were enriched in the gut microbiota of obese 
children, which might indicate that there was a more 
active gut microbiome metabolism of aerobic respiration 
in obese children. L-serine and glycine biosynthesis was 
reduced in the gut microbiota of obese children, which 
might also induce metabolic disorders in obese children 
since glycine has beneficial effects on metabolic disorders 
associated with obesity, type 2 diabetes (T2DM), and 
non-alcoholic fatty liver disease (NAFLDs) [27]. Addi-
tionally, there were some beneficial pathways in the obese 
group. We found that genes involve in L-arginine biosyn-
thesis were more abundant in the gut microbiota of obese 
children. Obesity-associated bacteria produce L-arginine, 
which upregulates NKG2D expression in γδ T cells and 
fights against HSV-2 virus infection through "pseudo-
normoxia" [28]. Histidine supplementation could sup-
press inflammation and oxidative stress [29], and genes 
involved in histidine degradation were more abundant in 
the gut microbiota of obese children.

Moreover, there was a gradient in relative abundance 
of differentially abundant species (Simiduia agarivorans, 
Campylobacter rectus and Burkholderia mayonis) and 
F/B ratio from the guts of obese children to controls. The 
PCoA plot and the PERMANOVA test of Bray–Curtis 
dissimilarity of obese group, overweight group and con-
trol group also implied that the gut status of overweight 
children may be in a transition state between obese chil-
dren and control children.

We also compared the gut microbiota of obese children 
in China and Mexico and found that the gut microbiota 
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of obese Mexican children was different from that of 
obese Chinese children. First, both of the Chinese chil-
dren and obese Mexican children may have intesti-
nal parasitic infections, since Trichuris trichiura was 
detected in their guts. Trichuris trichiura can cause tri-
churiasis [30], which is prevalent in warm, moist, tropical 
and subtropical regions of the world [31]. Sichuan prov-
ince is in the subtropical zone with a humid climate and 
the Greater Mexico City is in the tropical zone, which 
might account for the occurrence of Trichuris trichiura. 
There was more Trichuris trichiura in the guts of obese 
Mexican children, which might be due to poor sanita-
tion and lack of clean water in some households [32, 33]. 
Changes in the gut microbiome might also be related to 
the eating habits of obese children. Studies have shown 
that an animal-based diet can significantly increase fecal 
deoxycholic acid (DCA, a secondary bile acid) concentra-
tions and lead to an increase in the abundance of bile-tol-
erant microorganisms such as Alistipes and Bacteroides 
[34]. The increased relative abundance of bile-tolerant 
microorganisms, such as Alistipes, Odoribacter splanch-
nicus [35] and Bacteroides caccae in the guts of obese 
Mexican children compared with obese Chinese children 
in our study implied a preference for an animal-based 
diet in Mexico. Many members of Bifidobacterium are 
health-promoting species, which can increase the levels 
of glucagon-like peptide-1 in both the gut and plasma, 
reduce visceral fat accumulation [36] and promote a 
healthier microvillus environment [37]. Bifidobacterium 
pseudocatenulatum can improve inflammatory status in 
children with obesity [38]. Bacteroides caccae is an intes-
tinal opportunistic pathogenic bacteria, which can invade 
the mucosa of the intestine and cause various abdomi-
nal suppurative infections [39]. The increased abun-
dance of Bacteroides caccae and the reduced abundance 
of Bifidobacterium pseudocatenulatum might mean gut 
inflammation might be even worse in Mexican children. 
Megasphaera was significantly more abundant in the gut 
of obese Chinese children compared with that of obese 
Mexican children, and it was reported that Megasphaera 
was enriched in the gut of Asians [40], which is consist-
ent with our research. Since our study only analyzed the 
gut metagenome of obese children, we can only get a 
genetic profile of the gut microbes rather than the genes 
or gene expression in their hosts. Therefore, the genome, 
transcriptome and metabolome of obese children can be 
combined for subsequent analysis, so as to have a more 
complete understanding of the causes of childhood obe-
sity. The limitation of this study also included the small 
sample size of overweight children with only 8 partici-
pants. A larger sample size might yield more accurate 
results. Different DNA extraction methods were applied 
by our research teams and Mexican research teams, 

which can also lead to the differences in composition of 
gut microbiome.

Conclusions
In conclusion, our research revealed structural charac-
teristics of the gut microbiome in obese children, over-
weight children and controls. Based on gut microbes, 
we found that obese Chinese children might suffer from 
intestinal inflammation since Campylobacter rectus and 
genes associated with lipid A biosynthetic process were 
significantly more abundant in the gut of obese children 
compared with controls. In addition, there might be 
changes of gut microbial metabolism in obese children. 
In terms of gut microbiome composition, overweight 
children might belong to a transition state between obese 
and control children. We also found that the gut micro-
biota of obese Mexican children had higher diversity and 
richness than those of obese Chinese children, and obese 
Mexican children had more abundant parasites. Our 
findings might shed light on the relationship between 
obesity and the gut microbiome.

Methods
Study design and subjects
Some of the participants were recruited from an embed-
ded case‒control study of the Childhood Obesity Health 
Management Platform in West China Second Hospi-
tal of Sichuan University in Chengdu, China. A total of 
53 children (23 males/30 females, 4 ~ 15 years old) were 
finally enrolled in the study at the Pediatric Department 
from August 2021 to April 2022. The weight and height 
were accurately measured by trained researchers follow-
ing strict protocols, and the children’s body mass index 
(BMI) was calculated by weight/height2 (kg.m−2). Child-
hood overweight/obesity screening was based on the 
guidelines for the prevention and control of childhood 
obesity in China in 2021 [41]. Children aged 4 ~ 6 years 
were confirmed as overweight with a BMI-for-age greater 
than 1 SD and confirmed as obese with a BMI-for-age 
greater than 2 SD above the World Health Organization 
(WHO) Growth Reference median (2007). Children aged 
6 ~ 18 years were confirmed as overweight or obese dur-
ing screening according to the sex and age-specific BMI 
reference for school-aged children. Finally, we included 
23 obese children, 8 overweight children and 22 normal-
weight controls in the study. The study was approved by 
the Medical Ethics Committee of West China Second 
Hospital of Sichuan University (NO. 2020, 092).

Sample collection, sequencing and metagenomic analysis
Before collection, the methods and notes were explained 
by the researchers. The children’s feces were collected 
only after their parents signed an informed consent to 
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participate in the study. Feces were collected using a ster-
ile kit and frozen at − 80 °C immediately until analysis.

Total DNA was extracted by using the Magnetic Soil 
And Stool DNA Kit (Tiangen Biotech Co., Ltd., China). 
All the samples were sequenced using an Illumina 
NovaSeq 6000 (Novogene Co., Ltd. China) with a paired-
end sequencing length of 150 bp. The adapters and low-
quality reads were filtered by Trimmomatic (v.0.39) [42], 
while potential human sequences were removed by Bow-
tie2 (v2.4.5) [43] based on the NCBI reference genome 
(hg38).

The taxonomic labels of metagenomic sequences were 
assigned using kraken2 (v2.1.2) [44] with the option “–
use-mpa-style” based on the databases (20200624) of 
“archaea”, "bacteria", “viral”, “fungi” and “protozoa”. The 
abundances of taxa were normalized by relative abun-
dance. All taxa were retained for subsequent analy-
sis. MEGAHIT (v1.2.9) [45] was used to assemble the 
metagenome with the option “–min-contig-len 300”. The 
non-redundant gene set was constructed using CD-HIT 
(v4.8.1) [46] with the option “-c 0.95 -aS 0.90.” The quan-
tification of these non-redundant genes in each sample 
was performed using Salmon (v0.13.1) [47]. The genes 
were translated into proteins by Prodigal (V2.6.3) [48].

Microbial gene families and metabolic pathways were 
assessed using HUMAnN3 (v3.0.1) [49] based on the 
UniRef90 EC filtered database (uniref90_v269_201901) 
[50], which can map to the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [51], Gene ontology [52] and 
MetaCyc [53] databases, and were normalized by CPM 
(count per million). The microbial amino acid sequences 
were aligned to the Carbohydrate-Active enZYmes 
(CAZy) database (CAZyDB.09242021) [54] via dbCAN2 
[55]. Antibiotic resistance genes (ARGs) were quanti-
fied using RGI (v5.2.1) with the comprehensive antibiotic 
resistance database (CARD 3.2.2) [56].

The stacked column chart and heatmap were com-
pleted using Wekemo BioinCloud. Alpha-diversity anal-
ysis with six indexes (Shannon, Simpson, Chao1, ACE, 
observed_species and goods_coverage) was performed 
by R package ‘vegan’ (2.6–4) with Mann–Whitney U 
test. The version of R is 4.3.1. Mann–Whitney U test was 
also used to test the F/B ratio between two groups. Dif-
ferentially abundant taxa (comparison between Mexi-
can and Chinese) and GO terms were identified using 
LEfSe (v1.1.2), which used Kruskal–Wallis test and LDA 
score to screen for biomarkers. Since LEfSe only outputs 
uncorrected p values for features that it finds significant, 
we reset the parameter of run_lefse.py script to output 
all p values. Then all the p values were multiple testing 
corrected using Benjamini–Hochberg method. These 
corrected p values were substituted for the uncorrected 
p values for further analysis. PCoA was based on the 

Bray‒Curtis metric, and a PERMANOVA test on each 
PCoA was performed by using the adonis function of R 
to ensure significant separation of different groups. The 
R script for PCoA was provided in Additional file 4. Dif-
ferentially abundant pathways was screened by STAMP 
(v2.1.3) based on Welch’s t-test (FDR < 0.05; Benjamini–
Hochberg method). Differentially abundant species 
(comparison among Chinese children), ARGs, KEGG K 
numbers and CAZy enzymes were screened by Mann–
Whitney U test (Benjamini–Hochberg method). The 
ARGs heatmap normalized the data using Z-score.

Collection of public data
We downloaded the fecal metagenome data of 10 obese 
Mexican children from a public database [57]. These 
metagenomes were also filtered by using Trimmomatic 
(v.0.39) [42] and Bowtie2 (v2.4.5) [43] to remove low-
quality reads and host sequences. The classification labels 
of these metagenomic sequences were assigned by using 
kraken2 (v2.1.2) [44], and the abundance of taxa was 
standardized by relative abundance.
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