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Abstract 

Background  Recombination reshuffles alleles at linked loci, allowing genes to evolve independently and conse-
quently enhancing the efficiency of selection. This makes quantifying recombination along chromosomes an impor-
tant goal for understanding how selection and drift are acting on genes and chromosomes.

Results  We present RecView, an interactive R application and its homonymous R package, to facilitate locating 
recombination positions along chromosomes or scaffolds using whole-genome genotype data of a three-generation 
pedigree. RecView analyses and plots the grandparent-of-origin of all informative alleles along each chromosome 
of the offspring in the pedigree, and infers recombination positions with either of two built-in algorithms: one based 
on change in the proportion of the alleles with specific grandparent-of-origin, and one on the degree of continuity 
of alleles with the same grandparent-of-origin. RecView handles multiple offspring and chromosomes simultane-
ously, and all putative recombination positions are reported in base pairs together with an estimated precision 
based on the local density of informative alleles. We demonstrate RecView using genotype data of a passerine bird 
with an available reference genome, the great reed warbler (Acrocephalus arundinaceus), and show that recombina-
tion events can be located to specific positions.

Conclusions  RecView is an easy-to-use and highly effective application for locating recombination positions 
with high precision. RecView is available on GitHub (https://​github.​com/​HKyle​Zhang/​RecVi​ew.​git).
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Introduction
Recombination generates novel genetic variation by 
creating new haplotypes and combinations of alleles at 
linked loci. As a result, it enables linked genes to evolve 
somewhat independently, thereby enhancing the effi-
ciency of selection [1, 2]. When recombination is sup-
pressed, selection acts on large, linked regions, leading to 

reduced fixation probability of beneficial mutations and 
lowered efficiency to purge mildly harmful mutations. 
Indeed, the outcome of selection on any genomic region 
is dependent on the combined effect on linked loci, 
which, in turn, is influenced by the rate of recombination. 
The significance of recombination in maintaining the fit-
ness of extensive genomic regions is exemplified by the 
rapid degeneration and substantial loss of genes observed 
on non-recombining regions of sex chromosomes [1–4].

The recombination landscape can be quantified by 
comparing genetic and physical maps [5–8] and by ana-
lysing linkage disequilibrium (LD) along chromosomes, 
with the rational that high recombination rates lead to 
faster LD decay [9–11]. Additionally, recombination 
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resulting from single crossover events can be studied by 
direct observations of crossovers, or chiasmata, using 
cytological approaches [12, 13]. These methods provide 
broad-scale patterns of recombination along chromo-
somes, but do not offer data on the specific positions 
of single recombination events. To determine precise 
recombination positions, one can explore genome-wide 
allele sharing patterns between grandparents and grand-
children. Recent advancements in high-throughput 
sequencing have made this method available for almost 
any study species, as long as biological samples over at 
least three generations can be gathered [14]. The level 
of resolution in determining recombination positions 
in such analyses depends on the sequencing method, 
the extent of genetic variation within the study species, 
and the quality of the reference genome. Genome-wide 
approaches, highly heterozygous species, and high-
quality assemblies, generally yield higher resolution. By 
scaling these analyses to include multiple grandchildren 
and covering numerous meiotic recombination events, it 
becomes possible to statistically analyse whether specific 
genomic features drive recombination, explore potential 
recombinational differences between males and females, 
as well as estimate population-averaged recombination 
rates. We anticipate that this progress will increasingly 
make the identification of recombination positions in 
pedigree data a common practice in future population 
genetic and evolutionary studies.

To facilitate locating recombination positions, we 
developed RecView, an interactive R application, designed 
to infer recombination positions along chromosomes in 
whole-genome sequence data in a three-generation pedi-
gree. RecView requires a genotype file with unphased (bi-
allelic) single nucleotide polymorphism (SNP) data of 
individuals in a three-generation pedigree and a scaffold 
file providing the order and orientation of the scaffolds 
on each chromosome. Essentially, the analysed recom-
bination events occur in the parents (F1 generation in 
the pedigree) and RecView analyses the grandparent-of-
origin (GoO) of alleles at each SNP in each offspring (F2 
generation in the pedigree) separately. The genotypes of 
the four grandparents, the two parents and the focal off-
spring are sometimes informative for the GoO inferences. 
We refer to such cases as informative SNPs. For example, 
this is true if one of the grandparents carries allele C at an 
SNP-locus, and if C is inherited through the pedigree to 
the offspring (e.g., ACpaternal grandfather-AApaternal grandmother-
AAmaternal grandfather-AAmaternal grandmother-ACfather-AAmother-
ACoffspring). RecView evaluates all SNPs and plots the GoO 
of informative SNPs along each chromosome (or scaf-
fold). The approximate positions of all putative recombi-
nation events can be viewed in a chromosome-wide GoO 
plot, and RecView also locates and outputs the putative 

recombination positions on the chromosomes by apply-
ing either of two algorithms that we developed: (i) the 
proportional difference (PD) algorithm that detects posi-
tions where the difference in the proportion of alleles 
with specific GoO between flanking windows reaches a 
local maximum, and (ii) the cumulative continuity score 
(CCS) algorithm that detects positions where the contin-
uous inferences of a specific GoO switch from one grand-
parent to the other. RecView also calculates and reports 
an estimated precision of each putative recombination 
position based on the local density of informative alleles. 
The main results are output as chromosome-wide plots 
and as tables.

In this study, we introduce RecView and demonstrate 
its applicability using short-read sequence data obtained 
from two offspring, as well as their grandparents and par-
ents, of the great reed warbler (Acrocephalus arundina-
ceus), a passerine bird with an available reference genome 
[15]. We show that recombination events can be located 
to specific positions, and that RecView can handle multi-
ple offspring and chromosomes simultaneously. Further-
more, we assess the sensitivity of the analysis by analysing 
datasets comprising 10% and 1% of the original full data. 
This provides valuable insights into the impact of SNP 
density, which can be useful for choosing an appropriate 
sequencing method, such as whole-genome or reduced 
representation sequencing.

Implementation
Workflow of RecView
The RecView ShinyApp and its homonymous R pack-
age are available for download and installation through 
GitHub (https://​github.​com/​HKyle​Zhang/​RecVi​ew.​git). 
RecView uses the local machine as server and runs offline. 
RecView is intended to provide an easy-to-use graphic 
user interface (GUI) to locate recombination positions 
using pedigree data. The basic workflow of RecView is 
shown in Fig. 1 and the GUI in Fig. 2.

RecView requires two input files, a genotype file and a 
scaffold file. The genotype file consists of unphased bial-
lelic genotypes of the individuals in the pedigree, and 
we provide a built-in function, make_012gt(), to trans-
form genotype output from VCFtools into the software-
acceptable format (coding genotypes as: 0 = reference 
allele homozygote; 2 = alternative allele homozygote; 
1 = heterozygote). During the analysis of each offspring, 
the combined genotypes of the pedigree individuals at 
each SNP form a 7-digit genotype string ordered from 
grandparents, parents, with males before females, and 
the offspring. For example, the genotype string 1000101 
at an SNP means that the paternal grandfather, the father 
and the offspring are heterozygote, while the remaining 
individuals are homozygote for the reference allele. The 
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scaffold file provides the order and orientation of the 
scaffolds and needs to have five columns with the follow-
ing headings (case sensitive): “scaffold” (the label of the 
scaffold; character), “size” (the size of the scaffold in bp; 
integer), “CHR” (the chromosome the scaffold belongs to; 
character), “order” (the order of the scaffold on the chro-
mosome; integer), and “orientation” (the scaffold orienta-
tion on the chromosome; + or -). Data for each scaffold 
are given in separate rows.

The ShinyApp GUI is initiated by the command run_
RecView_App() in the “Viewer” tab in Rstudio. In the 

GUI, there are options to select (i) the input files from 
the local folder, (ii) which offspring and chromosomes to 
be analysed, (iii) the resolution of the screen graphs, (iv) 
whether to locate recombination positions, (v) whether 
to use the PD or the CCS algorithm to locate recombi-
nation positions, (vi) which parameters and thresholds to 
use for PD and CCS, and (vii) whether to save the results 
as plots and tables (Fig. 2).

After choosing options, the analysis is initiated by 
selecting “Run analysis”. The analysis infers the GoO for 
the alleles at each SNP by searching and matching the 

Fig. 1  (A) The workflow of RecView. Solid lines indicate the basic workflow while dashed lines indicate the optional workflow. RecView 
requires an input genotype file which can be generated by using make_012gt() on the output file from VCFtools. RecView further requires 
an input scaffold file containing the order and orientation of the scaffolds. These two input files are used together with the built-in dictionary 
of grandparent-of-origin (GoO) to produce (B) a GoO figure showing the GoO inferences of alleles along the scaffolds, and (E) a figure showing 
the informative alleles density. RecView can further locate putative recombination positions with the proportional difference or cumulative 
continuity score algorithms and output (C, D) result figures and (F) tables. The result figures and tables can be saved, including an intermediate 
table containing the GoO inferences at each SNP
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specific genotype string (e.g., 1000101) of the pedigree 
individuals to a “dictionary of GoO” – a list including 
all possible (e.g., 1000101) genotype strings. Impossible 
genotype strings (e.g., 0000002) are not in the dictionary. 
Given that the dictionary of GoO encompasses all pos-
sible genotype strings and that numerous SNPs will share 
identical strings, this search-and-match process provides 
a highly efficient method for inferring the GoO of a large 
number of SNPs. Next, depending on selected options, 
the analysis locates the recombination positions with 
either the PD or the CCS algorithm. The output includes 
three result plots and a table: the GoO inferences plot, 
the plot showing the results of applying PD or CCS, 
the plot with density of informative alleles, along the 
chromosome(s), and a table containing information of 
the putative recombination positions and their estimated 
precision (Fig. 1).

Details of the GoO analysis, the PD and CCS algo-
rithms, and how the estimated precision for recombina-
tion positions are calculated, are given in Supplementary 
1. The default parameter settings for PD are a window 
size of 550 SNPs, a step of 17 SNPs, a finer step of 1 
SNP, and a threshold of 0.9, and for the CCS the default 
threshold is 50. These can be modified depending on, 
e.g., SNP density.

Example dataset for demonstrating RecView applicability
We demonstrate the applicability of RecView using data 
from two chromosomes (chromosome 1, size 119.6 Mb; 
chromosome 21, size 9.2 Mb) of a passerine bird species 
with an available reference genome, the great reed war-
bler (Acrocephalus arundinaceus) [15]. This species has, 
as most passerines, 39 autosomal chromosomes and a 
pair of sex chromosomes.

Fig. 2  The GUI of RecView with the setting panel (red square) for uploading input files (yellow square), setting options, and saving options (blue 
square), and the output panel (green square) where results can be accessed by selecting different tabs (orange square)
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We randomly selected a three-generation pedigree, 
including 4 grandparents, 2 parents and 2 offspring (ID-
256 and ID-258), from our long-term study population of 
great reed warblers at Lake Kvismaren, southern Central 
Sweden (59°10ʹ N, 15°24ʹ E; [16–20]). For these 8 indi-
viduals, we downloaded raw sequencing reads from the 
BioProject PRJNA970100 on NCBI [21].

The sequence reads were trimmed with trimmomatic 
version 0.39 [22], mapped to the great reed warbler 
genome assembly [15] using bwa mem version 0.7.17 
[23], and read duplicates were removed with Picard-
Tools version 2.27.5 [24]. Then, a VCF file of called vari-
ants were produced with freebayes version 1.3.2 [25], 
and the genotypes at bi-allelic SNPs were extracted with 
VCFtools version 0.1.16 (option: --extract-FORMAT-info 
GT; [26]). The whole-genome dataset was reduced to 
contain only chromosome 1 and 21. In addition to this 
dataset, we downsampled the number of SNPs to 10% 
and 1% of the original number (referred to as the “10% 
downsampled dataset” and “1% downsampled dataset”), 
to assess the sensitivity of the analysis for SNP density 
and mimic a situation where fewer SNPs are available for 
the analysis, such as for reduced representation sequenc-
ing data (e.g., restriction site-associated (RAD) sequenc-
ing data; [20]).

We loaded the RecView R package on a local computer, 
and used the make_012gt() function to generate the gen-
otype files (this was done for all three datasets; full, 10% 
and 1%, respectively). We prepared a scaffold file accord-
ing to the instructions above, using the ordered and ori-
ented scaffolds of the great reed warbler assembly ([15]; 
B. Hansson et al., unpubl.). Then, we ran the analyses in 
RecView using the default parameters for PD and CCS 
given above.

Note, however, that RecView can analyse complete 
genomes (all chromosomes or scaffolds), and multiple 
offspring, simultaneously.

Results
Full dataset
The grandparent-of-origin (GoO) of all informative 
alleles of SNPs along the paternal and maternal chro-
mosome 1 and 21 in offspring ID-256 and ID-258 were 
inferred by RecView. Here, we only present the results for 
chromosome 1 for offspring ID-256 and for chromosome 
21 for offspring ID-258. A visual inspection of chromo-
some 1 in offspring ID-256 suggested three crossovers 
on the paternal chromosome and two on the maternal 
chromosome (Fig. 3A). For chromosome 21 in offspring 
ID-258, we observed one uncertain crossover at the 
beginning of the paternal chromosome (within the first 
0.1 Mb) and one obvious crossover towards the middle of 
the maternal chromosome (Fig. 3E).

Both the PD and the CCS algorithms reported the five 
recombination events on chromosome 1 for offspring 
ID-256 (Fig. 3B and C; Table 1), and the obvious crosso-
ver on the maternal chromosome 21 for offspring ID-258 
(Fig. 3F and G; Table 1). However, the uncertain crosso-
ver at the beginning of the paternal chromosome 21 for 
offspring ID-258 was not supported by either PD or CCS 
using default options (Fig. 3F and G; Table 1). The local 
density of informative alleles along the chromosome 
varies along the chromosomes (Fig.  3D  and H) and for 
the six reported recombination positions the precision 
ranged between 216 and 1754 bp (Table 1).

Downsampled datasets
For the 10%-downsampled dataset, the PD algorithm 
recovered only three of the five recombination positions 
previously detected using the full dataset on chromo-
some 1 in offspring ID-256; the recombination events at 
ca. 1.7  Mb on paternal chromosome and ca. 1.5  Mb on 
maternal chromosome were not reported (Table  2). In 
contrast, the CCS algorithm located all five recombina-
tion events on chromosome 1 previously detected by the 
full dataset in offspring ID-256. Regarding chromosome 
21 in offspring ID-258, both PD and CCS algorithms 
located the crossover on the maternal chromosome 
previously reported with the full dataset (Table  2). 
As expected, the 10%-downsampled dataset showed 
decreasing resolution with lower estimated precision 
compared to the full dataset (1961–25,000 bp, Table 2).

The results of the 1%-downsampled datasets showed 
drastically reduced success in locating recombination 
positions (only 3 recombination events were reported 
with the CCS algorithm) and drastically lowered preci-
sion (100,000 bp; Table 2).

Discussion
Traditional methods for analysing recombination, such 
as linkage maps, LD and cytogenetics, provide broad-
scale estimation of recombination rate variation along 
chromosomes and may allow detecting recombination 
hotspots [5–13]. Methods designed for these purposes 
have been further developed to handle the increasing vol-
ume of genotype data, and now incorporate new analyti-
cal techniques, such as machine learning and coalescent 
modelling, for inferring population-level recombination 
rates in genomes [27, 28]. However, these analyses do not 
pinpoint the precise chromosomal locations of individual 
recombination events. The emergence of next-generation 
sequencing and high-quality reference genomes ena-
bles localisation of specific recombination events using 
whole-genome genotype data of individuals in pedigrees. 
The principle is to identify boundary positions between 
chromosomal regions with distinct grandpaternal and 
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Fig. 3  Result plots for chromosome 1 in offspring ID-256 and chromosome 21 in offspring ID-258. (A, E) The grandparental-of-origin of informative 
alleles at all SNPs along chromosome 1 in offspring ID-256 (A) and chromosome 21 in offspring ID-258 (E). Each dot represents an allele at a specific 
SNP for the paternal or maternal chromosomes. Dots are plotted with noise on the y-axis to alleviate the degree of overlap. Colouration indicates 
different scaffolds on the chromosomes in the great reed warbler genome assembly [15]. (B, F) Visualization of the result from the proportional 
difference (PD) algorithm shows the absolute difference of the proportion of the grandpaternal alleles compared to that of grandmaternal alleles 
along chromosome 1 in offspring ID-256 (B) and chromosome 21 in offspring ID-258 (F). Five recombination positions were indicated by the local 
maxima for offspring ID-256, and one recombination position were indicated by the local maximum for offspring ID-258. (C, G) Visualization 
of the result from the cumulative continuity score (CCS) algorithm shows the CCS for the paternal and maternal chromosomes along chromosome 
1 in offspring ID-256 (C) and chromosome 21 in offspring ID-258 (G). Five recombination positions in offspring ID-256 and one recombination 
position in offspring ID-258 were indicated (see maternal chromosome; border between orange and light blue at position ca. 3 Mb). (D, H) The local 
density of informative SNPs along chromosome 1 in offspring ID-256 (D) and chromosome 21 in offspring ID-258 (H)

Table 1  Putative recombination positions and precision for chromosome 1 in offspring ID-256 and for chromosome 21 in ID-258 
based on the full dataset. Also given are the parental origin of the chromosome and the analysis algorithm (PD: proportional 
difference; CCS: cumulative continuity score)

Offspring Chromosome Origin Algorithm Scaffold &  Orientation Chromosomal  
position (bp)

Precision  (bp)

ID-256 1 Paternal PD Contig4 + 1,675,083 216

ID-256 1 Paternal PD Contig4 + 30,646,553 775

ID-256 1 Paternal PD Contig108 - 117,669,883 223

ID-256 1 Maternal PD Contig4 + 1,496,864 268

ID-256 1 Maternal PD Contig4 + 36,938,880 1754

ID-256 1 Paternal CCS Contig4 + 1,674,925 216

ID-256 1 Paternal CCS Contig4 + 30,641,720 775

ID-256 1 Paternal CCS Contig108 - 117,669,374 223

ID-256 1 Maternal CCS Contig4 + 1,492,708 268

ID-256 1 Maternal CCS Contig4 + 36,936,350 1754

ID-258 21 Maternal PD Contig21 - 3,062,428 309

ID-258 21 Maternal CCS Contig21 - 3,059,096 309
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grandmaternal origins [14, 29]. While some available 
software handling high-density genetic data in pedigrees 
allow localising recombination events, such as LepMap3 
[30] and YAPP [31], there has been a lack of efficient soft-
ware for analysing, outputting and visualising such data. 
RecView fills this gap by enabling detection and visu-
alisation of recombination events with high-throughput 
sequencing data of three-generation pedigrees. It pro-
vides an interactive GUI for easy and flexible analysis 
execution, allowing the user to choose different param-
eter settings, preview results, use automated detection 
algorithms, and save plots and tables.

RecView determines the grandparent-of-origin (GoO) 
for each allele at every SNP in the offspring by leveraging 
the genotypes of all pedigree individuals. It constructs a 
genotype string for each SNP in the pedigree and infers 
the origin of each allele in the offspring by compar-
ing the genotype string to a comprehensive dictionary 
of all possible GoO scenarios (Supplementary 1.2). This 
search-and-match process to infer GoO is highly com-
putationally efficient because it utilises GoO inferences 
made a priori during the construction of the dictionary, 
thereby eliminating the need for executing a series of 
conditional processes for identical genotype strings.

RecView analyses all genotypes provided in the input 
file, including incorrect genotypes possibly caused by 
sequencing or mapping errors. Some of these incorrect 
SNPs will lead to genotype strings indicative of biological 

impossible segregation patterns across generations, 
and these SNPs are excluded from the output. Others 
may introduce noise in the data, resulting in conflict-
ing GoO inferences compared to adjacent SNPs along 
the chromosome (e.g., several SNPs appear to be geno-
type errors at 22  Mb of paternal chromosome 1 in off-
spring ID-256, Fig. 3A). RecView does not filter out these 
erroneous genotypes because crossovers are often sepa-
rated by large chromosome regions, permitting a certain 
level of acceptable noise in the data while still retaining 
the ability to locate recombination events. Both the PD 
and CCS methods can detect large-scale chromosomal 
regions segregating in the pedigree, regardless of such 
noise. However, as noise increases relative to SNP den-
sity, accurately inferring crossovers becomes more chal-
lenging. Erroneously called genotypes can complicate the 
detection of real recombination events, especially when 
the recombined region is small. This is typically less of an 
issue for crossovers, as recombination interference tends 
to separate crossover events [32]. However, it can be a 
serious problem when inferring gene conversion events 
(non-crossovers), which usually span only a few hundred 
base pairs [33, 34]. Reducing data noise can be achieved 
by conducting deeper sequencing and implementing 
stricter filtering criteria during the SNP calling phase 
prior to the RecView analyses.

RecView implements two algorithms, the PD (propor-
tional difference) and the CCS (cumulative continuity 

Table 2  Putative recombination positions and precision for chromosome 1 in offspring ID-256 and for chromosome 21 in ID-258 
for the 10%- and 1%-downsampled datasets. Also given are the parental origin of the chromosome and the analysis algorithm (PD: 
proportional difference; CCS: cumulative continuity score)

a Precision cannot be calculated because there are no informative SNPs in the interval used for this calculation (division with zero)

Offspring Chromosome Origin Algorithm Scaffold &  Orientation Chromosomal  
position (bp)

Precision  (bp)

10% downsampled dataset

   ID-256 1 Paternal PD Contig4 + 30,654,646 7692

   ID-256 1 Paternal PD Contig108 - 117,671,695 2326

   ID-256 1 Maternal PD Contig4 + 36,949,357 25,000

   ID-256 1 Paternal CCS Contig4 + 1,675,140 1961

   ID-256 1 Paternal CCS Contig4 + 30,636,962 7692

   ID-256 1 Paternal CCS Contig108 - 117,758,436 3704

   ID-256 1 Maternal CCS Contig4 + 1,517,974 2439

   ID-256 1 Maternal CCS Contig4 + 36,941,588 25,000

   ID-258 21 Maternal PD Contig21 - 3,063,137 2941

   ID-258 21 Maternal CCS Contig21 - 2,888,890 5882

1% downsampled dataset

  ID-256 1 Paternal CCS Contig4 + 30,701,609 100,000

  ID-256 1 Paternal CCS Contig108 - 117,668,229 20,000

  ID-256 1 Maternal CCS Contig4 + 37,001,284 NAa

  ID-258 21 Maternal CCS Contig21 - 3,051,932 50,000
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score) algorithms, to accurately identify and locate 
recombination positions (Supplementary 1.3–1.4). The 
PD algorithm identifies positions where the two adja-
cent windows differ the most in terms of which grand-
parental alleles they capture. The user can specify the 
window size, with larger windows limiting the detec-
tion of small regions and recombination events near the 
chromosome ends, while smaller windows increase sus-
ceptibility to noise in the data. The CCS method identi-
fies positions between two regions that contain at least a 
specified number of consecutive informative alleles from 
each grandparent. Compared to the PD algorithm and 
depending on the user-specified settings, the CCS algo-
rithm could have a better potential to locate recombina-
tion events close to chromosome ends. However, it can be 
more sensitive to incorrectly called genotypes, as errors 
disrupt the continuity of informative alleles and may 
cause the CCS-value to fall below the specified threshold 
(see, e.g., region 0–3  Mb of chromosome 1 where fre-
quent noise causes relatively short CCSs; regions shown 
in black in Fig.  3C). Considering these advantages and 
disadvantages of both algorithms, we recommend using 
both the PD and CCS methods when studying recombi-
nation events, particularly for species with a strong bias 
of recombination towards the telomeric ends of chro-
mosomes. Additionally, it is advisable to test different 
parameter settings for specific study species and data-
sets. For example, reducing the window size in PD (i.e., 
lowering the radius parameter) from 550 (default) to 460 
resulted in locating the two recombination events on 
chromosome 1 in offspring ID-256 that were missed with 
the default parameter for the 10%-downsampled dataset 
(see Table 2).

The resolution of the inferred recombination posi-
tions depends on the size of the recombined region and 
the distribution of informative SNPs. In regions with 
high density of informative SNPs, actual recombination 
positions are more likely to be located near informative 
alleles, resulting in higher resolution for the inferred 
recombination positions. Hence, there is a negative asso-
ciation between SNP density and recombination position 
resolution. To estimate the precision of putative recom-
bination positions, we provide data of the reverse local 
density of informative alleles. This measure indicates the 
genomic size (in bp) covered by an informative SNP and 
varies across species (due to differences in heterozygo-
sity) and sequencing techniques (due to differences in the 
number of called SNPs). Compared to the full dataset, 
the precision in the 10%- and 1%-downsampled datasets 
dropped 10- and 100-fold, respectively. It is important 
to note that several recombination positions were not 
detected in the downsampled data when using same set-
tings on all datasets (as we did here; Table 2).

When analysing recombination, it is crucial to consider 
the completeness of the genome assembly as crossovers 
occurring in unassembled parts of genomes will go unde-
tected. We strongly recommend a thorough evaluation 
of each analysed chromosome arm, which should have 
at least one obligate crossover, resulting in a 50% chance 
of a recombination event [35]. Chromosome arms with 
unusually few detected recombination events may indi-
cate incompletely assembled regions of the genome. 
Similarly, inaccurately assembled chromosomes can lead 
to erroneous inferences of recombination numbers and 
positions. For example, if Contig108 on chromosome 1 
had been incorrectly oriented in our great reed warbler 
assembly (+ instead of -), it would have resulted in the 
identification of an additional crossover event, leading to 
a small double-crossover event in the parental chromo-
some (see Fig. 3A). Consequently, an unintended applica-
tion of RecView is its potential to aid in curating genome 
assemblies. If an analysis of multiple offspring consist-
ently reveals putative recombination positions at the 
same specific location (especially if this coincides with 
scaffolds boundaries), it may indicate assembly errors 
that require correction.

We envision future development of RecView to incor-
porate genotype uncertainties, impute missing geno-
types, perform unsupervised parameter optimisation, 
etc. Such improvements would likely facilitate analy-
ses of chromosomes with a limited number of informa-
tive SNPs and low-coverage or reduced representation 
sequencing data.

Conclusion
RecView provides a user-friendly GUI that facilitates 
identification of recombination positions using genome-
wide data in three-generation pedigrees. We applied 
RecView on a great reed warbler pedigree to showcase 
its features. These include plotting the grandparent-
of-origin (GoO) of informative alleles at SNPs along a 
chromosome, which enables easy detection of putative 
recombination positions. Additionally, we demonstrate 
how RecView employs two algorithms, the proportional 
difference (PD) and cumulative continuity score (CCS) 
algorithms, to locate putative recombination positions. 
Each algorithm has its strengths and weaknesses, and we 
recommend using both to ensure comprehensive identifi-
cation of recombination positions. When simultaneously 
analysing multiple offspring and chromosomes, RecView 
produces result tables that list all putative recombination 
positions, along with their estimated precision based on 
the local density of informative alleles. Such data provide 
a valuable resource for studies seeking a comprehensive 
understanding of recombination patterns and processes. 
In summary, RecView’s intuitive GUI and algorithmic 
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capabilities make it a valuable tool for researchers inves-
tigating specific recombination positions using genome-
wide sequencing data of three-generation pedigrees.

Availability and requirements
Project name: RecView.

Project home page: https://​github.​com/​HKyle​Zhang/​
RecVi​ew.​git.

Operating system(s): macOS, Linux.
Programming language: R language.
License: GPL-3.0 license.
Any restrictions to use by non-academics:  licence 

needed.

Abbreviations
CCS	� Cumulative continuity score
GoO	� Grandparent-of-origin
GUI	� Graphic user interface
LD	� Linkage disequilibrium
PD	� Proportional difference
SNP	� Single nucleotide polymorphism
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