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Abstract 

Pathway Figure OCR (PFOCR) is a novel kind of pathway database approaching the breadth and depth of Gene Ontol‑
ogy while providing rich, mechanistic diagrams and direct literature support. Here, we highlight the utility of PFOCR 
in disease research in comparison with popular pathway databases through an assessment of disease coverage 
and analytical applications. In addition to common pathway analysis use cases, we present two advanced case studies 
demonstrating unique advantages of PFOCR in terms of cancer subtype and grade prediction analyses.
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Background
For the past few decades pathway databases have relied 
on the manual extraction of pathway knowledge from 
the literature by teams of biocurators ranging from small, 
centralized groups to communities of hundreds of con-
tributors [1–6]. Individuals comb the literature and con-
tribute their domain knowledge in order to model the 
vast diversity of biochemical reactions and cellular pro-
cesses comprising biological systems. Pathway databases 
are commonly used in enrichment analysis (a.k.a., path-
way analysis), where they are reduced to collections of 
gene sets and tested for statistical overrepresentation or 
enrichment with respect to a researcher-provided gene 
set [7, 8]. The connections and mechanistic details pre-
sent in pathway models are still relevant for interpreta-
tion and visualization of enrichment results and are a 
key advantage of pathway databases over typical gene set 
collections such as GO. However, pathway databases also 
suffer disadvantages relative to simpler forms of gene set 

annotation, namely limited breadth, depth and curation 
throughput.

While GO Biological Process terms annotate 62% of 
human genes, pathway databases only cover up to 44% 
[9]. This limited breadth means that a significant per-
centage of a researcher’s genes of interest (e.g., from 
a differential expression dataset) would be essentially 
excluded from an enrichment analysis as they would yet 
be included in any pathway model. In terms of depth, 
pathway databases have traditionally focused on canoni-
cal pathways, for example having a single, generic repre-
sentation of “apoptosis” or “hippo signaling”, despite the 
actual diversity of these biological processes across cell 
types, developmental stages, disease states and condi-
tions. This oversimplification is understandable given 
the low throughput of pathway database content. Con-
structing a pathway model takes significant time and 
effort, including information gathering, synthesis, encod-
ing and review [10, 11]. Keeping up with the continuous 
flood of published findings spanning all aspects of cel-
lular biology with manual curation is clearly a Sisyphean 
task. The WikiPathways project has had some success in 
addressing these challenges, sharing the burden of bio-
curation with any interested member of the research 
community [5, 12]. Steadily acquiring ~ 90 new pathways 
a year and ~ 250 edits per month by a total of over 700 
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contributors, the WikiPathways project still pales in com-
parison to the volume of unique pathway diagrams rou-
tinely published in the literature as static images.

The Pathway Figure OCR (PFOCR) project takes a 
more direct approach to capturing pathway information 
in a pathway database [13]. Collecting 1,000 published 
pathway figures per month in recent years and a total of 
103,009 pathway figures since 1995 from the indexes of 
PubMed Central, the project has extracted 2.6 million 
human genes (18,383 unique; 77% of all human genes), 
218 thousand chemicals (11,100 unique), and 29 thou-
sand disease names (1,204 unique) via a pipeline involv-
ing machine learning, optical character recognition 
(OCR), and named entity recognition (NER). The PFOCR 
database contains more unique genes than any other 
pathway database and is comparable in breadth to Gene 
Ontology. With remarkably little redundancy, PFOCR 
contains many dozens of unique instances of processes 
like apoptosis and hippo signaling that typically have 
only canonical representations in pathway databases. In 
terms of throughput, the algorithmic steps of the PFOCR 
project could feasibly generate an up-to-date database 
in lockstep with the indexing efforts of PubMed Central. 
For more details about the PFOCR database, please refer 
to Hanspers, et al. [13].

In this paper, we will highlight the utility of the PFOCR 
database in disease research in comparison to other pop-
ular pathway databases. We will begin with a detailed 
characterization of the PFOCR collection of pathways in 
terms of disease coverage. We will then demonstrate the 
utility of PFOCR in enrichment analyses and machine 
learning applications. While PFOCR is applicable to any 
analysis involving pre-defined gene sets, we will highlight 
specific types of enrichment analyses and machine learn-
ing where its unique breadth and depth are crucial to 
fruitful results and insightful interpretation.

Results
Disease coverage comparison
A common goal of pathway analysis is to identify pro-
cesses underlying a disease state. Thus, an important 
characteristic for a pathway database is its disease cov-
erage, i.e., how many diseases are represented among its 
pathway-defined gene sets and how deep and diverse are 
the gene sets per disease. PFOCR has close to a hundred 
times as many pathways as a canonical pathway database, 
but how does their distribution across diseases compare 
to an intentionally curated database? In order to assess 
disease coverage, a standard set of 876 distinct disease 
names was compiled from the Comparative Toxicog-
enomics Database (CTD) [14]. The titles and descriptions 
associated with pathways from WikiPathways, Reactome, 
and KEGG were queried for disease name occurrences. 

Similarly, the titles and captions annotating PFOCR con-
tent were queried.

A total of 791 (90%) diseases were represented by at 
least one pathway in PFOCR. Reactome, WikiPathways 
and KEGG represented 153 (17%), 127 (14%), and 94 
(11%) diseases, respectively (Supplemental Table  1). In 
terms of depth, we focused on the top 20 disease matches 
for each database; the union of these matches comprise 
the 37 diseases shown in Table 1. PFOCR includes 1954 
pathways relevant to breast cancer and offers 649 path-
ways on average among its top 20 diseases. Reactome 
holds 23 pathways relevant to leukemia and 7 pathways 
on average among its top 20 diseases. WikiPathways has 
18 pathways relevant to SARS-CoV-2—which aligns with 
its unique, community-driven approach to collecting new 
content on emerging topics—and also has 7 pathways on 
average among its top 20 diseases. KEGG has a four-way 
tie with 5 pathways for each of lung cancer, insulin resist-
ance, hepatitis, and cardiomyopathy, and only 3 path-
ways on average among its top 20 diseases. By contrast, 
PFOCR has 5 or more pathways for 351 diseases and at 
least 1 pathway for 555 diseases that are missing from the 
other pathway databases (Supplemental Table 1).

In order to assess gene coverage among disease path-
ways, we referenced the matching disease names in 
Jensen DISEASES, a database that provides gene-disease 
associations retrieved from text mining, literature, cancer 
mutation data, and genome-wide association studies [15]. 
Table  2 shows these 17 matching diseases and the cor-
responding number of Jensen DISEASES genes covered 
by each pathway database. PFOCR covers 53 of cardio-
myopathy genes (62%), which is the maximum count, and 
covers 63% of disease genes on average. Reactome has a 
maximum count of 12 (48%) for breast cancer and 9% on 
average. WikiPathways has a maximum count of 15 (19%) 
for diabetes mellitus and 21% on average. The maximum 
count by KEGG is for cardiomyopathy at 31 (36%) and 
the average coverage is 28%. For each of the diseases in 
Table  2, PFOCR covers a higher percentage of disease-
associated genes than the other pathway databases. Inter-
estingly, with the exception of diabetes mellitus, PFOCR 
includes over half of the genes associated with a given 
disease in pathway models labeled by those diseases.

General pathway analysis
In practice, PFOCR is available in a format commonly 
used by enrichment analysis algorithms (see GMT in 
Data Availability). Thus, PFOCR can fit into analytical 
pipelines involving any package supporting GMT files, 
including the top-ranked Bioconductor packages: fgsea 
[16], clusterProfiler [17], GSEABase [18], and GSVA 
[19]. The pathway figure database has already been 
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incorporated into online tools such as Enrichr [20] and 
NDEx iQuery [21].

Enrichr (https:// maaya nlab. cloud/ Enric hr) provides 
quick and easy enrichment analysis against over 200 gene 
set databases simultaneously. Among the 27 databases in 
the pathway category, PFOCR has the greatest number 
of gene sets and the second largest coverage of human 

genes (the kinase co-expression gene sets by ARCHS4 
has the largest). PFOCR ranks fourth among all 209 Enri-
chr databases in terms of gene set size. Among the suite 
of plots provided by the Enrichment Analysis Visualizer 
“appyter” for Enrichr databases [22], a UMAP helps to 
visualize the density and diversity of gene sets per data-
base (Fig. 1A). The appyter analysis identified 35 clusters 

Table 1 Disease coverage comparison. Union of top 20 disease‑related pathways for each database by searching associated pathway 
titles and descriptions or captions. Disease names were compiled from the Comparative Toxicogenomics Database [14]. Average 
pathway counts among the top 20 disease matches per database are given in parentheses in column headers. The pathway count for 
the most represented disease per database is in bold italics

a Abbreviations: AML acute myeloid leukemia, CDG congenital disorders of glycosylation

Disease PFOCR (649) Reactome (7) WikiPathways (7) KEGG (3)

Breast cancer 1954 20 6 3

Fibrosis 959 4 8 4

Alzheimer 874 6 12 2

Colorectal cancer 817 10 5 1

Prostate cancer 794 1 7 1

Lung cancer 792 7 7 5
Lymphoma 692 9 2 3

Leukemia 673 23 6 3

Melanoma 659 8 4 1

Insulin resistance 586 1 4 5
Obesity 529 4 8 4

Ischemia 483 2 2 0

Parkinson 464 4 6 2

Pancreatic cancer 435 1 6 1

Tuberous sclerosis 413 1 0 0

Hepatitis 397 4 3 5
Hypertrophy 380 0 6 4

Arthritis 372 6 4 1

Hypertension 358 2 4 2

Glioblastoma 343 8 2 1

Atherosclerosis 300 6 4 3

SARS‑CoV‑2 265 3 18 1

Retinoblastoma 204 3 5 2

Heart failure 185 0 2 3

Anemia 179 6 1 1

Diabetes mellitus 177 1 3 4

Schizophrenia 146 4 2 0

Renal cell carcinoma 142 0 5 1

Cardiomyopathy 133 1 1 5
Huntington 121 1 3 2

Multiple myeloma 120 4 0 0

Hyperplasia 100 2 2 3

AMLa 96 6 1 1

Ulcer 67 1 0 3

Hyperlipidemia 33 0 6 0

Hemophilia A 3 4 0 0

CDGa 2 4 1 1

https://maayanlab.cloud/Enrichr
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of PFOCR pathways. By contrast, GO Biological Process 
divides into only 18 clusters, Reactome 27, WikiPathways 
8, and KEGG 11, thus characterizing the greater diversity 
of pathway-based gene sets in PFOCR.

NDEx Integrated Query (iQuery, https:// www. ndexb 
io. org/ iquery) provides network and pathway gene set 
analysis using multiple methods simultaneously against 
PFOCR, WikiPathways, INDRA-connected GO terms 
[23], and various interactomes [21]. Like Enrichr, the 
input is a simple list of gene names, and results are pro-
duced immediately. With a focus on networks and path-
ways, however, NDEx iQuery offers more detailed views 
of resulting gene sets ranked by similarity, p-value, or 
overlap (Fig. 1B). In the case of PFOCR, the detailed view 
includes the original published figure next to its title, cap-
tion and other article metadata. Each pathway figure is 
associated with an interactive gene list and links to a ded-
icated page in the NDEx database. The PFOCR’s pathway 
figure-based gene sets can also be imported as nodes into 
Cytoscape with a single click.

We also developed an R Shiny tool called Interactive 
Enrichment Analysis (https:// github. com/ glads tone- insti 
tutes/ Inter active- Enric hment- Analy sis) to perform two 
types of enrichment analyses for one or more datasets 
simultaneously against GO, WikiPathways, and PFOCR 
[24]. The tool supports interactive exploration of results 
with customizable plots (volcano, dot, bar, heatmap, 
emap, and GSEA plots) and embedded pathway views 

(Fig.  1C). In addition to views of original published fig-
ures, PFOCR results include links to dedicated web pages 
at the PFOCR database, which include a rich collection 
of metadata, crosslinks to PubMedCentral, NDEx and 
WikiPathways, and downloadable tables of extracted 
genes, chemicals and disease terms.

In the next two sections, we demonstrate advanced 
pathway analyses on two different disease datasets, tai-
loring methodology for each and demonstrating the level 
of interpretive detail that is only possible with a pathway 
database having PFOCR’s unique breadth and depth.

Case study 1: acute myeloid leukemia subtype analysis
Leukemia is a fatal disease with a 5-year overall survival 
rate of 24% and a long-term survival rate of less than 
20% in adulthood [25–28]. Among different types of 
leukemia, acute myeloid leukemia (AML) is character-
ized by clonal disorders of the hematopoietic compart-
ment, such as abnormal proliferation of undifferentiated 
myeloid progenitors, impaired hematopoiesis, bone mar-
row failure and variable response to therapy [28]. Leu-
kemia became a treatable disease with the development 
of drugs such as midostaurin, gilteritinib, and ivosidenib 
[29]. Studies have shown that leukemia drug efficacy is 
highly dependent on a patient’s genetic subtype profile. 
For example, midostaurin provides excellent treatment 
for patients with FLT3 mutations, whereas ivosidenib is 
particularly effective for patients with IDH1 mutations 

Table 2 Disease gene coverage comparison. Comparison of the disease‑related gene content in the top disease‑annotated pathways 
from Table 1 based on matching reference gene sets available from Jensen DISEASES. Absolute gene counts together with percentage 
of DISEASES genes in parentheses are provided for each database‑disease pair. The gene counts for the most represented disease per 
database is in bold italics. An average percentage of DISEASES genes per database is given in parentheses in column headers

Disease PFOCR (63%) Reactome (9%) WikiPathways (21%) KEGG (28%)

Cardiomyopathy 53 (62%) 2 (2%) 14 (16%) 31 (36%)
Diabetes mellitus 31 (39%) 2 (3%) 15 (19%) 18 (23%)

Obesity 45 (71%) 4 (6%) 8 (13%) 12 (19%)

Parkinson 34 (64%) 3 (6%) 11 (21%) 15 (28%)

Prostate cancer 23 (64%) 2 (6%) 6 (17%) 5 (14%)

Alzheimer 18 (58%) 9 (29%) 9 (29%) 9 (29%)

Melanoma 21 (70%) 5 (17%) 6 (20%) 7 (23%)

Lung cancer 24 (86%) 7 (25%) 13 (46%) 17 (61%)

Breast cancer 23 (92%) 12 (48%) 14 (56%) 13 (52%)

Hypertension 7 (88%) 2 (25%) 3 (38%) 3 (38%)

Atherosclerosis 5 (63%) 1 (13%) 0 (0%) 3 (38%)

Retinoblastoma 2 (67%) 0 (0%) 1 (33%) 1 (33%)

Huntington 1 (50%) 0 (0%) 1 (50%) 1 (50%)

Renal cell carcinoma 1 (50%) 0 (0%) 0 (0%) 0 (0%)

Schizophrenia 8 (50%) 1 (6%) 1 (6%) 0 (0%)

Multiple myeloma 4 (50%) 1 (13%) 0 (0%) 0 (0%)

Tuberous sclerosis 2 (100%) 0 (0%) 0 (0%) 0 (0%)

https://www.ndexbio.org/iquery
https://www.ndexbio.org/iquery
https://github.com/gladstone-institutes/Interactive-Enrichment-Analysis
https://github.com/gladstone-institutes/Interactive-Enrichment-Analysis
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[30]. Additionally, Smoothened (SMO) inhibitors, such 
as Glasdegib, control the progression of acute leukemia 
by specifically targeting the Hedgehog (Hh) signaling 
pathway [31]. This subtype specificity can be effectively 
understood by investigating the effects of drugs on 
signaling cascades at the pathway level, rather than at a 
single gene level, assessing perturbations caused by dif-
ferent mutations [32]. Likewise, characterizing subtypes 

based on pathway-level transcriptomic profiles can help 
develop effective therapeutic strategies to optimize best 
survival outcomes of leukemia patients.

We characterized the perturbed transcriptomic profiles 
of AML subtypes using leukemia pathways from PFOCR, 
WikiPathways, Reactome, and KEGG. The purpose of the 
analysis was to compare the effectiveness of these path-
way databases in characterizing leukemia subtypes based 

Fig. 1 Pathway Analysis with PFOCR. A Typical bar graph of Enrichr results for PFOCR pathways, above. Appyter UMAP of PFOCR pathway clusters, 
below. The Enrichment Analysis Visualizer appyter computed term frequency‑inverse document frequency (TF‑IDF) values for the gene set 
corresponding to each pathway in PFOCR and plotted the first two dimensions of a UMAP applied to the resulting values. Generally, pathways 
with more similar gene sets are positioned closer together. Pathways are colored by Leiden algorithm‑computed clusters. B NDEx iQuery screenshot 
showing ranked pathway figures (left panel), original pathway figure of selected result (middle), and article metadata (right). The top‑right includes 
buttons to a dedicated NDEx page or to import the figure‑extracted gene set into Cytoscape as nodes. C The plot options for ORA and GSEA results 
in the R Shiny tool called Interactive Enrichment Analysis. PFOCR results include a view of the original published figure and a link to a dedicated 
PFOCR website page (right)
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on gene expression. AML patient gene expression data 
with 8 mutations was retrieved from GEO (GSE108316) 
and PCA-based quality control was performed. We then 
performed differentially expressed gene (DEG) analy-
sis, where each mutation type was treated as a separate 
group and control samples were used as the reference, 
followed by gene set enrichment analysis (GSEA). Finally, 
hierarchical clustering was applied to the normalized 
enrichment scores (NES) from GSEA to cluster leukemia 
mutations in operational subtypes.

A total of 705 leukemia-enriched pathways were 
investigated by hierarchical clustering analysis, includ-
ing 673 PFOCR, 6 WikiPathways, 23 Reactome, and 3 
KEGG pathways (Fig.  2A). At the top level of the hier-
archical cluster, there were two core subclusters where 
the larger cluster (subtype L) was defined by five muta-
tions, RUNX1, INV16, t(8:21), CEBPA, and SRSF2, and 
the smaller cluster (subtype S) was defined by three 
mutations, FLT3-ITD, FLT3-ITD/NPM1, and inv3/RAS. 
Among all mutations of subtype S, FLT3 mutation is 
associated with the most unfavorable prognosis [29, 33]. 
FLT3, a transmembrane ligand-activated receptor tyros-
ine kinase, is expressed in hematopoietic progenitor cells, 
and 25–30% of AML cases carry FLT3 mutations that 
result in abnormal cell growth and survival via mTOR 
and PI3K/AKT pathway [34]. In subtype L, RUNX1 is 
another well-known type of AML mutation associated 
with hematopoietic stem cell (HSC) growth, differentia-
tion, and homeostasis. Its abnormalities are often associ-
ated with older age and male sex, and are found in 8–16% 
of AML patients [34].

Of the 705 leukemia pathways, there are 26 pathways 
that clearly distinguish subtypes L and S (Fig. 2A, boxed 
rows, Supplemental Table  2). These 26 core leukemia 
gene sets (CLGS) consist of 24 PFOCR pathways, 1 
WikiPathways and 1 KEGG pathway. The predominance 
of PFOCR pathways in defining the CLGS highlights the 
utility of PFOCR in characterizing subtypes compared to 
other pathway databases. For example, one of the PFOCR 
pathways in the CLGS involves the regulation of forkhead 
box (FOX) genes through PI3K/AKT signaling cascade 
(Fig.  2B). FOX genes are transcription factors involved 
in the regulation of multiple cellular functions, including 
development, differentiation, proliferation, and apopto-
sis [36–38], and may act as either tumor suppressors or 
oncogenes depending on the cellular and biological con-
text [28, 39]. In the context of leukemia, FOX genes have 
been reported to play different roles depending on the 
type of mutation. For example, upregulation of FOXO1 
in AML with a RUNX1 mutation has been reported to 
help the growth of leukemia cells and inhibit the differ-
entiation of CD34 + hematopoietic stem and progenitor 
cells [28]. In addition, the activity of FOXO1 has been 
reported to affect the antineoplastic drug sensitivity of 
AML cells, and has been proposed as a therapeutic for 
leukemia with RUNX1 mutations [40, 41]. On the other 
hand, FOXO3 acts as a tumor suppressor, and phospho-
rylation of FOXO3 by FLT3-ITD results in inactivation of 
FOXO3-mediated apoptosis in leukemia with FLT3-ITD 
mutation [42].

As mentioned above, the success of FDA-approved leu-
kemia drugs depends on a patient’s tumor genetics. For 

Fig. 2 Heatmap of GSEA NES values from leukemia expression data. A Hierarchical clustering of GSEA NES values of leukemia mutations defines 
two top‑level subtypes, denoted S and L. The cluster of 26 pathways that differentiates the two subtypes is highlighted with a red box. B PFOCR’s 
PMC1948012__F10 [35] is one of the 26 subtype‑distinguishing pathways and contains the FOXO gene signaling pathway. This figure is reproduced 
from [28]
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example, a study tested the effect of midostaurin in leu-
kemia patients with RUNX1 showed a limited role of the 
drug in leukemia control [43]. Midostaurin treatment in 
systemic mastocytosis patients has shown that patients 
with one or more mutations in the S/A/R (SRSF2, ASXL, 
or RUNX1) panel have a lower survival rate and a higher 
progression rate to AML or mast cell leukemia than 
patients without mutations. Additionally, the same study 
found that midostaurin treatment was not able to prevent 
the increase of RUNX1 mutations in patients which was 
associated with progression to secondary AML [43]. To 
date, there have been no officially approved drugs effec-
tive for leukemia with RUNX1 mutations [29, 33, 44].

The different roles of FOXO genes in RUNX1 leuke-
mia and FLT3-ITD leukemia highlights the mechanistic 
differences between the two leukemia subtypes and why 
treatment of both subtypes with the same drug may fail. 
PFOCR-based gene set hierarchical clustering analysis 
is an effective methodology that can aid in understand-
ing pathway-level mechanisms underlying the differences 
between cancer subtypes.

Case study 2: breast cancer prediction analysis
To evaluate the disease prediction efficacy of these path-
way databases, machine learning analysis was performed 
on breast cancer patient expression data. For this analy-
sis, two independent breast cancer patient expression 
data sets were collected from GSE3494 and GSE2990, and 
samples with breast cancer grades 1 and 2 were selected 
for analysis. 51 samples with a grade value of 2 were ran-
domly selected from GSE3494 to balance the number of 
samples in both grades. For the test data, GSE2990 was 
used, and there were 29 grade 1 and 31 grade 2 samples. 
Random forest was chosen to build predictive models, 
and tunned model parameters were selected based on 
out-of-sample error. On all pathways annotated as breast 
cancer, prediction accuracy was calculated from the test 
data and leave-one-out cross-validation accuracy was 
calculated from the training data. Gene importance (fea-
ture importance) was calculated as the average impor-
tance from the leave-one-out cross-validation iterations. 
The prediction accuracy rankings in Table  3 shows 21 
pathways with prediction accuracy and cross-validation 

Table 3 Random forest breast cancer grade prediction accuracy with top important gene information. Pathways with cross‑validation 
accuracy and prediction accuracy greater than 0.65 (all from PFOCR), plus the top ranked results from Reactome and KEGG. The result 
ranking was determined by min (cross‑validation accuracy, prediction accuracy). The “Top Gene” corresponds to the gene with the 
highest feature importance score in each pathway. The “Ref.” column provides paper and pathway citations for each result

Rank Pathway Ref Top Gene Importance 
Score

CV Accuracy Prediction 
Accuracy

Specificity Sensitivity F1

1 PMC2937358__F1 [45, 46] CXCL6 0.61 0.72 0.72 0.61 0.83 0.69

2 PMC2653381__F1 [47, 48] GSTM4 0.25 0.69 0.7 0.58 0.83 0.67

3 PMC5772637__F6 [49, 50] CASP9 0.91 0.69 0.68 0.84 0.52 0.73

4 PMC5772637__F7 [49, 51] CASP9 1.54 0.68 0.72 0.77 0.66 0.74

5 PMC8040471__F7 [52, 53] CASP9 0.45 0.68 0.67 0.81 0.52 0.71

6 PMC6759650__F5 [54, 55] CYCS 0.37 0.67 0.78 0.71 0.86 0.77

7 PMC7811378__F9 [56, 57] CASP9 0.85 0.67 0.78 0.84 0.72 0.8

8 PMC5715135__F7 [58, 59] CASP9 0.15 0.67 0.75 0.84 0.66 0.78

9 PMC2673236__F1 [60, 61] ACSM3 1.32 0.67 0.72 0.74 0.69 0.73

10 PMC387764__F8 [62, 63] CASP9 1.78 0.67 0.68 0.74 0.62 0.71

11 PMC6947643__F2 [64, 65] HEY1 1.23 0.67 0.67 0.84 0.48 0.72

12 PMC7409684__F1 [66, 67] WNT11 0.18 0.67 0.67 0.68 0.66 0.68

13 PMC8023395__F2 [68, 69] EGFR 0.17 0.66 0.73 0.84 0.62 0.76

14 PMC4336604__F9 [70, 71] MAPK9 0.33 0.66 0.72 0.74 0.69 0.73

15 PMC6499473__F1 [72, 73] PARP1 0.23 0.66 0.72 0.61 0.83 0.69

16 PMC3219187__F5 [74, 75] ZBTB7A 2.29 0.66 0.7 0.81 0.59 0.74

17 PMC6024909__F4 [76, 77] CDK1 0.26 0.66 0.7 0.52 0.9 0.64

18 PMC2694962__F1 [78, 79] ACSM3 1.52 0.66 0.68 0.48 0.9 0.61

19 PMC5256616__F6 [80, 81] CASP9 0.36 0.66 0.68 0.48 0.9 0.61

20 PMC4407294__F2 [82, 83] NOTCH2 0.7 0.66 0.67 0.52 0.83 0.62

21 PMC6305585__F2 [84, 85] CPEB1 0.77 0.66 0.67 0.71 0.62 0.69

63 R‑HSA‑8864260 [86] HSPD1 0.25 0.64 0.68 0.81 0.55 0.72

115 KEGG_hsa01522 [87] BAX 0.11 0.62 0.85 0.9 0.79 0.86
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accuracy larger than 0.65 (bold), which are all from 
PFOCR. Supplemental Table  3 presents all results with 
prediction accuracy and cross-validation accuracy larger 
than 0.55 and min gene importance larger than 0.1, which 
include 695 PFOCR, 9 Reactome, and 1 KEGG pathways.

To assess the overlap of gene content among the top 21 
pathways from PFOCR and any of the results from the 
other databases that passed the minimum accuracy 0.55 
threshold, we plotted the genes per pathway, ordered 
(and sized) by their importance scores (Fig. 3). Remark-
ably, the majority of genes, including top scoring “impor-
tant” genes, from the highest accuracy pathways are 
unique to PFOCR results.

CASP9, the gene with the second highest importance 
score in 21 PFOCR pathways, is an initiator of apopto-
sis in the mitochondrial apoptosis pathway. A study by 
Sharifi and Moridnia found an association of CASP9 
expression with miR-182-5p [88]. The breast cancer cell 
line MCF-7 had poor viability when miR-182-5p was 
inhibited, suggesting CASP9 upregulation is related to 
MCF-7 cell viability. In addition, an independent study 
investigated SNPs in CASP9 to find an increased breast 
cancer risk in patients with CASP9 mutations. In particu-
lar, CASP9 SNPs rs4645978 and rs4645981 were associ-
ated with high breast cancer risk, suggesting that CASP9 
contributes to breast cancer development [89].

Among the overlapping genes of PFOCR and REAC-
TOME, HEY1, one of the well-known Notch target genes, 
had the highest shared gene importance score. Chen et al. 
investigated the expression of HEY1 in breast cancer 
cells and found that the HEY1 expression level increased 

under hypoxic conditions [90]. In addition, increased 
Notch4-Hey1 mRNA expression and decreased patient 
survival were found to be correlated in another study, 
confirming Hey1 as a marker for breast cancer develop-
ment [91].

On the other hand, NOTCH2 was the gene with the 
highest importance score overlapping between PFOCR 
and KEGG. The role of NOTCH2 was studied by Fu 
et al. by investigating NOTCH2 expression and polymor-
phisms of SNP rs11249433 in breast cancer patient data 
[92]. That study suggested that increased expression of 
NOTCH2 with the rs11249433 polymorphism may con-
tribute to the development of ER + luminal tumors.

Discussion
Using the Comparative Toxicogenomics Database (CTD) 
[14] for a comprehensive, independent set of 876 disease 
names, we chose the most comparable sources of meta-
data (titles and descriptions or captions) to assess the 
disease coverage by PFOCR and popular pathway data-
bases: Reactome, WikiPathways, and KEGG. In terms 
of both breadth and depth, PFOCR surpassed the other 
pathway databases by a considerable margin. We assessed 
the most common diseases represented by each data-
base (e.g., PFOCR has 1954 breast cancer pathways), the 
average number of pathways among their top 20 diseases 
(e.g., PFOCR has 649 pathways on average), and the min-
imal coverage (e.g., PFOCR has 5 or more pathways for 
351 diseases and at least 1 pathway for 555 diseases that 
are lacking representation from any of the other path-
way databases). In terms of actual disease gene content 

Fig. 3 Gene importance from random forest breast cancer models built on pathway genes. Represented as circles, the gene content is sized 
and ordered by importance (large‑to‑small, bottom‑to‑top) for the top twenty‑one pathways ordered by prediction accuracy (left‑to‑right). The 
“Top Gene” from Table 3 is represented by the largest, bottom‑most circle and is labeled for each pathway. The vast majority of circles (gray) denote 
genes found only in PFOCR pathways among all significant pathways with “important” genes. The genes that are also present within Reactome 
and KEGG results are highlighted in red and blue, respectively. There were no significant pathways with gene importance scores above 0.1 
from WikiPathways
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in these pathways, we made use of Jensen DISEASE [15] 
annotations and focused on 17 diseases including the 
best representatives from each database and spanning 
neurological, cancer, heart, lung and metabolic catego-
ries. Again, the contrast was striking, with PFOCR cover-
ing more disease genes in every case and over half of the 
genes in all diseases except diabetes mellitus (39%), while 
the other pathway databases averaged between 9 and 
28% coverage. Researchers interested in associating their 
genes of interest (e.g., from differential gene expression 
analyses) with mechanisms of disease will find broader 
coverage and more diverse instances in the PFOCR 
database.

Like other pathway databases, PFOCR content is 
available in formats amenable to gene set enrichment 
analyses, such as GMT (see Data Availability), allow-
ing bioinformaticians to include PFOCR in practically 
any pathway analysis workflow. PFOCR pathways have 
already been integrated into commonly used online 
tools for enrichment analyses, including Enrichr [20] and 
iQuery by NDEx [21], and we also have introduced an R 
Shiny app called Interactive Enrichment Analysis, which 
uses PFOCR, WikiPathways and GO by default [24].

AML subtype clustering analysis showed how PFOCR 
pathway information can be used to gain insights to 
understand differential regulatory mechanisms of disease 
subtypes at the pathway level. One example of a more 
general approach of enrichment analysis using canoni-
cal gene sets was demonstrated in the study performed 
by Asi et al. [93]. In this study, enrichment analysis was 
performed using KEGG and GO on the combined data 
of DNase I-seq and RNA-seq data from FLT3-ITD and 
t(8;21) AML patient samples. Integration was performed 
by finding DNase I hypersensitivity site (DHS) peaks spe-
cific to two mutation types and combining the result with 
the DEG analysis result. Subsequently, GO and KEGG 
enrichment analysis performed for each subtype and 
enriched gene sets for each AML subtype were investi-
gated. This study provided a list of gene sets and com-
pared the presence/absence of gene set signals in each 
subtype. While this approach is the most common way 
gene set enrichment is used in research, utilizing PFOCR 
with its extensive collection of more diverse gene sets 
and contexts can help to investigate pathway level signals 
in greater detail. We also demonstrated how clustering 
approaches can make gene set comparisons more sys-
tematic and interpretable by categorizing pathway-level 
signals specific to each subtype.

Each published pathway figure offers not only unique 
content, but also unique context based on the specific 
experiments and insights described in its parent arti-
cle. As a collection, PFOCR offers a distinct advantage 
to researchers in providing diverse examples of a given 

biological process linked to specific experimental designs 
and analytical methods. For example, our case study on 
breast cancer grade prediction showed that PFOCR out-
performed other pathway databases in terms of both rank 
and total number of results. In our breast cancer analy-
sis results, the top 62 pathways that passed the accuracy 
threshold were all from PFOCR (Supplemental Table 3). 
The fact that the majority of genes—including those with 
the highest importance scores—were unique to PFOCR 
suggests that the unique pathway information in PFOCR 
can support research into disease mechanisms in a way 
that other pathway databases cannot.

Conclusions
In the work above, we have highlighted the unique 
strengths of the PFOCR database in disease research 
applications. With a focus on disease-associated con-
tent, PFOCR leads not only in terms of the number of 
diseases covered, but also the number of pathways per 
disease, and the number of unique genes per disease. 
In the context of pathway analysis, PFOCR offers more 
avenues to connect a researcher’s gene set of interest to 
biological processes related to disease. Available in GMT 
format and pre-integrated into user-friendly online tools, 
PFOCR is easy to include in a researcher’s analysis plan. 
More advanced pathway analyses, for example investi-
gating cancer subtypes and grade prediction, can lever-
age the unique depth of pathway content in PFOCR that 
lends support to explorations into possible mechanistic 
models and machine learning applications where typical 
pathway databases are not particularly useful.

Methods
The PFOCR gmt (pfocr-20210515-gmt-Homo_sapi-
ens.gmt) includes figures published between 1995 
and 2021 and was downloaded from the PFOCR data 
archive [94]. The WikiPathways gmt file (wikipathways-
20211210-gmt-Homo_sapiens.gmt) includes curated 
pathway models up until 2021 and was downloaded from 
the WikiPathways data archive [95]. KEGG pathways 
were retrieved from json files downloaded from TogoWS 
[96]. TogoWS only supports KEGG data uploaded prior 
to their proprietary licensing in 2012. Reactome path-
ways were retrieved as JSON files using the Reactome 
REST API on 10 January 2022, and were parsed using the 
R jsonlite library [97].

PFOCR, Reactome, WikiPathways, and KEGG path-
ways are filtered according to the criteria of having a 
minimum of 3 genes and a maximum of 500 genes. In 
order to best represent Reactome’s unique gene-level 
annotations, no gene minimum was applied for the dis-
ease gene coverage comparison (Table 2). As a result of 
these filters, the number of pathways from their sources 
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decreased from 2029 to 1663 in Reactome, from 703 to 
686 in WikiPathways, and from 345 to 345 in KEGG. The 
PFOCR gmt is provided with these constraints already 
applied.

Disease coverage comparison
Disease information was downloaded from the Com-
parative Toxicogenomics Database (CTD) [14]. Diseases 
were screened according to the following criteria in order 
to compile a distinct set of names amenable to making 
unambiguous occurrence counts in text annotations in 
pathway databases: 1. A disease name is not an exten-
sion of another disease name from the same disease, 2. 
A disease name is not related to a psychological condi-
tion, 3. A disease is not a category for multiple diseases 
otherwise included (e.g., neurodegenerative disease), 
4. A disease is not related to an environmental condi-
tion (e.g., mite infestations), 5. A disease is not an alias 
for another disease, 6. A disease is not a symptom (e.g., 
abdominal pain), 7. A disease name is not ambiguous 
relative to included disease names (e.g., cancer). The final 
number of filtered disease names was 876. Text titles and 
descriptions (or captions) were collected for each of the 
human pathways from PFOCR, Reactome, WikiPath-
ways, and KEGG. Case-insensitive string matching func-
tions were used to identify disease name occurrences in 
the collected text samples. A match was only counted 
once per pathway even if the disease name occurred mul-
tiple times within or across text samples for that pathway. 
The resulting pathway counts per disease and per data-
base are shown in Supplement Table  1 and a subset in 
Table 1. Reactome and WikiPathways provide additional 
sources for disease annotation, including ontology tags, 
gene descriptions, and bibliography titles that we did not 
include in this accounting in order to make a fair com-
parison across all four resources.

To investigate disease gene coverage of the pathway 
databases, the human disease gene file ’human_dis-
ease_knowledge_filtered.tsv’ was downloaded from 
Jensen DISEASES [98]. Jensen disease names that exactly 
matched the CTD disease names were selected for inves-
tigation. The number of genes present in integrated 
pathways for each disease was determined for each path-
way database and also expressed as a percentage of the 
number of genes defined by Jensen DISEASES for each 
disease.

Case study 1: acute myeloid leukemia subtype analysis
AML patient gene expression data was downloaded 
from GEO under accession number GSE108316. Sam-
ples with mutations in RUNX1, inv(16), t(8;21), CEBPA, 
SRSF2, FLT3-ITD, FLT3-ITD/NMP1, and inv(3)/RAS 
were selected for this study. Differentially expressed gene 

(DEG) analysis was performed using genes with two 
or more read counts in at least five samples using the 
limma pipeline [99]. Gene counts were transformed to 
 log2-counts per million (logCPM), and the mean–vari-
ance relationship and weights were estimated using voom 
in the R library limma [99]. Then, limma’s lmFit was used 
to fit linear models and limma’s eBayes to compute sta-
tistics of the fitted models. Control samples were used as 
reference samples for each hypothesis comparing leuke-
mia patients and normal gene expression levels.

Based on the DEG results, GSEA was performed for 
each mutation type. First, leukemia related pathways 
were retrieved from PFOCR, WikiPathways, KEGG, and 
Reactome (see eighth row of Table  1). GSEA was per-
formed using GSEA in the R library ClusterProfiler [17]. 
Normalized enrichment scores (NES) were retrieved 
from GSEA results, and scores for each mutation type 
were subjected to hierarchical clustering using the R 
function heatmap.2. At the top level of the sample hierar-
chy, there are two main clusters. The core leukemia gene 
set (CLGS) was defined by the hierarchical clustering 
and included 26 pathways with the greatest average NES 
differences.

Case study 2: breast cancer prediction analysis
GSE3494 and GSE2990 breast cancer patient gene 
expression data measured by Affymetrix Human 
Genome U133A Array were downloaded for breast can-
cer analysis. Robust Multi-array Average (RMA) [100] 
was calculated using rma in the R library affy. Principal 
component analysis (PCA) was performed to confirm 
that there was no batch effect in data sets.

To build random forest models for predicting breast 
cancer grade in patient data, first, breast cancer path-
ways were retrieved from PFOCR, Reactome, WikiP-
athways, and KEGG. Breast cancer pathways compiled 
from the disease coverage comparison analysis resulted 
in 1954 PFOCR, 20 Reactomes, 6 WikiPathways and 
3 KEGG pathways (see first row of Table  1). The gene 
expression values of genes in each pathway were used 
as feature values in random forest models. For best 
results, hyperparameters (number of features, mini-
mum node size, and fraction of observations to sam-
ple) were tuned using the tune function in the R library 
randomForestSRC [101] to ensure that the prediction 
error is the minimum. The number of trees was set to 
1000 times the number of features. Then, ranger [102] 
was used to make random forest models and measure 
feature importance given the optimal hyperparam-
eters. The overall training performance of each model 
and the feature importance was measured as the aver-
age of the one-out cross-validation results. The path-
ways with cross validation accuracy and prediction 



Page 11 of 13Shin and Pico  BMC Genomics          (2023) 24:713  

accuracy higher than 0.65 were selected as top path-
ways (Table 3) and pathways with cross validation accu-
racy and prediction accuracy higher than 0.55 were 
selected (Supplemental Table 3) and used to assess the 
uniqueness of top genes in PFOCR pathways.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12864‑ 023‑ 09816‑1.

Additional file 1: Table S1. Disease Coverage Comparison. Complete 
list of disease‑related pathways for each database by searching relevant 
pathway titles and descriptions or captions. Disease names were collected 
from the Comparative Toxicogenomics Database [14]. The proportion of 
diseases covered per database is shown in parentheses in the column 
headers. The pathway count for the most represented disease per data‑
base is in bold italics.

 Additional file 2: Table S2. NES values of leukemia expression. The NES 
scores for each mutation in pathways are calculated using GSEA. The 
differences between NES of subtype S and subtype L are listed in column 
’Ave. NES difference’. The ’CLGS’ column describes whether each path 
belongs to CLGS. 

 Additional file 3: Table S3. Random forest breast cancer grade 
prediction accuracy. All results with prediction accuracy and cross‑
validation accuracy larger than 0.55 and min gene importance larger than 
0.1. The result ranking was determined by min(cross‑validation accuracy, 
prediction accuracy). The “Top Gene” corresponds to the gene with the 
highest feature importance score in each pathway.
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